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Lua is a fast, lightweight, dynamic language designed for embedding in 
applications. With Mike Pall's LuaJIT, Lua gains a just-in-time optimizing trace compiler 
with almost the execution speed of C. For some time, Csound has included a Lua 
interface to the Csound API. Now, the lua_opdef and lua_opcall opcodes enable 
writing Csound opcodes directly in Lua. The Lua code is embedded in the Csound 
orchestra, and compiled and optimized at run time. Users can write Csound code in a 
modern programming language with simple syntax; full lexical scoping; support for 
classes, lambdas and closures; and access to a variety of third party libraries, including 
all shared libraries with exported C interfaces. It's even possible to call back into the 
Csound API from Lua. A performance analysis compares Csound's Moog ladder filter 
written in C, as a user-defined opcode, and as a Lua opcode. The Lua opcode runs in 
118% of the time of native C and in 40% of the time of the user-defined opcode.

Introduction
Csound (Vercoe et al., 2011) is a user-programmable software synthesizer with a powerful library of 
signal processing routines, or “opcodes.” Csound itself is mostly written in C, but users program 
Csound in the “orchestra language” to define instruments, and in the “score language,” to define notes 
to be rendered by the instruments. We are concerned here only with the orchestra language.

The musical semantics of Csound are excellent. It computes audio at any sampling rate, with floating 
point samples, for any number of channels. Csound renders dense score events, automatically creates 
instances of instruments for polyphony, and handles variant tunings, tied notes, tempo changes, etc.

However, the orchestra language seems created first for musical usefulness; second, for runtime speed; 
third, for ease of implementing Csound itself; and only last, for ease of writing code. As a result, the 
orchestra language has an assembler-like syntax that mixes operations on control-rate variables and 
audio-rate variables. It lacks lexical scoping, classes, or user-defined structures except function tables. 
To work around these limitations, many hacks have been used to extend the orchestra language. 

As a result, Csound code is not so easy to write. Several solutions to this problem have been 
implemented: plugin opcodes, the suite of Python opcodes, and user-defined opcodes (UDOs). As 
discussed below, none of these solutions are completely successful. 

The Lua opcodes presented here are designed to overcome the limitations of these alternatives.

I. Alternatives to Csound Code 

Plugin Opcodes

Csound was designed from the start to be extensible with new opcodes written in C. In the past, users 
who wrote their own opcodes had to recompile Csound itself. The newer plugin facility enables 
opcodes to be compiled independently. Csound automatically discovers, loads, and runs such plugins 
during performance. They can be written in C or C++, which remain the leading systems programming 
languages. I've contributed a header-file only template class library to simplify writing opcodes in C++.



So, I expected many people would write plugin opcodes. Why haven't they? Csound users are not 
necessarily experienced C or C++ programmers. Perhaps more importantly, it can take a long time to 
debug C or C++ code through the necessary cycles of write/build/run/fail/rewrite.

The Python Opcodes

The Python opcodes enable calling into Python code from Csound orchestras. Any amount of Python 
code can be embedded as string literals in Csound code.

You can call any Python function, but you can’t directly define an opcode in Python. There are quite a 
few Python opcodes, and that may be confusing. Python is a very powerful language, but Python code 
typically executes 3 to 100 times slower than C++, on average 30 times slower. That's fine for score 
generation, but slow for signal processing. I don't know how widely used the Python opcodes are.

User-Defined Opcodes

User-defined opcodes work by plugging a body like a Csound instrument definition into the plumbing 
of an opcode definition. Unlike plugin opcodes and the Python opcodes, UDOs are popular. They are 
as efficient as any other Csound orchestra code, i.e. much faster than Python. 

The only real drawback of UDOs is... you have to write them in Csound orchestra code! So, while 
UDOs are great for developing reusable libraries of Csound code, they are not really a solution to the 
difficulty of writing Csound code.

II. Using Lua in Csound 
The design goals of the Lua opcodes are:

1. Make it possible to write Csound code in a user-friendly, high-level language with full lexical 
scoping, structures and classes, and support for functional programming: 

1. Execute arbitrary blocks of Lua code at i-rate (lua_exec). Such code can define global 
functions, classes, and so on to be used by Lua opcodes, or do anything else for that matter.

