
Motivation
Lua opcodes

Summary

Writing Csound Opcodes in Lua

Michael Gogins

Irreducible Productions
New York

Csound Conference, 2011

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Outline

1 Motivation
Make Csound a better programming environment
Limitations of existing solutions

2 Lua opcodes
Design goals
Implementation
Results

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Make Csound a better programming environment
Limitations of existing solutions

The orchestra language

One of Csound’s main purposes is user programmability.
Unfortunately, Csound is not that easy to program.
The orchestra language is designed first for musical
usefulness, second for runtime efficiency, third for easy
implementation, and last of all for ease of use.
So, it has an assembler-like syntax, incomplete lexical
scoping, and no user-definable data structures except for
function tables.
The orchestra language also is full of too many clever
hacks.
So, Csound code is hard to write.

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Make Csound a better programming environment
Limitations of existing solutions

Plugin opcodes

Plugin opcodes can be written in C or C++ — the leading
general-purpose systems programming languages.
I have contributed a header-file only C++ base class that
greatly simplifies writing opcodes in C++, which I use for all
my own opcodes (including these Lua Opcodes).
So, I expected many people would contribute plugin
opcodes. Why has this not happened?
Most Csound users are not C or C++ programmers.
Even those who know C or C++ seem reluctant to set up a
build system.
Two other solutions exist: the Python opcodes and
user-defined opcodes (UDOs).

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Make Csound a better programming environment
Limitations of existing solutions

The Python opcodes

The Python opcodes provide various means for calling into
Python code from Csound instrument definitions.
Any amount of Python code can be embedded as string
literals in a Csound orchestra file.
Python is very powerful language, but it is not efficient.
There are quite a few Python opcodes, and that may be
confusing to beginners.
You can call any Python function, but you can’t directly
define an opcode in Python.
I do not know how widely used the Python opcodes are.

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Make Csound a better programming environment
Limitations of existing solutions

User-defined opcodes

User-defined opcodes work by plugging what is essentially
the body of a Csound instrument definition into the
plumbing of an opcode definition.
Unlike plugin opcodes and the Python opcodes, UDOs are
quite popular.
UDOs are as efficient as any other Csound orchestra code,
which is much faster than Python.
The only real drawback of UDOs is... you have to write
them in Csound orchestra code.
In my opinion, that’s a pretty big drawback!

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Design goals
Implementation
Results

Design goals

Make Csound much easier to program and extend, using a
widely known, general-purpose programming language
with a simple syntax.
Make it possible to define Csound opcodes, of any type,
directly in Lua.
As Lua is a dynamic language, no build system is required.
Run fast.
Run really fast.

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Design goals
Implementation
Results

What is Lua?

Lua is Portuguese for “moon.”
Lua is a lightweight, efficient dynamic programming
language.
Lua is specifically designed both for embedding in C/C++,
and for extending with C/C++, using a stack-based calling
mechanism.
Lua provides a compact toolkit of language features such
as tables, metatables, and closures, with which many
styles of object-oriented and functional programming may
be implemented.
Lua has a simple yet flexible syntax, and is only slightly
harder than Python to learn and to write.

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Design goals
Implementation
Results

LuaJIT

Lua is already one of the fastest dynamic languages — but
LuaJIT by Mike Pall goes much further.
LuaJIT gives Lua a just-in-time optimizing trace compiler
for Intel architectures.
LuaJIT includes an efficient foreign function interface (FFI)
with the ability to define C arrays, structures, and other
types in Lua, and associate Lua functions with them.
The efficiency of LuaJIT/FFI ranges from several times as
fast as Lua, to faster (in certain contexts) than optimized C.
In my opinion, LuaJIT/FFI is a glimpse of the future of
programming languages! If only it had built-in parallel
constructs...

