CSOUND CONFERENCE 2011

Csound - Max/M SP . Implementing a framework for Serial
Composition and Frequency Modulation in both environments

Reza Payami
reza_payami@yahoo.com

| ntroduction

This article explains how a certain problem casdleed in two different environments, e.g. Csound

and Max/MSP, through providing a framework for aecomposition and frequency modulation as a

sample. It can be used as a basis for a worksheggdiain and compare how to design and develop
ideas in Csound and Max/MSP. So, different appreadbr each environment to a certain problem

can be compared with each other. Some user defipeades and instruments in Csound, as well as
their counterpart patches in Max/MSP have beenamphted and will be described throughout.

|. Problem Definition and Design Overview

As mentioned, the goal of this paper is to explaw to design and implement a specific problem in
Csound and Max/MSP, regardless of suggesting sgnabnd frequency modulation as a
composition and sound synthesis technique. Proyig@tialism together with frequency modulation
is only a mean to compare these two computer nasiconments.

A composed piece based on this framework, can agpayphonic texture by using multiple voices,

each of which using series or tone row to spedify values for musical parameters, e.g. pitch,
velocity and timbre. Moreover, frequency modulatignthe tool used for synthesis of different

timbres, having different harmonicities [4,5] askiv parameter.

Based on what serialism would suggest, there shoelld mapping and translation from each tone
row element to the certain value of each musicedmater, e.g. pitch, velocity or timbre [2]. Having
such an analogy, for instance, number 2 may difter@eanings considering each musical
parameter, e.g. pitch 50, velocity 60 and harmotidy In other words, there is a formula for
converting each tone row element to the value fanuwsical parameter. Thigext RowEl ement
opcode facilitates the general usage of a tone naWile NextPitch, NextVelocity and
Next Har noni ci ty opcodes specializ8ext RowEl enent considering each corresponding musical
parameter. Calling these three opcodes, the ndgtfoo each voice can be obtain@dst art Row,

and the specialize®estartPitch, RestarVel ocity and RestartHarnonicity opcodes, are
developed to provide the ability for initiating ttversal mechanism over a tone row. This tone
row traversal or transformation mechanism may belifférent types including original, inverse,
retrograde or inverse-retorgade, together witlaasjposition,

The score structure pattern, Csound instrumentsogoddes are explained in a top-down style
according to what follows. The similar Max/MSP pags are also shown next to the Csound code.

1. The Score Structure Pattern

In the score, there may be two possibilities, th& bne is to restart or initiate a tone row trsad
mechanism for generating the next notes playednbpstrument, and the other is to command the
instrument to play the next note, using a specifitdck and release duration. The former case is
specified by passing duration, or p3 argument;Hs While the latter will use this parameter ae th
duration of the next note. In other words, whenetliere is a ‘-1’ value in p3 in the score, then p4,
p5 and p6 will be used as transformation commaadsefstarting the row traversal to generate the
next notes for the corresponding instrument.

The transformation command holds two parts, onetfansformation type, and the other for
transposition. The transformation types are defee® (e.g. P or O) for using the row as origifal,

(I) as the inverse, 2 (R) for retrograde, and 3 ¢iRnverse-retrograde). The succeeding number
specifies the transposition value. For exampleé3™feans using retrograde and transposing the row
elements by 3 semitones higher.

In case of having a positive duration, an evergest to an instrument to play its next note. The
attack and release parameters (p4 and p5) aredexfjas the percentage of the whole duration. For
example a value of 0.2 for attack means 20% ofwthele note duration, causing the amplitude
going from O to the value calculated based on #ecity of the note, which in turn is specified by
the row and its transformation. For Max/MSP couypdetr patch for developing the score, the
“timeline” object in version 4.5 has been used.

<CsScor e>

; instr. Time dur pitch vel ocity harmonicity
[2.1 0 -1 00 10 23

;instl : Restart : pitch:PO , velocity:10, harnonicity: R3
[2.2 0 -1 32 20 33

;inst2: Restart : pitch:IR2 , velocity: R0, harnonicity: I R3
; instr. tinme dur attack rel ease

[2.1 1 3 0.2 0.3

;instl : play next note in 3 sec , atk = 0.2, rel =0.3

[2.2 1 2 0.1 0.4

;inst2 : play next note in 2 sec , atk = 0.1, rel =0.4

</ CsScor e>

Track Dizplay | 0O:00.00 oo-0d4.00 op-0.00 op:1z.00 o0 16.00 o0:20.00
- - I| | I | | | | | | |]]

1 Serialéction..
01027]
7322033

1202032
2i0104

Figure 1 — Csound score / Max/MSP timeline

So, the start time, duration, and volume envelaameters for each note are specified in the score
where different voices are played at the same tifiime Row, Reference Pitch and Harmonicity
values, can be specified for each score differentlyey may also change during a single piece

[11. Instrument 1 : Frequency M odulation

The first instrument uses frequency modulation tied=M opcode, working as the sound generation
engine. This opcode implements Chowning's idea] [flab having harmonicity and modulation
index for defining timbre. Among the opcode inpatgmeters, p4 and p5 specify pitch and velocity
of the note, while p6 and p7 define harmonicty aratlulation index. The former parameter, or p6,
affects the timber and would result in a harmomicmbarmonic sound, based on its value. The latter
parameter has a value between 0 and 1, and therhigls the brighter the generated sound would
be. As mentioned previously, p8 and p9 parameterattack and release duration percent related to
the whole note duration.

