Writing Csound Opcodes in Lua

Michael Gogins

Irreducible Productions
New York

Csound Conference, 2011

Gogins Lua Opcodes



Outline

0 Motivation
@ Make Csound a better programming environment
@ Limitations of existing solutions

9 Lua opcodes
@ Design goals
@ Implementation
@ Results

Gogins Lua Opcodes



Motivation Make Csound a better programming environment

Limitations of existing solutions

The orchestra language

@ One of Csound’s main purposes is user programmability.
Unfortunately, Csound is not that easy to program.

@ The orchestra language is designed first for musical
usefulness, second for runtime efficiency, third for easy
implementation, and last of all for ease of use.

@ So, it has an assembler-like syntax, incomplete lexical
scoping, and no user-definable data structures except for
function tables.

@ The orchestra language also is full of too many clever
hacks.

@ So, Csound code is hard to write.

Gogins Lua Opcodes



Motivation
Make Csound a better programming environment

Limitations of existing solutions

Plugin opcodes

@ Plugin opcodes can be written in C or C++ — the leading
general-purpose systems programming languages.

@ | have contributed a header-file only C++ base class that
greatly simplifies writing opcodes in C++, which | use for all
my own opcodes (including these Lua Opcodes).

@ So, | expected many people would contribute plugin
opcodes. Why has this not happened?

@ Most Csound users are not C or C++ programmers.

@ Even those who know C or C++ seem reluctant to set up a
build system.

@ Two other solutions exist: the Python opcodes and
user-defined opcodes (UDOs).

Gogins Lua Opcodes



Motivation
Make Csound a better programming environment

Limitations of existing solutions

The Python opcodes

@ The Python opcodes provide various means for calling into
Python code from Csound instrument definitions.

@ Any amount of Python code can be embedded as string
literals in a Csound orchestra file.

@ Python is very powerful language, but it is not efficient.

@ There are quite a few Python opcodes, and that may be
confusing to beginners.

@ You can call any Python function, but you can’t directly
define an opcode in Python.

@ | do not know how widely used the Python opcodes are.

Gogins Lua Opcodes



Motivation
Make Csound a better programming environment

Limitations of existing solutions

User-defined opcodes

@ User-defined opcodes work by plugging what is essentially
the body of a Csound instrument definition into the
plumbing of an opcode definition.

@ Unlike plugin opcodes and the Python opcodes, UDOs are
quite popular.

@ UDOs are as efficient as any other Csound orchestra code,
which is much faster than Python.

@ The only real drawback of UDOs is... you have to write
them in Csound orchestra code.

@ In my opinion, that’s a pretty big drawback!

Gogins Lua Opcodes



Design goals
Lua opcodes Implementation
Results

Design goals

@ Make Csound much easier to program and extend, using a
widely known, general-purpose programming language
with a simple syntax.

@ Make it possible to define Csound opcodes, of any type,
directly in Lua.

@ As Lua is a dynamic language, no build system is required.
@ Run fast.
@ Run really fast.

Gogins Lua Opcodes



Design goals
Lua opcodes Implementation
Results

What is Lua?

@ Lua is Portuguese for “moon.”

@ Lua is a lightweight, efficient dynamic programming
language.

@ Lua is specifically designed both for embedding in C/C++,
and for extending with C/C++, using a stack-based calling
mechanism.

@ Lua provides a compact toolkit of language features such
as tables, metatables, and closures, with which many
styles of object-oriented and functional programming may
be implemented.

@ Lua has a simple yet flexible syntax, and is only slightly
harder than Python to learn and to write.

Gogins Lua Opcodes



Design goals
Lua opcodes Implementation
Results

LuadlT

@ Luais already one of the fastest dynamic languages — but
LuaJIT by Mike Pall goes much further.

@ LuadIT gives Lua a just-in-time optimizing trace compiler
for Intel architectures.

@ LuaJdIT includes an efficient foreign function interface (FFI)
with the ability to define C arrays, structures, and other
types in Lua, and associate Lua functions with them.

@ The efficiency of LuaJIT/FFI ranges from several times as
fast as Lua, to faster (in certain contexts) than optimized C.

