

Circumspectral Sound Diffusion with Csound
Peiman Khosravi

City University London
peimankhosravi AT gmail.com

Introduction
While preparing for my first multichannel piece I became aware of the need for more
software tools designed in response to the kind of spatial thinking grown directly out
of working with electroacoustic material. (Or at least electroacoustic as understood by
a number of composers/researchers.) In this respect, one of the least explored areas in
multichannel software development is ‘circumspectral’ diffusion.

In his 2007 paper ‘Space-form and the Acousmatic Image’, Smalley refers to
‘circumspectral spaces’ as resulting from the combination of ‘spectral space’ and
‘circumspace’ - i.e. how the spectral content of a sound is distributed within the
listening space to create a sense of ‘spatial scale and volume’ [1]. As he elaborates:

How spectral space in itself is distributed contributes to the sensation of
height, depth, and spatial scale and volume. I can create a more vivid
sense of the physical volume of space by creating what I shall call
circumspectral spaces, where the spectral space of what is perceived as a
coherent or unified morphology is split and distributed spatially [2].

He goes on to discuss the concept in relation to his own compositions:

In my music, for example, circumspectral approaches have been
particularly effective in imparting spatial volume to attack-resonance
spectromorphologies, both to the attack phase and to prolonged,
fluctuating, resonance-based forms, giving the impression that the
listener is inside the resonance [3].

I. Background: Spectral Space
My research and compositional activities have for the most part been focused around
the concept of spectral space - i.e. the impression of spatiality as attributed to the
continuum of spectral frequencies [4]. Needless to mention that spectral space is not
always pertinent to the listening experience. For instance, with clearly recognisable
sound sources, the experience of spectral spatiality, which has a strong vertical bias,
seems to be pushed into the background and instead one becomes aware of the
suggested spatial settings of the sources themselves (i.e. ‘source-bonded’ spaces [5]).
In general, sounds without direct extrinsic references encourage the listener to follow
the spectromorphological attributes more closely: shapes and contours that articulate
the domain of spectral frequencies. In this context the mental representation of
‘source’ and spectromorphology converge and spectral domain takes on spatial
characteristics in our listening imagination: it becomes the dimension that is occupied
by sound-shapes. Nevertheless, this does not suggest that spectral spatiality is
divorced from source-bonded spaces. In a sense, spectral space can be seen as a
schema abstracted from certain types of source-bonded spaces. Perhaps the vertical
spatiality of the spectral domain is heightened by spectral and morphological

characteristics that bear similarities with ecologically familiar sources - e.g. a high-
frequency sound made up of short morphological units may evoke the utterance or [on
a transmodal level] visual behaviour of smaller, sky-bound creatures. A striking
example of this source-bonded nature of spectral space can be seen in the coda section
of Risset’s Songes (starting at 6’.40”), where spectral space is reduced to its bare
skeletal frame - a low, sustained drone supporting more animated higher frequency
materials [6]. The spectral and perspectival motion of the higher material, coupled
with its intrinsic spectral structure and morphology, clearly outlines a sort of birdlike
flight or drift. Thus source-bonded, perspectival and spectral spaces work together to
create a more vivid sense of spatial height and depth.

More on Circumspectral Space
In light of the above, my compositional interest in circumspectral sound diffusion is
obvious. A similar method is used in certain diffusion systems where different types
of loudspeakers are used for their characteristic sound quality (e.g. GRM’s
Acousmonium) [7]. I have often diffused my works on loudspeaker orchestras that
included overhead speakers. The signal is often passed through a high-pass filter
before being routed into the overhead speakers. This allows one to exaggerate the
sense of elevation in sounds that are already somehow elevated due to their spectral
space occupancy and/or source-bonded characteristics. Naturally in a multichannel
context one has far more control over the perspectival distribution of the spectral
content during the composition stage. Although with careful mixing (e.g. in a DAW)
one can certainly explore circumspectral spaces, it seem more appropriate to take
advantage of a powerful audio-programming software like Csound to reduce the
manual labour involved in such a task, whilst increasing the level of control offered to
the composer. Ultimately, the intention is to create an environment that allows one to
play with the ‘sculpting’ of spectra in circumspace in an intuitive and creative
fashion.