In this context, as score is the only caller to FHyjte variable opcode have been implemented and
used. For extending this opcode to be reusable therosituations, a k-rate opcode can be
implemented as well.

opcode FM a, iaii e Hupnnity R Medltonnds: Caménp
i CarrFreq, aCarrAnp, iHarnmonicityRatio,

i Modul ati onl ndex xin
i ModFreq = iCarrFreq * iHarnonicityRatio
i ModAnmp = i ModFreq * i Modul ati onl ndex
aMbdul at or poscil i ModAmp, i MdFreq, 2
aCarrier poscil aCarrAnp, iCarrFreq +

aMbdul ator, 2
xout aCarrier

endop
|=3 Carrier
Figure 2 — FM opcode/patch
instr 1

i Key = p4

i Vel ocity = p5

i Harmonicity = p6

i Modl ndex = p7

i AttackPercent = p8
i Rel easePercent = p9

i Frequency = cpsm di nn(i Key)

i Anplitude = iVelocity / 127
akEnv linseg 0, p3 * i AttackPercent, i Amplitude, p3 * (1 -
i AttackPercent - iRel easePercent), i Anplitude, p3 * i Rel easePercent, 0O

aCarrier FMi Frequency, iAnplitude * aEnv, iHarnonicity, iMdlndex

outs aCarrier, aCarrier
endi n

unpack iiiffff

Duration Ky “wiglocity Harmonicity oo Index AtackPercent ReleasePercent
Bo | Bo | B0 | Bo. | B | Bo. po_]
7.
frier]
Amplitude
Fraquency

E‘ﬁ L]

Iljfj [Expr §i1 7 (1.0 - §2 - $£3) |

pack DOfifili

Figure 3 — instrl

V. Instrument 2 : Applying Serialism

The second instrument, as described before, affeyatitly based on the duration value. A -1
duration value would lead to a row traversal reéstahile the positive values result in playing the
next note for a voice.

Thorough a polyphonic texture, there are diffef@ytvoices which can traverse the rows differently
at the same time. Assuming that the instrument murig2, the voice number can be specified by

using “pl * 10- 20” expression. For example “2.36wid lead to having the value 3 as iVoice and
“2.4” will specify the 4" voice.

When a ‘-1’ value in the duration occurs, the traaéof all three aspects are initiated based en th
transformation = command parameters. SoORestartPitch, RestartVelocity and
Rest art Har noni ci ty is called. In order to hold two transformationtpae.g. transformation type
and transposition in a single integer, a formula been used, by multiplying transposition type by
100 and then adding the result with transpositi@ine.

In the other case, the next note for the speciiig is generated and played using instrumentl. So,
callingNext Pi t ch, Next Vel oci t y andNext Har noni ci ty for the corresponding voice, the next note
parameters are calculated and the next note wpldnygeed using frequency modulation.

The implementation of the mentioned Opcodes andrémslated Max/MSP patch will be described
and shown in the following sections.

instr 2

iPitch init O

i Velocity init O

i Harmonicity init O
iVoice init pl * 10 - 20

if p3 == -1 then
RestartPitch i Voice, p4 * 100 + p5
Restart Vel ocity i Voice, p6 * 100 + p7
RestartHarrmonicity i Voice, p8 * 100 + p9
el se
i AttackPercent = p4
i Rel easePercent = p5

i Pitch, iPitchlndex NextPitch iVoice
i Vel ocity, iVelocitylndex NextVelocity iVoice
i Har moni ci ty, iHarnonicitylndex NextHarnonicity iVoice

if iPitch '= -1 then
event i "i", 1, 0, p3, iPitch , iVelocity, iHarnmonicity, 0.5,
i AttackPercent, i Rel easePercent
endi f
endi f

endi n

[tiEmd NextMot= i f |

Release Percent
“hice
o AttackPercent

I 1
|NextFitch | || Mextilocity | [HextHammonisity:
enpr §il 7 100 + 52 [expr i1 * 100 + §i2 [eepr §i1 = 100 + §i2
hodindex
Restart Fitch Restart'locity Restart Harmonicity
S
17 e+ e Jee] frere]
estart Row estart Row estart Row