@ In my opinion, LuaJIT/FFl is a glimpse of the future of
programming languages! If only it had built-in parallel
constructs...

Gogins Lua Opcodes



Design goals
Lua opcodes Implementation
Results

How it works

@ The lua_opdef opcode is an opcode that defines other
opcodes.

@ The user provides an opcode name and a block of Lua
code.

@ The Lua code declares the opcode structure in C using
FFI, and defines the opcode subroutines in Lua.

@ The 1ua_opcall set of opcodes is used to call the Lua
opcodes in performance.

@ Any number of output and input parameters of any type
may be used, but they all come on the right hand side of
the opcode name.

@ Although the Lua virtual machine is single-threaded, the
Lua opcodes maintain one LuadIT state per Csound
thread.

Gogins Lua Opcodes



Design goals
Lua opcodes Implementation

Results

Listing 1: Orchestra Header

lua_opdef "luatest", {{
local ffi = require("ffi")
-- This defines the outargs/inargs part of the opcode struct.
ffi.cdef[[
struct luatest_args_t
{
double =xiout;
double xarg;
i
1]
—- This defines the iopadr.
function luatest_init (csound, opcode, carguments)
—-- Typecast carguments (an address) to a local variable (a typed pointer).

local arguments = ffi.cast ("struct luatest_args_t =", carguments
—— In LuaJIT FFI, dereference pointers by treating them as arrays.
arguments.iout [0] = arguments.arg[0] * 2

return 0

end
b}




Design goals
Lua opcodes Implementation

Results

Listing 2: Instrument Definition

instr 1
iarg = 2
iresult = 0
lua_iopcall "luatest", iresult, iarg
print iresult
endin

Gogins Opcodes



Design goals
Lua opcodes Implementation
Results

How it runs

@ The proof of concept is a port of Csound’s native
moogladder filter opcode, written in C by Victor Lazzarini,
to LuadIT/FFI.

@ Getting the LuaJIT/FFI code to run took some
experimentation to get around idiosyncracies of the LuaJIT
virtual machine!

@ The LuaJIT/FFI opcode runs in 118% of the time of the
native version, and sounds the same.

@ The LuaJIT/FFI opcode runs in 40% of the time of a
user-defined opcode version, also written by Victor
Lazzarini.

@ The LuaJlT/FFl code runs almost as fast as C code, and
two and a half times as fast as Csound orchestra code.

Gogins Lua Opcodes



Design goals
Lua opcodes Implementation

Results

Listing 3: Orchestra header for the Lua moogladder

lua_opdef "moogladder", {{
local ffi = require("ffi")
local math = require ("math")
local string = require("string")
local csoundApi = ffi.load(’csound64.d11.5.2")
ffi.cdef[[

int csoundGetKsmps (void «);
double csoundGetSr (void «*);
struct moogladder_t {

double =xout;

double =xinp;

double xfregq;

double xres;

double xistor;

double sr;

double ksmps;

double thermal;

double f;

double fc;

double fc2;

double fc3;

double fcr;

double acr;

double tune;

double res4;

double input;

double i;

double j;

double k;

double kk;




1]

Design goals
Lua opcodes Implementation

Results

double stgl[6];

double delay[6];

double tanhstg[6];
i

local moogladder_ct = ffi.typeof (’struct moogladder_t «')

function moogladder_init (csound, opcode, carguments)

end

local p = ffi.cast (moogladder_ct, carguments
p.sr = csoundApi.csoundGetSr (csound)
p.ksmps = csoundApi.csoundGetKsmps (csound)
if p.istor[0] == 0 then
for i = 0, 5 do
p.delay[i] = 0.0
end
for 1 = 0, 3 do
p.tanhstg[i] = 0.0
end
end
return 0

function moogladder_kontrol (csound, opcode, carguments)

local p = ffi.cast (moogladder_ct, carguments
—-— transistor thermal voltage
p.thermal = 1.0 / 40000.0
if p.res[0] < 0.0 then
p.res[0] = 0.0
end
—— sr is half the actual filter sampling rate
p.fc = p.freq[0] / p.sr




Design goals
Lua opcodes Implementation

Results

p.f = p.fc / 2.0

p.fc2 = p.fc » p.fc

p.fc3 = p.fc2 x p.fc

—— frequency & amplitude correction

p.fcr = 1.873 » p.fc3 + 0.4955 % p.fc2 - 0.6490 » p.fc + 0.9988
p.acr = -3.9364 x p.fc2 + 1.8409 » p.fc + 0.9968

—— filter tuning

p.tune = (1.0 - math.exp(-(2.0 * math.pi * p.f * p.fcr))) / p.thermal
p.res4 = 4.0 x p.res[0] * p.acr

—— Nested ’for’ loops crash, not sure why.

