
CSOUND CONFERENCE 2011

Csound - Max/MSP : Implementing a framework for Serial
Composition and Frequency Modulation in both environments

Reza Payami

reza_payami@yahoo.com

Introduction

This article explains how a certain problem can be solved in two different environments, e.g. Csound
and Max/MSP, through providing a framework for serial composition and frequency modulation as a
sample. It can be used as a basis for a workshop to explain and compare how to design and develop
ideas in Csound and Max/MSP. So, different approaches for each environment to a certain problem
can be compared with each other. Some user defined opcodes and instruments in Csound, as well as
their counterpart patches in Max/MSP have been implemented and will be described throughout.

I. Problem Definition and Design Overview

As mentioned, the goal of this paper is to explain how to design and implement a specific problem in
Csound and Max/MSP, regardless of suggesting serialism and frequency modulation as a
composition and sound synthesis technique. Providing serialism together with frequency modulation
is only a mean to compare these two computer music environments.

A composed piece based on this framework, can have a polyphonic texture by using multiple voices,
each of which using series or tone row to specify the values for musical parameters, e.g. pitch,
velocity and timbre. Moreover, frequency modulation is the tool used for synthesis of different
timbres, having different harmonicities [4,5] as an FM parameter.

Based on what serialism would suggest, there should be a mapping and translation from each tone
row element to the certain value of each musical parameter, e.g. pitch, velocity or timbre [2]. Having
such an analogy, for instance, number 2 may different meanings considering each musical
parameter, e.g. pitch 50, velocity 60 and harmocity 10. In other words, there is a formula for
converting each tone row element to the value for a musical parameter. The NextRowElement
opcode facilitates the general usage of a tone row, while NextPitch, NextVelocity and
NextHarmonicity opcodes specialize NextRowElement considering each corresponding musical
parameter. Calling these three opcodes, the next note for each voice can be obtained. RestartRow,
and the specialized RestartPitch, RestarVelocity and RestartHarmonicity opcodes, are
developed to provide the ability for initiating the traversal mechanism over a tone row. This tone
row traversal or transformation mechanism may be of different types including original, inverse,
retrograde or inverse-retorgade, together with a transposition,

The score structure pattern, Csound instruments and opcodes are explained in a top-down style
according to what follows. The similar Max/MSP patches are also shown next to the Csound code.

II. The Score Structure Pattern

In the score, there may be two possibilities, the first one is to restart or initiate a tone row traversal
mechanism for generating the next notes played by an instrument, and the other is to command the
instrument to play the next note, using a specified attack and release duration. The former case is
specified by passing duration, or p3 argument, as ‘-1’, while the latter will use this parameter as the
duration of the next note. In other words, whenever there is a ‘-1’ value in p3 in the score, then p4,
p5 and p6 will be used as transformation commands for restarting the row traversal to generate the
next notes for the corresponding instrument.

The transformation command holds two parts, one for transformation type, and the other for
transposition. The transformation types are defined as 0 (e.g. P or O) for using the row as original, 1
(I) as the inverse, 2 (R) for retrograde, and 3 (IR or inverse-retrograde). The succeeding number
specifies the transposition value. For example, “2 3” means using retrograde and transposing the row
elements by 3 semitones higher.

In case of having a positive duration, an event is sent to an instrument to play its next note. The
attack and release parameters (p4 and p5) are regarded as the percentage of the whole duration. For
example a value of 0.2 for attack means 20% of the whole note duration, causing the amplitude
going from 0 to the value calculated based on the velocity of the note, which in turn is specified by
the row and its transformation. For Max/MSP counterpart patch for developing the score, the
“timeline” object in version 4.5 has been used.

<CsScore>
; instr. Time dur pitch velocity harmonicity
i 2.1 0 -1 0 0 1 0 2 3
;inst1 : Restart : pitch:P0 , velocity:I0, harmonicity:R3

i 2.2 0 -1 3 2 2 0 3 3
;inst2: Restart : pitch:IR2 , velocity:R0, harmonicity:IR3

; instr. time dur attack release
i 2.1 1 3 0.2 0.3
;inst1 : play next note in 3 sec , atk = 0.2, rel = 0.3

i 2.2 1 2 0.1 0.4
;inst2 : play next note in 2 sec , atk = 0.1, rel = 0.4
</CsScore>

Figure 1 – Csound score / Max/MSP timeline

So, the start time, duration, and volume envelope parameters for each note are specified in the score
where different voices are played at the same time. The Row, Reference Pitch and Harmonicity
values, can be specified for each score differently,. They may also change during a single piece

III. Instrument 1 : Frequency Modulation

The first instrument uses frequency modulation and the FM opcode, working as the sound generation
engine. This opcode implements Chowning`s idea [4,5] for having harmonicity and modulation
index for defining timbre. Among the opcode input parameters, p4 and p5 specify pitch and velocity
of the note, while p6 and p7 define harmonicty and modulation index. The former parameter, or p6,
affects the timber and would result in a harmonic or inharmonic sound, based on its value. The latter
parameter has a value between 0 and 1, and the higher it is the brighter the generated sound would
be. As mentioned previously, p8 and p9 parameters are attack and release duration percent related to
the whole note duration.