On Reflection
Before explaining the Csound code and giving an overview of the Max/msp interface
we must consider further consequences of the tool imagined above.
 Firstly, the conventional notion of ‘spatialisation’ of a source within listening
space is not strictly relevant here. Circumspectral diffusion involves the distribution
of the spectral content of a unified spectromorphology - i.e. spreading the spectrum of
a uniform sound (not to use the term ‘source’) in space, be it a single ‘figure’, a
complex texture, or a combination of the two. Consequently, circumspectral panning
is not used to position or move single sources around the audience; to a certain extent
the aesthetic attitude that leads to the concept of circumspectral space (as defined by
Smalley) contradicts the notion of spatial composition as arbitrary circumspatial
positioning and movement of input sounds. In circumspectral diffusion, perspectival
space becomes subordinate to spectral space, or rather, perspectival space is utilised
to enhance the intrinsic spatiality of the sonic material - in this sense space is not seen
as an empty canvas or container, but as an intrinsic quality inherent in the material.
 Furthermore, perspectival motion-trajectories are automatically formed as a
result of temporally stable distribution of spectral content of a sound that is itself
characterised by dramatic spectral motion. To test this idea we can imagine that the
frequency continuum is mapped onto the circumspatial domain defined by an array of
loudspeakers, in such a way that the lower frequencies in the input sound are ‘panned’
at 0° and the increasing frequencies are contiguously arranged in a clockwise circular

fashion around the listener. So the very highest frequency (e.g. 20kHz) takes us back
to 0° in a full clockwise circle. In this case, a test sine-tone that glissandos from 20Hz
to 20kHz will circle the listener in a clockwise fashion and finally terminate at 0°
‘position’ - a typical circular panning motion without any actual automation [8]!

Interesting circumspectral settings can be created by using complex
spectromorphologies and creating a less straightforward circumspatial mapping of the
spectral components. I have for instance had interesting results from noise-based
sounds that were processed with numerous filter-sweep-like transformations to create
broad spectral undulations. Even more interestingly, one can use stereo input sounds
where the filtering motion is coupled with panoramic trajectories in the original stereo
input. The stereo sound can then be mapped to the loudspeaker array as displayed
above (the blue and red circles represent respectively the left and right channels of the
input audio).
 Note that the spectrum-to-circumspace mapping may be linear or logarithmic,
the latter is perhaps more appropriate as the ear’s response to frequency increase and
decrease is logarithmic. The above arrangement, used with the right sound material

Figure 1. Circular panning motion.

could lead to rather interesting spatio-morphological results in which the stereo image
of the input sound is extended to a circumspatial image. Naturally the very lowest
frequencies can seldom be localised so it would perhaps be more logical for the
system to ignore the very lowest spectral frequencies (they can be mixed equally
amongst the speakers) or even better, one could manually define the circumspectral
mapping for each input sound - e.g. the most prominent spectral region in the sound
can be panned to the front as to part-maintain the essence of the original stereo image.