2. Directly define opcodes in Lua for any processing rate, any types of parameters, and any 
number of output and input parameters (lua_opdef).

3. Effciently call these new opcodes defined in Lua (lua_iopcall, lua_ikopcall, 
lua_iaopcall).

2. Require the installation of no third party software packages, or at least a minimum installation.

3. Require no build system or external compilation.

4. Run really fast.

What is Lua?

Lua is Portuguese for “moon.” And Lua (Lua.org, 2011; Ierusalimschy et al. 2003; Ierusalimschy 
2006) is a lightweight, efficient dynamic programming language, designed for embedding in C/C++ 
and extending with C/C++. Lua has a stack-based calling mechanism and provides a toolkit of features 
(tables, metatables, anonymous functions, and closures) with which many styles of object-oriented and 
functional programming may be implemented. Lua's syntax is only slightly harder than Python's. 

Lua is already one of the fastest dynamic languages — yet LuaJIT by Mike Pall (2011) goes much 



further, giving Lua a just-in-time optimizing trace compiler for Intel architectures. LuaJIT includes an 
efficient foreign function interface (FFI) with the ability to define C arrays, structures, and other types 
in Lua. The speed of LuaJIT/FFI ranges from several times as fast as Lua, to faster (in some contexts) 
than optimized C. In my opinion, LuaJIT/FFI is a glimpse of the future of programming languages! 

How It Works

Here we describe only the lua_opdef and lua_ikopcall opcodes; the others work the same way.

The lua_opdef opcode (Listing 1) is used to create Lua opcodes in the Csound orchestra header. The 
user provides an opcode name and a block of Lua code in a multi-line string literal enclosed by double 
braces (Listing 3). lua_opdef has only an init function (Listing 1, lines 7-57), which first retrieves 
the name of the Lua opcode, then executes the user-defined Lua code (in the luaL_dostring call, 
line 20). This Lua code must first use a LuaJIT/FFI cdef to declare the Lua opcode's structure in C 
(Listing 3, lines 6-33), then define the actual Lua opcode subroutines (lines 37-102). lua_opdef's init 
routine then retrieves and stores Lua references to the newly defined subroutines (Listing 1, lines 22-
52), as it is faster to call Lua functions from C by reference than by name. 

The Lua virtual machine is single-threaded, so the Lua opcodes maintain a separate LuaJIT state for 
each Csound thread. The manageLuaState and manageLuaReferenceKeys functions (Listing 
1, lines 15 and 16) are thread-safe global functions for efficiently creating and accessing LuaJIT virtual 
machines and sets of references to Lua functions. They exist so that as Csound becomes more and more 
commonly used on multi-core computers, the Lua opcodes also will support parallelization for 
increased performance.

There are four possible opcode subroutine signatures, where opname is the associated opcode name:

function opname_init(csound, opcode, carguments) … end
function opname_kontrol(csound, opcode, carguments) … end
function opname_audio(csound, opcode, carguments) … end
function opname_noteoff(csound, opcode, carguments)… end

csound is a Lua lightuserdata, i.e. a C pointer, which points to the running instance of Csound. 
opcode is a lightuserdata that points to the lua_opcall opcode structure. carguments is a 
lightuserdata that points to the start of the arguments section of the lua_opcall opcode structure. 
arguments is a large array of pointers to MYFLT (all Csound C opcode arguments are MYFLT *). 

The lua_opcall set of opcodes (Listing 2) is used to call the Lua opcodes in performance. Any 
number of output and input parameters of any type may be used, all on the right hand side of the 
opcode name (see Listing 4, line 8). All output values are passed back to Csound in the arguments.

lua_iopcall is called only at i-rate, and requires only an opname_init function. 
lua_ikopcall is called at i-rate and at k-rate, and requires an opname_init function and an 
opname_kontrol function. lua_iaopcall is called at i-rate and at a-rate requires 
opname_init and opname_audio. lua_iopcall_off, lua_ikopcall_off, and 
lua_iaopcall_off are identical to lua_iopcall, lua_ikopcall, and lua_iaopcall, 
respectively, except that in addition they require an opname_noteoff function that Csound calls 
when the instrument running the opcode is inactivated.