In this context, as score is the only caller to FM, i-rate variable opcode have been implemented and
used. For extending this opcode to be reusable in other situations, a k-rate opcode can be
implemented as well.

opcode FM, a, iaii
 iCarrFreq, aCarrAmp, iHarmonicityRatio,
iModulationIndex xin
 iModFreq = iCarrFreq * iHarmonicityRatio
 iModAmp = iModFreq * iModulationIndex
 aModulator poscil iModAmp, iModFreq, 2
 aCarrier poscil aCarrAmp, iCarrFreq +
aModulator, 2
 xout aCarrier
endop

Figure 2 – FM opcode/patch

instr 1
 iKey = p4
 iVelocity = p5
 iHarmonicity = p6
 iModIndex = p7
 iAttackPercent = p8
 iReleasePercent = p9

 iFrequency = cpsmidinn(iKey)

 iAmplitude = iVelocity / 127
 aEnv linseg 0, p3 * iAttackPercent, iAmplitude, p3 * (1 -
iAttackPercent - iReleasePercent), iAmplitude, p3 * iReleasePercent, 0

 aCarrier FM iFrequency, iAmplitude * aEnv, iHarmonicity, iModIndex

 outs aCarrier, aCarrier
endin

Figure 3 – instr1

IV. Instrument 2 : Applying Serialism

The second instrument, as described before, acts differently based on the duration value. A ‘-1’
duration value would lead to a row traversal restart, while the positive values result in playing the
next note for a voice.
Thorough a polyphonic texture, there are different (4) voices which can traverse the rows differently
at the same time. Assuming that the instrument number is 2, the voice number can be specified by

using “p1 * 10- 20” expression. For example “2.3” would lead to having the value 3 as iVoice and
“2.4” will specify the 4th voice.

When a ‘-1’ value in the duration occurs, the traversal of all three aspects are initiated based on the
transformation command parameters. So, RestartPitch, RestartVelocity and
RestartHarmonicity is called. In order to hold two transformation parts, e.g. transformation type
and transposition in a single integer, a formula has been used, by multiplying transposition type by
100 and then adding the result with transposition value.

In the other case, the next note for the specified note is generated and played using instrument1. So,
calling NextPitch, NextVelocity and NextHarmonicity for the corresponding voice, the next note
parameters are calculated and the next note will be played using frequency modulation.

The implementation of the mentioned Opcodes and the translated Max/MSP patch will be described
and shown in the following sections.

instr 2

 iPitch init 0
 iVelocity init 0
 iHarmonicity init 0
 iVoice init p1 * 10 - 20

 if p3 == -1 then
 RestartPitch iVoice, p4 * 100 + p5
 RestartVelocity iVoice, p6 * 100 + p7
 RestartHarmonicity iVoice, p8 * 100 + p9
 else
 iAttackPercent = p4
 iReleasePercent = p5

 iPitch, iPitchIndex NextPitch iVoice
 iVelocity, iVelocityIndex NextVelocity iVoice
 iHarmonicity, iHarmonicityIndex NextHarmonicity iVoice

 if iPitch != -1 then
 event_i "i", 1, 0, p3, iPitch , iVelocity, iHarmonicity, 0.5,
iAttackPercent, iReleasePercent
 endif

 endif

endin

Figure 4 – instr2

Data Structure : Global Tables

The values for configuring the scores are defined in some global variables, including giRow which
represtns a row, giSineWave as sine wave for FM, giHarmonicities and giReferencePitch.

giRow ftgen 1, 0, -12, -2, 0, 1, 6, 7, 2, 5, 4, 3, 11, 9, 8, 10

giSineWave ftgen 2, 0, 1024, 10, 1

giHarmonicities ftgen 3, 0, -12, -2, 1, 10.3, 43.7, 60.7, 120.6, 230.5, 340.3,
450.4, 562.2, 673.43, 789.43, 1004.345

