
CSOUND CONFERENCE 2011

Haskell meets Csound

Playing with Csound in functional programming language

Anton Kholomiov
Author AT anton.kholomiov@gmail.com

Abstract
This paper describes how features of functional programming language like Haskell can enrich Csound
syntax and presents an implementation of proposed ideas in csound-expression, Haskell library and
Csound code generator.

The music composition can be seen as a process of patterns creation, ordering and transformation of
little pieces. Such a natural features of functional programming as higher order functions and algebraic
data types are well suited for the task of creating complex patterns by means of composition and
transformation.

I. Introduction

I'd like to introduce you to csound-expression (CE). It is a Haskell library and Csound code generator.
Csound is a language. Why should anyone generate its code? Why not to use Csound directly? Csound
is a very simple language. It was designed to be learned quickly by artists. But this simplicity can be a
real hindrance. Csound code tends to become verbose and low-level. In this article we are looking for
structures to speed up Csound syntax.

In CE musical ideas are expressed with composition of functions. It's like growing a tree. You can see
Csound units in place of the leaves and Haskell functions in place of the branches. Csound has a very
powerful set of units for sound synthesis. But it is difficult to compose these units. Haskell is a
functional language with strong static typing. It supports modularity, higher order functions, currying,
algebraic data types and type classes or powerful tools for abstraction in short. It can help Csound to
compose things together.

Section II describes why functional programming is good for Csound. Section III provides you with
overview of CE library. CE is evolving project, so this section shows you some drawbacks of the
library alongside with its advantages. Section IV compares CE with other similar projects and pictures
some future plans.

II. Why functional programming language?

Csound handles sound synthesis (orchestra) and score composition (score). In this section we'll see
how functional programming (FP) can facilitate both of them.

Orchestra

Orchestral Csound is a modular synthesizer. Modular synthesizers follow the same pattern. There is a
set of units, each of them can generate a sound or transform it in some way. A unit has inputs and
outputs and we can link units together with cords. Csound allows us to do it with text. A specific
combination of units and linking cords is usually called a patch. A patch is a pattern of linked units.

From the functional point of view units are functions and linking with cords is an application. Each
cord has direction. It links output of one unit with input of another one and allows signal to flow from
one unit to another one. So a patch is a function which is composed from another functions.

Csound provides a user with two constructs of patch building. First is linking units with cords by
means of variables and second is user defined opcodes. With user defined opcodes you can give a name
to some patch (or function). By giving names you can save your typing efforts and underline a structure
of your patch. A user defined opcode has inputs and outputs. It's like predefined unit. FP can take it
further. FP supports higher order functions, i.e. functions that can take functions as input or produce
functions as output. Let's look at simple example. Fourier series:

f w , a =a0 t a1t i⋅cos1w tiaa2t i⋅cos 2 w tia...ant i⋅cosnw t ia

t i=h⋅i ,i=1..N

The function f produces signal. Suppose we want to use another basis function, then if our language
supports higher order functions we can define function that takes in a basis function.

g e , w=a0t ia1w t i⋅e 1 w t ia2t i⋅e 2 w t i...ant i⋅e n w ti

And then

h ax =cos xa

f w , a =g ha ,w

A filter function can become a parameter of your patch. And this parameter can be set in the score!

Note that h is a higher order function too. It takes one argument and produces a function. If our
language supports lists (and every FP language does) we can define another function:

q e [a0 , ... , an]w=a0t ia1ti⋅e 1 w t ia2t i⋅e 2 w ti...ant i⋅e n w t i

that takes in basis function and produces another function that takes in list of functional coefficients
and produces a function.

If you look at patch building as composition of units even from this simple example you can see how
this new level of abstraction can greatly enrich the structure of your patches. You can spot a glimpse of
hidden symmetries in your sound design, express them with your functions and receive succinctness of
your language as byproduct.

Score

In this subsection we'll see how another feature of FP, namely algebraic data types, can make the
language of score composition more human.

Algebraic data types consist of two operations for building complex data types out of simple ones.
There are predefined types like Integer, Char, Double and two operations: product and sum of types.

Product:

 Tnew = SomeName T1 T2 … Tn

where T1, T2, …, Tn – already defined types. Product of types means that value of type Tnew consists
of values of types T1, T2, …, Tn. A name SomeName is called a constructor. It is a label. It indicates
connection between type Tnew and subtypes T1, T2, …, Tn.