II. Implementation

Concerning Sound Quality
The flexibility of the pvs spectral processing opcodes in Csound have proven useful to
me in the past, so this seemed like the best place to start in order to implement the
aforementioned system. However, a note of warning must be included here. By its
very nature, the faithful reproduction of an original signal from the data obtained by
an FFT algorithm (as is the case with Csound’s pvanal and pvsynth) requires all the
analysed FFT bins (each bin represents a very narrow frequency band). The omission
or modification of the bins’ amplitudes and/or frequencies will introduce more or less
noticeable artefacts (i.e. phase-related
distortions), depending on the extent and
nature of the modifications.
 In this case we shall be using
amplitude panning of the individual FFT
bins and therefore artefacts will be
introduced into the output signal as the bins
become segregated and distributed amongst
different speakers. (This implies the zeroing
or attenuation of certain bins in different
speakers - note that the bins exactly halfway
between two speakers are mixed equally
amongst two speakers.)
 Optimal result is produced when no
panning takes place and all the bins [from
one input audio channel] are sent to one
speaker. Obviously this defeats the point of
implementing such a tool so we can
minimise the unwanted artefacts by creating
contiguous panning of the bins - the
interface must encourage the user to make sure that the adjacent frequency bins are
not drastically separated from each other in terms of their distribution amongst the
loudspeakers. The random scattering of the bins within the circumspatial domain
results in sounds with highly blurred transients (produced due to phase distortions),
this may not be a problem for sustained morphologies but it will certainly be
undesirable for transient materials. Using a hypothetical number of 16 bins, the right-
side of the above scenario will produce audible artefacts (blurring, added resonance or
AM-like ringing) as the bins are drastically scattered within listening space, whereas
the left-side will produce an acceptable result, even for more transient sounds.

Figure 2. Panning of FFT bins.

Summary
In short, the algorithm works in the following steps:

1. the input sound of each audio channel is analysed using pvsanal
2. the resulting data for each analysis window is written to two tables (using
pvsftw), one for frequency and one for amplitude. Each table index contains the
amplitude or frequency for one analysis bin.
3. the amplitude table is then passed unto a UDO, which recursively mixes the
amplitude value for each bin among 6 tables (one for each loudspeaker), according
to a ‘panning’ table that contains one panning value for each FFT bin at each index.
4. the resulting 6 tables containing the amplitude values are then read frame-by-
frame and coupled with the original frequency values (we do not alter the
frequencies). The product is written into a fsig stream (using pvsftr).
5. finally the 6 output fsigstreams are re-synthesised and routed into the
appropriate speakers.

Implementation Part I
The pvsftr opcode used to write the table data to an fsig stream requires an
existing fsig stream. Pvsinit may seem like an obvious choice here but in fact this
opcode does not update the analysis frames, this would make the instrument
dysfunctional [9]. A workaround is to use the pvsmix opcode to duplicate the fsig
into 5 additional copies. These will later be overwritten by pvsftr so the exact
content does not matter, as long as the fsig formats are identical. A simple re-
synthesis of the six fsig streams at this stage would give six identical outputs,
naturally not the desired result.

ain1 in ;get input

 denorm ain1 ;denormalise

fin1 pvsanal ain1,ifftsize,ihop,iwindow,iwindtype

;initialise remaining fsigs
fin2 pvsmix fin1, fin1
fin3 pvsmix fin1, fin1
fin4 pvsmix fin1, fin1
fin5 pvsmix fin1, fin1
fin6 pvsmix fin1, fin1

 Next we must define the tables that are used to read and write the FFT data:

ifreqin1 ftgen 0,0,iNumBins,-2,0
iampin1 ftgen 0,0,iNumBins,-2,0
iampout1 ftgen 0,0,iNumBins,-2,0
iampout2 ftgen 0,0,iNumBins,-2,0
iampout3 ftgen 0,0,iNumBins,-2,0
iampout4 ftgen 0,0,iNumBins,-2,0
iampout5 ftgen 0,0,iNumBins,-2,0
iampout6 ftgen 0,0,iNumBins,-2,0

 ifreqin1 is used to hold the frequency values that are common to all six
resulting fsig streams (as we are not altering the frequencies directly).
 iampin1 is used to hold the input amplitude values. And finally the iampoutN
tables are used by the UDO to write the resulting mixed values in six separate
locations.
 Note that iNumBins, which defines the size of the ftables should be set to
ifftsize/2+1 as defined at the top of the instrument (see csd).
 In the interest of readability the names of the six output ftables (sited in the code
snippet above) are passed to the UDO via a list held in a table:

iampoutlist ftgen 0,0,8,-2,iampout1,\
 iampout2, iampout3, iampout4, iampout5, iampout6