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Design goals
Implementation
Results

How it works

The lua_opdef opcode is an opcode that defines other
opcodes.
The user provides an opcode name and a block of Lua
code.
The Lua code declares the opcode structure in C using
FFI, and defines the opcode subroutines in Lua.
The lua_opcall set of opcodes is used to call the Lua
opcodes in performance.
Any number of output and input parameters of any type
may be used, but they all come on the right hand side of
the opcode name.
Although the Lua virtual machine is single-threaded, the
Lua opcodes maintain one LuaJIT state per Csound
thread.

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Design goals
Implementation
Results

Listing 1: Orchestra Header
lua_opdef "luatest", {{
local ffi = require("ffi")
-- This defines the outargs/inargs part of the opcode struct.
ffi.cdef[[

struct luatest_args_t
{

double *iout;
double *arg;

};
]]
-- This defines the iopadr.
function luatest_init(csound, opcode, carguments)

-- Typecast carguments (an address) to a local variable (a typed pointer).
local arguments = ffi.cast("struct luatest_args_t *", carguments)
-- In LuaJIT FFI, dereference pointers by treating them as arrays.
arguments.iout[0] = arguments.arg[0] * 2
return 0

end
}}

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Design goals
Implementation
Results

Listing 2: Instrument Definition
instr 1

iarg = 2
iresult = 0
lua_iopcall "luatest", iresult, iarg
print iresult

endin

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Design goals
Implementation
Results

How it runs

The proof of concept is a port of Csound’s native
moogladder filter opcode, written in C by Victor Lazzarini,
to LuaJIT/FFI.
Getting the LuaJIT/FFI code to run took some
experimentation to get around idiosyncracies of the LuaJIT
virtual machine!
The LuaJIT/FFI opcode runs in 118% of the time of the
native version, and sounds the same.
The LuaJIT/FFI opcode runs in 40% of the time of a
user-defined opcode version, also written by Victor
Lazzarini.
The LuaJIT/FFI code runs almost as fast as C code, and
two and a half times as fast as Csound orchestra code.

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Design goals
Implementation
Results

Listing 3: Orchestra header for the Lua moogladder
lua_opdef "moogladder", {{

local ffi = require("ffi")
local math = require("math")
local string = require("string")
local csoundApi = ffi.load(’csound64.dll.5.2’)
ffi.cdef[[

int csoundGetKsmps(void *);
double csoundGetSr(void *);
struct moogladder_t {

double *out;
double *inp;
double *freq;
double *res;
double *istor;
double sr;
double ksmps;
double thermal;
double f;
double fc;
double fc2;
double fc3;
double fcr;
double acr;
double tune;
double res4;
double input;
double i;
double j;
double k;
double kk;

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Design goals
Implementation
Results

double stg[6];
double delay[6];
double tanhstg[6];

};
]]

local moogladder_ct = ffi.typeof(’struct moogladder_t *’)

function moogladder_init(csound, opcode, carguments)
local p = ffi.cast(moogladder_ct, carguments)
p.sr = csoundApi.csoundGetSr(csound)
p.ksmps = csoundApi.csoundGetKsmps(csound)
if p.istor[0] == 0 then

for i = 0, 5 do
p.delay[i] = 0.0

end
for i = 0, 3 do

p.tanhstg[i] = 0.0
end

end
return 0

end

function moogladder_kontrol(csound, opcode, carguments)
local p = ffi.cast(moogladder_ct, carguments)
-- transistor thermal voltage
p.thermal = 1.0 / 40000.0
if p.res[0] < 0.0 then

p.res[0] = 0.0
end
-- sr is half the actual filter sampling rate
p.fc = p.freq[0] / p.sr