All each opcode subroutine does is retrieve the LuaJIT virtual machine that belongs to the calling 
thread, retrieve the Lua reference to the Lua opcode subroutine, push the arguments on the Lua virtual 
machine's stack, execute the protected call that has been set up on the stack, and pop the return value 
off the stack (e.g. lines 33-41 in Listing 2). 



The critical concept in the Lua opcodes is the opcode structure. It is what enables Csound to pass 
opcode arguments to Lua code and get return values back. When Csound calls a lua_opcall 
opcode, the actual memory is created by Csound based on the size of the lua_opcall opcode 
structure, which contains a large arguments array. Because the outtypes to lua_opcall are 
declared as Csound type N, i.e. any number of arguments of any type, Csound simply copies the 
address of each argument into the corresponding slot of the arguments array, without type checking. 
As far as LuaJIT is concerned, the opcode structure is an FFI cdef that defines a C structure. When 
the Lua opcode functions are called, the last parameter contains the address of this arguments array. 
LuaJIT must FFI to type cast this address as a pointer to the Lua opcode structure (Listing 3, lines 35, 
38, and 51). In effect, the arguments array and the Lua opcode structure form a union – two different 
types that refer to the same block of memory. As long as the types of the arguments passed agree with 
the types declared in the opcode structure, the arguments and any other members can be efficiently 
accessed as Lua types.

Listing 3, lines 39-40 shows a Lua opcode using the Csound API via LuaJIT's FFI to call back into 
Csound to obtain and store the sampling rate and number of sample frames per kperiod.

III. Results
The proof of concept is a port of Csound’s moogladder filter opcode, written in C by Victor 
Lazzarini, to LuaJIT/FFI. The Csound orchestra header code for the Lua opcode is shown in Listing 3, 
and the Csound instrument definition that uses the opcode is shown in Listing 4.

Results of using moogladder with a moving center frequency to filter a buzz instrument are shown 
in Table 1. All three implementations of moogladder sound the same. Only the time spent in the 
actual moogladder opcode is counted. This was run on a quad core Intel Core i7 720 1.6 GHz 
machine running Csound 5.13 double precision samples on Windows 7 Home Premium Edition.

Table 1. Comparison of Opcode Performance

Implementation Run 1 Run 2 Mean
Opcode 

only
% of  
“C”

% of  
UDO

% of  
Lua

Instrument without moogladder 0.065 0.072 0.069 0.000 n/a n/a n/a
Instrument with native C moogladder 1.065 1.082 1.074 1.005 100.0% 33.4% 84.5%
Instrument with UDO moogladder 3.104 3.052 3.078 3.010 299.5% 100.0% 252.9%
Instrument with Lua moogladder 1.286 1.231 1.259 1.190 118.4% 39.5% 100.0%

The LuaJIT/FFI code runs almost as fast as the C code, and two and a half times as fast as Csound 
orchestra code.

Things to Watch Out For

Getting the moogladder Lua code to run took experimentation to work around idiosyncracies of 
LuaJIT's virtual machine. In particular, using Lua's normal for loop construct proved impossible – 
every run simply crashed. Fortunately, using the while construct to create for loops is easy, and 
works fine. There may be other problems with LuaJIT/FFI that different Lua code would expose.

However, I have not yet run into any problems with LuaJIT that could not be worked around.