Implementation Part II
We can also take advantage of the tabmorph opcode in the UDO to have the
possibility of morphing between two or more tables that hold the ‘panning’ values for
the FFT bins. The code snippet below defines four panning tables and two control
busses (the value of these busses are written from within the Max/msp interface) for a
two dimensional morphing plane that allows the user to morph between the four
tables.

kmorph_y chnget "morph_y"
kmorph_x chnget "morph_x"
kmorph_y port kmorph_y, 0.01, i(kmorph_y)
kmorph_x port kmorph_x, 0.01, i(kmorph_x)

;define 4 tables to be morphed
itabpan1 ftgen 1,0,iNumBins,-7,1, iNumBins,1
itabpan2 ftgen 2,0,iNumBins,-7,1, iNumBins,1
itabpan3 ftgen 3,0,iNumBins,-7,1, iNumBins,1
itabpan4 ftgen 4,0,iNumBins,-7,1, iNumBins,1

;pack them into a list
ipantablist ftgen 0,0,4,-2,\
 itabpan1, itabpan2, itabpan3, itabpan4

Part III
Next we write the input fsig to the already defined tables ifreqin1 and iampin1.
Using the kflag output of pvsftw we ensure that the table operations in the UDO is
only activated when the frame has been analysed and is ready for processing. Finally
pvsftr is called six times to access the six output tables (written inside the UDO
mechanism) and transfer their data into the predefined fsigs, before synthesising the
result.

;engin
kflag0 pvsftw fin1, iampin1, ifreqin1
if (kflag0 > 0) then ; only proc when frame is ready

 circumspect iNumBins, iampin1, ifreqin1,\
 iampoutlist, ipantablist, kmorph_x, kmorph_y

 pvsftr fin1, iampout1, ifreqin1
 pvsftr fin2, iampout2, ifreqin1
 pvsftr fin3, iampout3, ifreqin1
 pvsftr fin4, iampout4, ifreqin1
 pvsftr fin5, iampout5, ifreqin1
 pvsftr fin6, iampout6, ifreqin1
endif

;synthesise output
aout1 pvsynth fin1
aout2 pvsynth fin2
aout3 pvsynth fin3
aout4 pvsynth fin4
aout5 pvsynth fin5
aout6 pvsynth fin6

 outh aout1, aout2, aout3, aout4, aout5, aout6

The User-Defined-Opcode
In principle the UDO is rather simple. First we read the table names from
iampoutlist and ipantablist and ensure that the output tables are cleared before
writing the calculated bin values for the current frame.

iclear ftgen 0, 0, inumbins, -2, 0

;unpack list of ampout tables
iampout1 tab_i 0, iampoutlist
iampout2 tab_i 1, iampoutlist
iampout3 tab_i 2, iampoutlist
iampout4 tab_i 3, iampoutlist
iampout5 tab_i 4, iampoutlist
iampout6 tab_i 5, iampoutlist
;unpack list of pan tables
itab1 tab_i 0, ipantablist
itab2 tab_i 1, ipantablist
itab3 tab_i 2, ipantablist
itab4 tab_i 3, ipantablist

 ;zero ampout tables before processing each frame
 tablecopy iampout1, iclear
 tablecopy iampout2, iclear
 tablecopy iampout3, iclear
 tablecopy iampout4, iclear
 tablecopy iampout5, iclear
 tablecopy iampout6, iclear

We also create two temporary tables to hold the calculated morphed values for mixing
the bins among the six tables. These ‘buffer’ tables allow us to hold the interpolated
values between panning tables itab1, itab2 and itab3, itab4 and further interpolate

between them. Consequently, this gives us a two dimensional morphing domain for
morphing between four tables.