—- Local loop variables also are problematic.

—— Lower-level loop constructs don’t crash.

p.i =0
while p.i < p.ksmps do
p.-j =0
while p.j < 2 do
p.k =0
while p.k < 4 do

if p.k == 0 then
p.input = p.inp[p.i] - p.res4 * p.delay[5]
p.stg[p.k] = p.delay[p.k] + p.tune * (math.tanh(p.input x p.
thermal) - p.tanhstg[p.k])
else
p.input = p.stg[p.k - 1]
p.tanhstg[p.k - 1] = math.tanh(p.input * p.thermal
if p.k < 3 then
p.kk = p.tanhstg[p.k]

else
p.kk = math.tanh(p.delay[p.k] * p.thermal
end
p.stg[p.k] = p.delay[p.k] + p.tune x (p.tanhstg[p.k - 1] - p.kk)

end




Design goals
Lua opcodes Implementation

Results

p.delay[p.k] = p.stglp.k]

p.k = p.k + 1
end
-- 1/2-sample delay for phase compensation
p.delay[5] = (p.stg[3] + p.delay[4]) = 0.5
p.delay([4] = p.stg[3]
p.J =p.3 +1

end
p.out[p.i] = p.delay[5
p.i=p.i +1

end

return 0




Design goals
Lua opcodes Implementation

Results

Listing 4: Calling the Lua moogladder

instr 4

prints "Lua moogladder.\n"

kres init 1

istor init 0

kfe expseg 500, p3%0.9, 1800, p3%x0.1, 3000

kenv linen 10000, 0.05, p3, 0.05

asig buzz kenv, 100, sr/(200), 1

afil init 0
lua_ikopcall "moogladder", afil, asig, kfe, kres, istor
out afil

endin




Design goals
Lua opcodes Implementation
Results

Additional possibilities

@ Using LuadlT’s FFI, you can use the Csound API to call
back into the running host instance of Csound.

@ In this way, you can do in Lua anything the Csound API will
let you do.

@ You can embed score-generating Lua code into a Csound
orchestra.

@ You can import and use any third party Lua extension or
library.

@ God knows what you can do!

Gogins Lua Opcodes



Summary

Summary

@ You can write any number of opcodes in a real
programming language.

@ In your opcodes you can define additional functions, tables,
structures, and classes.

@ You can use lambdas and closures.

@ In your opcodes you can call any C function in a shared
library. That includes all system calls. That includes
Csound itself.

@ Your opcodes will run very fast.

@ On Windows for x86, LuaJIT already comes with Csound;
on Linux for x86, LuaJIT is download, make, and install.

Gogins Lua Opcodes



Summary

Outlook

@ It might be possible to define a completely new software
synthesizer written for LuaJIT that would, via FFI, use all
Csound opcodes — including all existing opcodes, and any
new opcodes that are plugins.

Gogins Lua Opcodes



Appendix For Further Reading

For further reading |

¥ Lua.org.
The Programming Language Lua.
http://www.lua.org
Pontificia Universidade Catélica do Rio de Janeiro.

¥ R. lerusalimschy, L. H. de Figueiredo, W. Celes.
Lua 5.1 Reference Manual.
Lua.org, 2006

¥ R. lerusalimschy.
Programming in Lua.
Lua.org, 2003.

Gogins Lua Opcodes


http://www.lua.org

Appendix For Further Reading

For further reading Il

¥ Mike Pall.
The LuaJIT Project.
http://luajit.org.

Gogins Lua Opcodes


http://luajit.org

	Motivation
	Make Csound a better programming environment
	Limitations of existing solutions

	Lua opcodes
	Design goals
	Implementation
	Results

	Appendix