Sum:

 Tnew = Name1 T11 | Name2 T2 | … | NameN Tn

where T1, T2, …, Tn – already defined types. Sum of types means that value of type Tnew can be
value of type T1 or T2 or … or Tn. NameI is a label used to distinguish different cases.

Let's look at some examples. Definition of booleans, here we use one sum and primitive types are just
labels. They contain no subtypes:

 Bool = True | False

Types can be recursive. Here is a definition of Peano natural numbers:

 Nat = Zero | Succ Nat

Types can be polymorphic, i.e. depend on some another type, like list of values of some type. Here is
definition of lists:

 List a = Null | Cons a (List a)

We use one sum and one product in Cons case. List of type a is empty list (labeled as Null) or value
of type a and another list of type a (in Haskell for brevity Null is denoted as [], Cons as (:) and
(List a) as [a]).

But let's come back to music! Following description is the simplified summary of Paul Hudak's ideas
on a definition of domain specific language for natural expression of musical ideas [1].

What is a musical notation? Keeping algebraic data types machinery in mind let's try to answer this
question. From this point of view we should define set of primitive cases and set of operations that
compose things together.

Primitive units in the musical notation are notes. Different musical traditions can introduce different
notions of notes, so our type should be polymorphic. It depends on actual note representation. It can be
pitches specific to particular countries paired with volumes or it can be frequencies and amplitudes or
no frequency at all (drum's case). But there are common things in the note representation. Every note
has duration. It lasts for some time. And note can be absent for some time, we call this silence or rest.

So let's define primitive cases:

 Score t a = Rest t | Note t a | ...

where t denotes time and a denotes note representation.

And what are operations? There are two basic ways of playing several notes: you can play them
sequentially or simultaneously. So let's complete definition with two operations:

 Score t a = Rest t
| Note t a
| Seq (Score t a) (Score t a)
| Par (Score t a) (Score t a)

where Seq stands for sequential, and Par stands for parallel.

In this terms we can define another operations:

 rest :: t -> Score t a
 rest = Rest

 note :: t -> a -> Score t a
 note = Note

 (+:+) :: Score t a -> Score t a -> Score t a
 (+:+) = Seq

 (=:=) :: Score t a -> Score t a -> Score t a
 (=:=) = Par

 delay :: t -> Score t a -> Score t a
 delay t sco = Seq (Rest t) sco

 line :: Num t => List (Score t a) -> Score t a
 line Null = Rest 0
 line (Cons x xs) = Seq x (line xs)

 chord :: Num t => List (Score t a) -> Score t a
 chord Null = Rest 0
 chord (Cons x xs) = Par x (chord xs)

Here notation (a :: T) means value a has type T. Num t => means that type t is like numbers
(supports addition, multiplication, can be constructed from integers), we use this property in Null
cases (we use 0 symbol for value of type t).

 With this functions you can write something like this:

 sNew = stretch 2 (
 chord [loop 4 (line [s1, s2, s3, ...]),
 line [s1, s2, ...],

 ...])
Where s1, s2, … can be notes and can be another scores and then you can use sNew in similar
structures! stretch is another function that can be defined in terms of two basic operations. It just
stretches scores in time domain. [a, b, …] is shortcut for (Cons a (Cons b …)).

You can think of scores not in terms of events but in terms of sequent and parallel compositions of note
chunks and transformations of this chunks defined in terms of this basic operations [2]. Alongside with
composable structures for scores we can use naming abstraction. You can give a name to a chunk of
notes and freely use it in your functions as any other argument.

III. Overview of csound-expression
What do you need to start playing with csound-expression? Csound-expression(CE) is a Csound code
generator written in Haskell. So first of all you need Csound if want to play produced .csd files. Then
you need Haskell compiler, so you need GHC [3]. GHC is a state-of-the-art, open source Haskell
compiler. You can install it directly or with Haskell Platform [4]. If installation succeeds you can install
csound-expression [5] from Hackage by cabal-install.

If you don't know Haskell you can read this great book: “Learn you a Haskell for a great book” [6]. It's
available on-line. This beginner's guide is enough to understand what's going on and how to use
proposed library.

Here you'll find basic principles of the library, look in documentation for details.