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Design goals
Implementation
Results

p.f = p.fc / 2.0
p.fc2 = p.fc * p.fc
p.fc3 = p.fc2 * p.fc
-- frequency & amplitude correction
p.fcr = 1.873 * p.fc3 + 0.4955 * p.fc2 - 0.6490 * p.fc + 0.9988
p.acr = -3.9364 * p.fc2 + 1.8409 * p.fc + 0.9968
-- filter tuning
p.tune = (1.0 - math.exp(-(2.0 * math.pi * p.f * p.fcr))) / p.thermal
p.res4 = 4.0 * p.res[0] * p.acr
-- Nested ’for’ loops crash, not sure why.
-- Local loop variables also are problematic.
-- Lower-level loop constructs don’t crash.
p.i = 0
while p.i < p.ksmps do

p.j = 0
while p.j < 2 do

p.k = 0
while p.k < 4 do

if p.k == 0 then
p.input = p.inp[p.i] - p.res4 * p.delay[5]
p.stg[p.k] = p.delay[p.k] + p.tune * (math.tanh(p.input * p.

thermal) - p.tanhstg[p.k])
else

p.input = p.stg[p.k - 1]
p.tanhstg[p.k - 1] = math.tanh(p.input * p.thermal)
if p.k < 3 then

p.kk = p.tanhstg[p.k]
else

p.kk = math.tanh(p.delay[p.k] * p.thermal)
end
p.stg[p.k] = p.delay[p.k] + p.tune * (p.tanhstg[p.k - 1] - p.kk)

end

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Design goals
Implementation
Results

p.delay[p.k] = p.stg[p.k]
p.k = p.k + 1

end
-- 1/2-sample delay for phase compensation
p.delay[5] = (p.stg[3] + p.delay[4]) * 0.5
p.delay[4] = p.stg[3]
p.j = p.j + 1

end
p.out[p.i] = p.delay[5]
p.i = p.i + 1

end
return 0

end
}}

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Design goals
Implementation
Results

Listing 4: Calling the Lua moogladder
instr 4

prints "Lua moogladder.\n"
kres init 1
istor init 0
kfe expseg 500, p3*0.9, 1800, p3*0.1, 3000
kenv linen 10000, 0.05, p3, 0.05
asig buzz kenv, 100, sr/(200), 1
afil init 0

lua_ikopcall "moogladder", afil, asig, kfe, kres, istor
out afil

endin

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Design goals
Implementation
Results

Additional possibilities

Using LuaJIT’s FFI, you can use the Csound API to call
back into the running host instance of Csound.
In this way, you can do in Lua anything the Csound API will
let you do.
You can embed score-generating Lua code into a Csound
orchestra.
You can import and use any third party Lua extension or
library.
God knows what you can do!

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Summary

You can write any number of opcodes in a real
programming language.
In your opcodes you can define additional functions, tables,
structures, and classes.
You can use lambdas and closures.
In your opcodes you can call any C function in a shared
library. That includes all system calls. That includes
Csound itself.
Your opcodes will run very fast.
On Windows for x86, LuaJIT already comes with Csound;
on Linux for x86, LuaJIT is download, make, and install.

Gogins Lua Opcodes



Motivation
Lua opcodes

Summary

Outlook

It might be possible to define a completely new software
synthesizer written for LuaJIT that would, via FFI, use all
Csound opcodes — including all existing opcodes, and any
new opcodes that are plugins.

Gogins Lua Opcodes



Appendix For Further Reading

For further reading I

Lua.org.
The Programming Language Lua.
http://www.lua.org
Pontifícia Universidade Católica do Rio de Janeiro.

R. Ierusalimschy, L. H. de Figueiredo, W. Celes.
Lua 5.1 Reference Manual.
Lua.org, 2006

R. Ierusalimschy.
Programming in Lua.
Lua.org, 2003.

Gogins Lua Opcodes

http://www.lua.org


Appendix For Further Reading

For further reading II

Mike Pall.
The LuaJIT Project.
http://luajit.org.

Gogins Lua Opcodes

http://luajit.org

	Motivation
	Make Csound a better programming environment
	Limitations of existing solutions

	Lua opcodes
	Design goals
	Implementation
	Results

	Appendix