Figure 5 – global tables

As there may be multiple (assumed up to ‘4 ‘) voices in the score, a data structure for each voice is
required to store index values for pitch, velocity and harmonicity. Moreover, the current
transformation value (e.g. R3) for each voice, set by the last called Restart opcode should also be
stored somewhere for each voice. This can be implemented by using different tables, with their size
equal to the number of voices. According to figure 6, table 4, 5, 6 hold the index values, while table

7, 8, 9 keep the transformation values. Each element of a table represents the related value (e.g. pitch
transformation for table 7) for a specific voice.

giPitchIndex ftgen 4, 0, -4, -2, 0, 0, 0, 0
giVelocityIndex ftgen 5, 0, -4, -2, 0, 0, 0, 0
giHarmonicityIndex ftgen 6, 0, -4, -2, 0, 0, 0, 0

giPitchTransformation ftgen 7, 0, -4, -2, 0.0, 0.0,
0.0, 0.0
giVelocityTransformation ftgen 8, 0, -4, -2, 0.0, 0.0,
0.0, 0.0
giHarmonicityTransformation ftgen 9, 0, -4, -2, 0.0,
0.0, 0.0, 0.0

Figure 6 – tables for each voice

According to what mentioned so far, in order to store two different parts of transformation value, e.g.
transformation type and transposition (for instance R4 has two parts : ‘R’ as transformation type and
‘4’ as transposition), as a single integer, an encoding is required. We can simply assign P with 0, I
with 1, R with 2 and IR, with 3, multiply it with 100 and add it with transposition value. So, for
example R4 would be converted to 2*100 + 4 or 104.

Therefore, in order to manipulate the values for each voice RestartPitch, RestartVelocity and
RestartHarmonicity opcodes are implemented. They only hide the fact that which table number is
related to which musical parameter, providing a higher level opcode to be called in instrument 2. In
Max/MSP there would be no need to implement an independent patch due to its simplicity and they
are only a part of the main Action patch.

opcode RestartPitch ,0, ii
 iVoice, iPitchTransformation xin
 RestartRow iVoice, iPitchTransformation, 7, 4
endop

opcode RestartVelocity ,0, ii
 iVoice, iVelocityTransformation, xin
 RestartRow iVoice, iVelocityTransformation, 8, 5
endop

opcode RestartHarmonicity ,0, ii
 iVoice, iHarmonicityTransformation xin
 RestartRow iVoice, iHarmonicityTransformation, 9, 6
endop

Figure 7 – RetartPitch, RestartVelocity and RestartHarmonicity opcodes / patches

NextPitch, NextVelocity and NextHarmonicity opcodes, also contain the required mapping for
analogy in serialism.

- For pitch we have : iPitch = iPitchElement + giReferencePitch

- For velocity : iVelocity = iVelocityElement * 3 + 80

- And for harmonicty : iHarmonicity table iHarmonicityElement, 3

opcode NextPitch, ii, i
iVoice xin
 iPitchIndex table iVoice, 4
 iPitchTransformation table iVoice, 7
 iPitchElement, iPitchIndex
NextRowElement 1, iPitchIndex,
iPitchTransformation
 iPitch = iPitchElement + 60
 tablew iPitchIndex, iVoice, 4
 xout iPitch , iPitchIndex
endop

opcode NextVelocity, ii, i
 iVoice xin
 iVelocityIndex table iVoice, 5
 iVelocityTransformation table iVoice,
8
 iVelocityElement, iVelocityIndex
NextRowElement 1, iVelocityIndex,
iVelocityTransformation
 iVelocity = iVelocityElement * 3 + 80
 tablew iVelocityIndex, iVoice, 5
 xout iVelocity, iVelocityIndex
endop

opcode NextHarmonicity, ii, i
iVoice xin
 iHarmonicityIndex table iVoice, 6
 iHarmonicityTransformation table
iVoice, 9
 iHarmonicityElement,
iHarmonicityIndex NextRowElement 1,
iHarmonicityIndex,
iHarmonicityTransformation
 iHarmonicity table
iHarmonicityElement, 3
 tablew iHarmonicityIndex, iVoice, 6
 xout iHarmonicity, iHarmonicityIndex
 endop

Figure 8 – NextPitch, NextVelocity and NextHarmonicity opcodes / patches

RestartRow Opcode

RestartRow opcode initiates the row traversal mechanism for a voice and a musical parameter (for
example its sets R4 as the traversal method for 2nd voice). The transformation encoding takes place
in this opcode, and it then stores this transformation integer number in the related table, using
iTransformTable parameter. iIndexTable also specifies the table number for the related musical
parameter (for instance 4 is considered as PitchIndexTable).