Orchestra

This Section describes how to build instruments with CE. In CE an instrument is a function. It maps a
note representation to sound. Sound is described with type SignalOut, so instrument has type:

instr :: a -> SignalOut

where a is some note. To play note with instrument means to apply instrument to a note. Seems to be a
tautology, but yes it's just as simple as this. There are only two predefined p-fields itime and idur
(p2 and p3 in Csound). Other p-fields are derived from instrument structure.

But how to construct this things? Instruments are built by composition of Csound opcodes. There are
several types that came from Csound: Arate (audio rate signals), Krate (control rate signals),
Irate (constants) and BoolRate (for comparisons for if-expressions). There are two special types
MultipleOut and SideEffect. The type MultipleOut models Csound opcodes that can return
several signals. SideEffect models opcodes that can produce random numbers.

Elementary units of instrument composition are Csound opcodes. Csound opcodes are represented with
functions. In Haskell functions take in fixed number of arguments so optional initial arguments are
represented with lists of Irate's. They are written in the beginning of a function (for easy carrying) other
arguments are placed in the same order as arguments in Csound opcodes. To allow Csound
polymorphism two type classes are introduced X (Arate | Krate | Irate) and K (Krate |
Irate). In Csound some opcodes can produce result of different rates and rate is defined by left side
of assignment. In CE these functions have suffixes. For example opcode oscil has two counterparts
in CE oscilA and oscilK.

Here is a simple example of an instrument:

instr :: (Irate, Irate) -> SignalOut
instr (amp, cps) = out (oscilA [] (env <*> amp) cps ft)

where env = linsegK [0, 0.2*idur, 1, 0.8*idur, 0]
 ft = gen10 4096 [1]

This definition looks very much like Csound definition, but you can see that opcodes can be nested (as
in case of out opcode). Types of used functions:

out :: Arate -> SignalOut
oscilA :: (X x0, X x1) => [Irate] -> x0 -> x1 -> Irate -> Arate
linsegK :: [Irate] -> Krate
gen10 :: Irate -> [Irate] -> Irate
idur :: Irate

Operator <*> - is a special variant of multiplication defined on signals. We use it here because env
and amp have different types and standard multiplication in Haskell takes values of the same type.

So we get Csound opcodes as units and can compose them in all fancy ways that Haskell allows us.
Let's define functions q, f and h described in Section I.

 q :: (Irate -> Arate) -> [Arate] -> Irate -> Arate
 q e as w = sum (zipWith combine as [0,1..])

where combine a n = a * e (fromInteger n * w)

 h :: Irate -> Irate -> Arate
 h a w = oscilA [a] (num 1) w (gen10 4096 [1])

 f :: Irate -> [Arate] -> Irate -> Arate
 f a = q (h a)

 From type of q we can see that q takes in function as first argument (basis function), list of signals as
second argument (coefficients) and produces function, that builds series on given basic frequency. So
we can define generator of arbitrary functional series. You can see from this example how flexible
functions can be.

Embedding Csound in functional environment enhances features natural to functional languages. But
impedes some features that Csound inherited from imperative world. There are some opcodes in
Csound that rely on order of execution (like delayr/delayw) and they can not be expressed so easily in
functional environment. For this cases CE allows user to write almost literal Csound code, but this code
is no longer composable. It becomes a sequence of lines containing opcode assignments.

Score

Instruments are just functions from note representation to sound. But what is score? Well score is a
container of notes. To play score on some instrument means to transform container of notes to
container of sounds.

Structure of container is roughly described in Section II. CE relies on another Haskell library temporal-
media [7]. This library provides functions to construct and transform musical structures and flatten
them to list of events (just what Csound needs). CE transforms container of sounds to list of events
(each event contains instrument description with specific parameters) and then derives list of
instruments and ftables, substitutes events with notes and packs everything in csd file.

Let's look at an example of simple program:

-- D minor chord
import Temporal.Media

import CsoundExpr.Base
import CsoundExpr.Base.Pitch
import qualified CsoundExpr.Opcodes as C

-- | sinusoidal oscillator
instr :: Irate -> SignalOut
instr cps = C.out $ env <*> C.oscilA [] (num 3000) cps (gen10 4096 [1])

where env = linsegK [0, idur/3, 1, 2*idur/3, 0]

-- | d minor chord
sco = fmap instr $ sequent notes +:+ parallel notes
 where notes = map (temp 1) [d, f, a, high d]

file = "out.csd"
flags = "-d"

out = csd flags headerMono $ renderMedia sco

main = writeFile file $ show out

Function csd produces csd file, renderMedia flattens container of sounds to list of events, fmap

applies a function to all elements of some container, it's key element in this notation. Function temp is
synonym to note defined in Section II, as sequent is to line and parallel to chord.