Listings

Listing 1. lua_opdef Definition.
1 class cslua_opdef : public OpcodeBase<cslua_opdef>
2 {
3 public:
4     MYFLT *opcodename_;
5     MYFLT *luacode_;
6 public:
7     int init(CSOUND *csound)
8     {
9         int result = OK;
10         lua_State *L = manageLuaState();
11         const char *opcodename =  csound->strarg2name(csound,
12                                   (char *) 0, opcodename_,
13                                   (char *)"default",
14                                   (int) csound->GetInputArgSMask(this));
15         const char *luacode =  csound->strarg2name(csound,
16                                (char *) 0, luacode_,
17                                (char *)"default",
18                                (int) csound->GetInputArgSMask(this));
19         log(csound, "Executing Lua code:\n%s\n", luacode);
20         result = luaL_dostring(L, luacode);
21         if (result == 0) {
22             keys_t &keys = manageLuaReferenceKeys(L, opcodename);
23             log(csound, "Opcode: %s\n", opcodename);
24             log(csound, "Result: %d\n", result);
25             char init_function[0x100];
26             std::snprintf(init_function, 0x100, "%s_init", opcodename);
27             lua_getglobal(L, init_function);
28             if (!lua_isnil(L, 1)) {
29                 keys.init_key = luaL_ref(L, LUA_REGISTRYINDEX);
30                 lua_pop(L, 1);
31             }
32             char kontrol_function[0x100];
33             std::snprintf(kontrol_function, 0x100, "%s_kontrol", opcodename);
34             lua_getglobal(L, kontrol_function);
35             if (!lua_isnil(L, 1)) {
36                 keys.kontrol_key = luaL_ref(L, LUA_REGISTRYINDEX);
37                 lua_pop(L, 1);
38             }
39             char audio_function[0x100];
40             std::snprintf(audio_function, 0x100, "%s_audio", opcodename);
41             lua_getglobal(L, audio_function);
42             if (!lua_isnil(L, 1)) {
43                 keys.audio_key = luaL_ref(L, LUA_REGISTRYINDEX);
44                 lua_pop(L, 1);
45             }
46             char noteoff_function[0x100];
47             std::snprintf(noteoff_function, 0x100, "%s_noteoff", opcodename);
48             lua_getglobal(L, noteoff_function);
49             if (!lua_isnil(L, 1)) {
50                 keys.noteoff_key = luaL_ref(L, LUA_REGISTRYINDEX);
51                 lua_pop(L, 1);
52             }
53         } else {
54             log(csound, "Failed with: %d\n", result);
55         }
56         return result;
57     }
58 };

Listing 2. lua_opcall Definition.
1 class cslua_opcall: public OpcodeBase<cslua_opcall>
2 {
3 public:
4     MYFLT *opcodename_;
5     MYFLT *arguments[0x3000];
6     const char *opcodename;
7 public:
8     int init(CSOUND *csound)



9     {
10         int result = OK;
11         opcodename = csound->strarg2name(csound, (char *) 0,
12                                          opcodename_,
13                                          (char *)"default",
14                                          (int) csound->GetInputArgSMask(this));
15         lua_State *L = manageLuaState();
16         keys_t &keys = manageLuaReferenceKeys(L, opcodename);
17         lua_rawgeti(L, LUA_REGISTRYINDEX, keys.init_key);
18         lua_pushlightuserdata(L, csound);
19         lua_pushlightuserdata(L, this);
20         lua_pushlightuserdata(L, &arguments);
21         if (lua_pcall(L, 3, 1, 0) != 0) {
22             log(csound, "Lua error in \"%s_init\": %s.\n", opcodename, lua_tostring(L, -1));
23         }
24         result = lua_tonumber(L, -1);
25         lua_pop(L, 1);
26         return OK;
27     }
28     int kontrol(CSOUND *csound)
29     {
30         int result = OK;
31         lua_State *L = manageLuaState();
32         keys_t &keys = manageLuaReferenceKeys(L, opcodename);
33         lua_rawgeti(L, LUA_REGISTRYINDEX, keys.kontrol_key);
34         lua_pushlightuserdata(L, csound);
35         lua_pushlightuserdata(L, this);
36         lua_pushlightuserdata(L, &arguments);
37         if (lua_pcall(L, 3, 1, 0) != 0) {
38             log(csound, "Lua error in \"%s_kontrol\": %s.\n", opcodename, lua_tostring(L, -1));
39         }
40         result = lua_tonumber(L, -1);
41         lua_pop(L, 1);
42         return result;
43     }
44     int audio(CSOUND *csound)
45     {
46         int result = OK;
47         lua_State *L = manageLuaState();
48         keys_t &keys = manageLuaReferenceKeys(L, opcodename);
49         lua_rawgeti(L, LUA_REGISTRYINDEX, keys.audio_key);
50         lua_pushlightuserdata(L, csound);
51         lua_pushlightuserdata(L, this);
52         lua_pushlightuserdata(L, arguments);
53         if (lua_pcall(L, 3, 1, 0) != 0) {
54             log(csound, "Lua error in \"%s_audio\": %s.\n", opcodename, lua_tostring(L, -1));
55         }
56         result = lua_tonumber(L, -1);
57         lua_pop(L, 1);
58         return result;
59     }
60 };