opcode RestartRow ,0, iiii
iVoice, iTransformation, iTransformTable, iIndexTable xin

 tablew iTransformation, iVoice, iTransformTable
 iTransformationType = int(iTransformation / 100)

 if iTransformationType == 0 || iTransformationType == 1 then;P or I
 tablew 0, iVoice, iIndexTable
 elseif iTransformationType == 2 || iTransformationType == 3 then; R
or IR
 tablew 11, iVoice, iIndexTable
 endif
endop

Figure 9 – RestartRow opcode / patch

NextRowElement Opcode

NextRowElement opcode manipulates the index tables, using the last transformation command called
for each musical parameter and voice. It also rotates the index, whenever it reaches to the end.

opcode NextRowElement, ii, iii
iRowNumber, iIndex, iTransformation xin
 ; iTransformType : P=0 I=1 R=2 IR(X) =3
 ; R4 : iTransformType=2, iTransposition=4
 iTransformType = iTransformation / 100
 iTransposition = iTransformation % 100

; Set nextRowElementvalue, -1 if out of range
 if iIndex >= 0 && iIndex <= 11 then
 iNextRowElement table iIndex, iRowNumber
 else
 iNextRowElement = -1
 endif

 ; Advance index, rotate if it has reached to the end range
 if iTransformType == 0 || iTransformType == 1 then;P or I
 if iIndex >= 11 then
 iIndex = 0 ; Rotate
 else
 iIndex = iIndex + 1
 endif
 endif

 if iTransformType == 2 || iTransformType == 3 then;R or RI
 if iIndex <= 0 then
 iIndex = 11 ; Rotate
 else
 iIndex = iIndex - 1
 endif
 endif

 xout (iNextRowElement + iTransposition) % 12, iIndex
endop

Figure 10 – NextRowElement opcode / patch

Conclusion

Comparing Csound and Max./MSP is not an easy issue while both of them are powerful
environments in computer music domain. Having proper experience, many complicated problems
can be implemented with each of them easily. But there are some factors which can be pointed out
regarding these two alternatives.

Max/MSP provides a graphical user interface based on block diagrams as building blocks to design
and implement some patches. This may be the easiest method for modeling situations dealt with
connections and wirings. For example connecting some audio units and components for audio
manipulation or live electronics is easily modeled using Max/Msp. Moreover, as Max/MSP patches
are shown in diagrams, they can reflect the design behind of a problem more easily than some lines
of code. In addition, providing a graphical user interface is easy and straightforward, as Max/MSP
components are user interface components themselves and do not need another presentation layer
(like FLTK or Widgets in Csound). But sometimes combining logic and user interface may cause
some drawbacks and may be misleading. It is a better idea to separate logic and user interface in
different layers. The “Presentation View” in Max/MSP 5.0 is a method for separating user interface
and the underlying implementation logic.

On the other hand, Csound is a textual environment to facilitate a computer music programmer to
develop a specific idea. Using Csound, the developer does not face the problems of drawing, resizing
etc, and is able to implement the logic by means of some lines of code, like what is offered by the
programming languages. A value can be simply stored in a variable and used later many times in the
code (while in Max/MSP different wires should be used to pass the value of a component to other
components). But, for a musician who is unfamiliar with the programming concepts, it takes more
time to learn the Csound approach, comparing to a more user-friendly graphical environment (such
as Max/MSP). In Csound, the presentation and logic layers can be separated completely (while in
Max/MSP both aspects are tied together), as the presentation components can be designed
independently from logic code (Using e.g. FLTK or Widgets).

Apart from the differences between Max/MSP and Csound, a so-called divide-and-conquer approach
would simplify implementing an idea. Dividing a problem into different components, either Csound
opcodes or Max/MSP patches, may result in having a proper solution, regardless of the used tools.
But the problem is how many divisions should be used to have a proper balance in the size and
number of patches or opcodes, and the degree of abstraction one would achieve [6]. All in all, the
ability to design properly and being familiar with design patterns and implementation techniques
such as divide-and-conquer, is more important than the used environment.

Acknowledgements

References and links

1- Csound FLOSS Manual http://www.flossmanuals.net/csound/
2- Serialism definition http://en.wikipedia.org/wiki/Serialism
3- Max/MSP Tutorials http://www.cycling74.com/docs/max5/tutorials/msp-tut/mspindex.html
4- Frequency Modulation in Csound http://booki.flossmanuals.net/csound/_v/1.0/d-frequency-

modulation/
5- Frequency Modulation in Max/MSP http://www.cycling74.com/docs/max5/tutorials/msp-

tut/mspchapter11.html
6- Csound FLOSS Manual , User Defined Opcodes - “Is There An Optimal Design For A User

Defined Opcode?” http://booki.flossmanuals.net/csound/_v/1.0/f-user-defined-opcodes/