Note that there is no separate sections of score an orchestra. Instrument is not a separated entity. It is a
function that interprets note (i.e. maps note representation to sound).

IV. Conclusions, related and future work
This paper describes how natural features of functional programming languages, namely higher order
functions and algebraic data types, can greatly enhance expressive power of Csound. Higher order
functions give a powerful way to abstract various patterns of the instrument structure. Algorithms that
are parametrized by particular behavior may be easily defined with higher order functions. Algebraic
data types make it possible to write music in terms of pieces of music and their compositions and
transformations, without using the terms of single events.

An implementation of this ideas can be found in csound-expression, Haskell library and Csound code
generator. There are other libraries that can produce Csound code from specification written in Haskell.
Haskore [8] and Euterpea [9] contain sections related to Csound. In them there is only one type for all
rates. In CE there are different types for different rates. It excludes production of some invalid Csound
code, that can be made by mistake. CE has more advanced system of score/orchestra interaction.
Instruments in Haskore and Euterpe has interface similar to Csound (note calls instrument with p-
fields), but in CE actual note representation is not fixed it can be anything that can be interpreted with
your instruments.

CE is still evolving project. And some features of Csound language are missing. It doesn't support
if/then/else when your expressions are not composable (i.e. when it's not a composition of simple units,
but sequence of opcode assignments). I'm planning to make musical examples in CE, include
imperative if/then/else, make code optimization, and investigate a possibility of composable Csound
GUI building.

References

[1] Paul Hudak, An Algebraic theory of polymorphic temporal media, Research Report RR-1259,
2003.

[2] Laurie Spiegel, Manipulations of musical patterns, Proceedings of the Symposium on Small
Computers and the Arts, 1981.

[3] Glasgow Haskell Compiler, http://www.haskell.org/ghc/.

[4] Haskell Platform, http://hackage.haskell.org/platform/.

[5] csound-expression, Hakell library, http://hackage.haskell.org/package/csound-expression.

[6] Miran Lipovaca, Learn you a Haskell for a great good, http://learnyouahaskell.com/.

[7] temporal-media, Haskell library, http://hackage.haskell.org/package/temporal-media.

[8] Haskore, Haskell library, http://hackage.haskell.org/package/ haskore .

[9] Euterpea, Haskell library, http://haskell.cs.yale.edu/?page_id=103.

http://www.haskell.org/ghc/
http://haskell.cs.yale.edu/?page_id=103
http://hackage.haskell.org/package/haskore
http://hackage.haskell.org/package/haskore
http://hackage.haskell.org/package/temporal-media
http://learnyouahaskell.com/
http://hackage.haskell.org/package/csound-expression
http://hackage.haskell.org/platform/

V. Appendix

Generated Csound code for a “d-minor” example

<CsoundSynthesizer>
<CsOptions>
-d
</CsOptions>
<CsInstruments>
; -------------------------------
; Header
sr = 44100.0
kr = 4410.0
ksmps = 10.0
nchnls = 1.0

; -------------------------------
; Instruments

 instr 33
a3 oscil 3000.0, p4, 1
k12 linseg 0.0, (p3/3.0), 1.0, ((2.0*p3)/3.0), 0.0
 out (k12*a3)
 endin

</CsInstruments>
<CsScore>
; -------------------------------
; Ftables
f 0 5.0
f 1 0.0 4096 10 1.0

; -------------------------------
; Tempo

; -------------------------------
; Notes
i 33 0.0 1.0 8.02
i 33 1.0 1.0 8.05
i 33 2.0 1.0 8.09
i 33 3.0 1.0 9.02
i 33 4.0 1.0 8.02
i 33 4.0 1.0 8.05
i 33 4.0 1.0 8.09
i 33 4.0 1.0 9.02

e

</CsScore>
</CsoundSynthesizer>

	Haskell meets Csound
	Playing with Csound in functional programming language

	Abstract
	I. Introduction
	II. Why functional programming language?
	Orchestra
	Score

	III. Overview of csound-expression
	Orchestra
	Score

	IV. Conclusions, related and future work
	References

	V. Appendix