itabbuf1 ftgen 0, 0, inumbins, -2, 0
itabbuf2 ftgen 0, 0, inumbins, -2, 0

 In the following section we recursively loop through the table indices (bin
amplitude values) and the panning tables. After calculating the interpolated panning
value for the current bin, the input amplitude of the bin is read and mixed among six
tables, depending on the panning value. The six speakers are treated in pairs so for
instance when the panning value is 0.5 the bin is mixed equally between speakers one
and two. A value of 1.5 means equal mixing between speakers two and three, and so
on. Also note that we are using a constant power panning law with square root curve,
which can be changed if desired.

kcount = 0
loop:
kout1 tabmorph kcount, kmorph_x, 0, 1, itab1, itab2
kout2 tabmorph kcount, kmorph_x, 0, 1, itab3, itab4
 tabw kout1, kcount, itabbuf1
 tabw kout2, kcount, itabbuf2

kpan tabmorph kcount, kmorph_y, 0, 1,\
 itabbuf1, itabbuf2
kamp tab kcount, iampin

 if (kpan<=1) then
 kpan1 = sqrt(1-kpan)
 kpan2 = sqrt(kpan)
 tabw kamp*kpan1 , kcount, iampout1
 tabw kamp*kpan2 , kcount, iampout2
 elseif (kpan<=2) then
 kpan = kpan - 1
 kpan1 = sqrt(1-kpan)
 kpan2 = sqrt(kpan)
 tabw kamp*kpan1 , kcount, iampout2
 tabw kamp*kpan2 , kcount, iampout4
 elseif (kpan<=3) then
 kpan = kpan - 2
 kpan1 = sqrt(1-kpan)
 kpan2 = sqrt(kpan)
 tabw kamp*kpan1 , kcount, iampout4
 tabw kamp*kpan2 , kcount, iampout6
 elseif (kpan<=4) then
 kpan = kpan - 3
 kpan1 = sqrt(1-kpan)
 kpan2 = sqrt(kpan)
 tabw kamp*kpan1 , kcount, iampout6
 tabw kamp*kpan2 , kcount, iampout5
 elseif (kpan<=5) then
 kpan = kpan - 4
 kpan1 = sqrt(1-kpan)

 kpan2 = sqrt(kpan)
 tabw kamp*kpan1 , kcount, iampout5
 tabw kamp*kpan2 , kcount, iampout3
 elseif (kpan<=6) then
 kpan = kpan - 5
 kpan1 = sqrt(1-kpan)
 kpan2 = sqrt(kpan)
 tabw kamp*kpan1 , kcount, iampout3
 tabw kamp*kpan2 , kcount, iampout1
 endif

kcount = kcount + 1
if (kcount < (inumbins-1)) kgoto loop

Interface
A full description of the Max/msp GUI is beyond the scope of this article so I shall
limit myself to the basic principle here. The source-code is available for those
interested in further exploration.
 The instrument described above is used for only one input channel, but as
mentioned before my intention was to be able to use stereo inputs. This is achieved
from within Max/msp by using two Csound~ objects, or rather two instances of
Csound~ inside a poly~ object. The advantage of this method is that we can use two
processors and achieve basic multithreading, one thread for each input channel [10].
Without this multithreading the instrument would be hardly usable in read-time due to
the heavy duty UDO and the presence of six audio channels.
 The interface uses a similar method as the GRM frequency warp plug-in
described elsewhere [11] where the user can draw a function to fill the panning table.
In this case the x axis denotes frequency and the y axis represents the panning value.
The six speakers are mapped to values ranging from zero to six, where 0 = 6 (to allow
a fully wrapped circle). The mapping can be linear or one of two alternative
logarithmic scaling formulae (similar to the GRM tools interface) [12]. The user can
fill four such tables for the right and left channels each (eight in total), and interpolate
between their values by using a two dimensional controller [in the “MORPH”
section].
 The user also has the option of filling the panning tables with statistically
generated values, complete with masking functions. The values can be either scattered
(to produce the aforementioned blurring effect) or smoothly interpolated (using a low
pass filter for the statistical values).