Listing 3. moogladder Opcode Definition.
1 lua_opdef "moogladder", {{
2 local ffi = require("ffi")
3 local math = require("math")
4 local string = require("string")
5 local csoundApi = ffi.load('csound64.dll.5.2')
6 ffi.cdef[[
7     int csoundGetKsmps(void *); 
8     double csoundGetSr(void *);
9     struct moogladder_t {
10       double *out;
11       double *inp;
12       double *freq;
13       double *res;
14       double *istor;
15       double sr;
16       double ksmps;
17       double thermal;
18       double f;
19       double fc;
20       double fc2;



21       double fc3;
22       double fcr;
23       double acr;
24       double tune;
25       double res4;
26       double input;
27       double i, j, k;
28       double kk;
29       double stg[6];
30       double delay[6];
31       double tanhstg[6];
32     };
33 ]]
34
35 local moogladder_ct = ffi.typeof('struct moogladder_t *')
36
37 function moogladder_init(csound, opcode, carguments)
38     local p = ffi.cast(moogladder_ct, carguments)
39     p.sr = csoundApi.csoundGetSr(csound)
40     p.ksmps = csoundApi.csoundGetKsmps(csound)
41     if p.istor[0] == 0 then
42         for i = 0, 5 do
43             p.delay[i] = 0.0
44             p.tanhstg[i] = 0.0
45         end
46     end
47     return 0
48 end
49
50 function moogladder_kontrol(csound, opcode, carguments)
51     local p = ffi.cast(moogladder_ct, carguments)
52     -- transistor thermal voltage
53     p.thermal = 1.0 / 40000.0
54     if p.res[0] < 0.0 then
55         p.res[0] = 0.0
56     end
57     -- sr is half the actual filter sampling rate
58     p.fc = p.freq[0] / p.sr
59     p.f = p.fc / 2.0
60     p.fc2 = p.fc * p.fc
61     p.fc3 = p.fc2 * p.fc
62     -- frequency & amplitude correction
63     p.fcr = 1.873 * p.fc3 + 0.4955 * p.fc2 - 0.6490 * p.fc + 0.9988
64     p.acr = -3.9364 * p.fc2 + 1.8409 * p.fc + 0.9968
65     -- filter tuning
66     p.tune = (1.0 - math.exp(-(2.0 * math.pi * p.f * p.fcr))) / p.thermal
67     p.res4 = 4.0 * p.res[0] * p.acr
68     -- Nested 'for' loops crash, not sure why.
69     -- Local loop variables also are problematic.
70     -- Lower-level loop constructs don't crash.
71     p.i = 0
72     while p.i < p.ksmps do
73         p.j = 0
74         while p.j < 2 do
75             p.k = 0
76             while p.k < 4 do
77                 if p.k == 0 then
78                     p.input = p.inp[p.i] - p.res4 * p.delay[5]
79                     p.stg[p.k] = p.delay[p.k] + p.tune * (math.tanh(p.input * p.thermal) - 

p.tanhstg[p.k])
80                 else
81                     p.input = p.stg[p.k - 1]
82                     p.tanhstg[p.k - 1] = math.tanh(p.input * p.thermal)
83                     if p.k < 3 then
84                         p.kk = p.tanhstg[p.k]
85                     else
86                         p.kk = math.tanh(p.delay[p.k] * p.thermal)
87                     end
88                     p.stg[p.k] = p.delay[p.k] + p.tune * (p.tanhstg[p.k - 1] - p.kk)
89                 end
90                 p.delay[p.k] = p.stg[p.k]
91                 p.k = p.k + 1
92             end
93             -- 1/2-sample delay for phase compensation



94             p.delay[5] = (p.stg[3] + p.delay[4]) * 0.5
95             p.delay[4] = p.stg[3]
96             p.j = p.j + 1
97         end
98         p.out[p.i] = p.delay[5]
99         p.i = p.i + 1
100     end
101     return 0
102 end
103 }}

Listing 4. moogladder Invocation.
1 instr 4
2     kres        init        1
3     istor       init        0
4     kfe         expseg      500, p3*0.9, 1800, p3*0.1, 3000
5     kenv        linen       10000, 0.05, p3, 0.05
6     asig        buzz        kenv, 100, sr/(200), 1
7     afil        init        0
8                 lua_ikopcall    "moogladder", afil, asig, kfe, kres, istor
9                 out         afil
10 endin
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