Figure 3. A Max/MSP Graphical User Interface for Csound.

Figure 4. Max/MSP Generated Panning Tables.

III. Conclusion
The current circumspectral tool is far from complete, many more possibilities remain
to be explored (e.g. using a vbap algorithm with a 3-D speaker array that includes
overhead speakers). I hope that in this paper I have managed to encourage the reader
to carry out further explorations of this uncharted territory. Perhaps one explanation
for the rarity of such software tools is the relative absence of literature concerning
spatial thinking in acousmatic music, particularly approached from an aesthetic point
of view. The aousmatic space is manifold and is created through the interaction of
spectral, percpectival and source-bonded spaces: circumspectral spaces are born as a
facet of this interactive context. Moreover, not all sounds are open to all manners of
spatial [perspectival] configurations - e.g. low frequency, sustained
spectromorphologies cannot be used to create coherent spatial trajectories, on the
other hand high frequency particles or textures beg for spatial animation and even

evoke spatial trajectories without any actual perspectival motion. At a recent concert
at Belfast’s SARC it was brought to my attention (by a non-musician) that some of
the pieces included twisting and turning sounds that circled the audience or flew
overhead. In fact these were all stereo pieces and even in the hands of a skilled
diffuser the manual creation of circular percpectival motion would have been near
impossible - a clear indication that spectral motion alone can create the illusion of
spatial motion.
 All sounds occupy spectral space (which may or may not be perceptually
pertinent, depending on the listening context) and all sounds suggest source-bonded
spaces. Consequently, all sounds are by their very nature pregnant with an inherent
spatiality. It is my view that there is far more to the composition of space [and spatial
thinking in acousmatic music] than source-localisation and movement within listening
space, often referred to as ‘spatialisation’. Although such technology is much needed
and highly valuable for the acousmatic composer, from a compositional stance the
notion of ‘spatialisation’ can potentially lead to a simplistic and sterile aesthetic
approach that neglects the inherent spatiality of sounds - I prefer the terms
‘perspectival projection’ to ‘spatialisation’. It is the understanding of this inherent
spatiality and our perception of it that must guide the composition of space in
acousmatic music. One could even go as far as to suggest that it is the power to create
spatiality that marks acousmatic music as a unique form of artistic expression. We
need more technological tools and research that enrich our ability to explore and
sculpt sonic spatiality in an aesthetically sophisticated manner.

References
[1] D. Smalley, "Space-form and the Acousmatic Image", Orgnized Sound, Volume 12, Issue 01, 2007,
p. 51.
[2] Ibid., p. 51.
[3] Ibid., p. 51.
[4] Ibid., pp. 44-45.
[5] Ibid., p. 38.
[6] J.-C. Risset, Computer Music: Why?,
Available: http://www.utexas.edu/cola/insts/france-ut/_files/pdf/resources/risset_2.pdf.[Accessed
07/04/2011].
[7] H. Tutschku, On the Interpretation of Multi-Channel Electroacoustic Works on Loudspeaker
Orchestras. Available: http://www.tutschku.com/content/interpretation.en.php.[Accessed 07/04/2011].
[8] Note that the above paragraph serves only as an example and the writer does not recommend it as a
compositional device.
[9] Thanks to Victor Lazzarini for pointing this out to me
[10] This idea was originally suggested by Alexis Baskind.
[11] P. Khosravi, "Implementing Frequency Warping", Csound Journal, Issue 12, December 13, 2009.
Available: http://www.csound.com/journal/issue12/implementingFrequencyWarping.html.
[12] I am very grateful to Alexis Baskind for assisting the implementation of the logarithmic scaling of
the graph.