Figure 4 — instr2
Data Structure: Global Tables

The values for configuring the scores are defimesbime global variables, including giRow which
represtns a rovgi Si neWave as sine wave for FMyi Har noni ci ti es andgi Ref er encePi t ch.

gi Row ftgen 1, 0, -12, -2, 0, 1, 6, 7, 2, 5, 4, 3, 11, 9, 8, 10
gi Si neWave ftgen 2, 0, 1024, 10, 1

gi Harmonicities ftgen 3, 0, -12, -2, 1, 10.3, 43.7, 60.7, 120.6, 230.5, 340.3,
450. 4, 562.2, 673.43, 789.43, 1004. 345

loadbang loadbang
||:| 1672543113810 | 11003 43.7 607 12006 23005 340.3 450 .4 562.2 673 .43 789,43

1004244071

iter

table t1 | Raw

I

Harmmianicity Table

Figure 5 — global tables

As there may be multiple (assumed up to ‘4 ‘) veigethe score, a data structure for each voice is
required to store index values for pitch, veloc@yd harmonicity. Moreover, the current
transformation value (e.g. R3) for each voice,lsethe last called Restart opcode should also be
stored somewhere for each voice. This can be imgnésd by using different tables, with their size
equal to the number of voices. According to fig@reable 4, 5, 6 hold the index values, while table

7, 8, 9 keep the transformation values. Each eleofemtable represents the related value (e.ghpit

transformation for table 7) for a specific voice.

gi Pi tehl ndex ftgen 4, 0, -4, -2,0 0 00 i PitchIndex Table |tablet4]
gi Vel ocitylndex ftgen 5, 0, -4, -2, 0, 0, 0, O
gi Harnoni ci tyl ndex ftgen 6, 0, -4, -2, 0, 0, O, Skiocity indexTable | [table t5 |

{ Harmonicity Index Table [table 16 |
gigitghgransfornation ftgen 7, 0, -4, -2, 0.0, 0.0, [e ——— Feerr]
gl Vel oci tyTr ansformation ft gen 8 0, -4 -2, 0.0, 0.0, Swizlocity Transformation Table |t3b|EtS]
0.0, 0.0
gi Harmoni ci tyTransformation ftgen 9, 0, -4, -2, 0.0, i Harmonicity Transformation Table | Jtabel 19 |
0.0, 0.0, 0.0

Figure 6 — tables for each voice

According to what mentioned so far, in order taatiovo different parts of transformation value,.e.g

transformation type and transposition (for instaRdehas two parts : ‘R’ as transformation type and
‘4’ as transposition), as a single integer, an dimgpis required. We can simply assign P with O, |
with 1, R with 2 and IR, with 3, multiply it with@D and add it with transposition value. So, for

example R4 would be converted to 2*100 + 4 or 104.

Therefore, in order to manipulate the values farthe@iceRest art Pit ch, Restart Vel oci ty and
Rest ar t Har noni ci ty opcodes are implemented. They only hide the fadttwhich table number is
related to which musical parameter, providing ehbrgevel opcode to be called in instrument 2. In
Max/MSP there would be no need to implement anpeddent patch due to its simplicity and they

are only a part of the main Action patch.

opcode RestartPitch ,0, i
i Voice, i PitchTransformati on Xin
Restart Row i Voi ce, i PitchTransformation, 7,
endop

opcode RestartVelocity ,0, i
i Voice, iVelocityTransformation, xin
Restart Row i Voi ce, i Vel ocityTransformation,
endop

opcode RestartHarmonicity ,0, i
i Voi ce, iHarmonicityTransformation xin
Rest art Row i Voi ce,
endop

i Har moni ci t yTransformati on,

4

8, 5

9, 6

aa
Restart Row Restart Row |

Figure 7 — RetartPitch, RestartVelocity and Rebl@ntonicity opcodes / patches

Next Pi t ch, Next Vel oci ty andNext Har noni ci t y opcodes, also contain the required mapping for

analogy in serialism.

- For pitch we havei:Pitch = i PitchEl ement + gi ReferencePitch

- For velocity i Vel ocity = i Vel oci tyEl ement * 3 + 80

- And for harmonicty :i Harmoni city tabl e i Harnoni ci t yEl enent, 3

opcode NextPitch, ii,
i Voice xin
i Pitchl ndex table iVoice, 4
i PitchTransformation table iVoice,
i PitchEl enent, iPitchlndex
Next RowEl enent 1, i Pitchl ndex,
i PitchTransformati on
iPitch = i PitchEl enent + 60
tabl ew i Pi t chl ndex, i Voice, 4
xout i Pitch , iPitchlndex
endop

7

“hice

tii

1
FitchindexTable PFitchTransformTable
Eable t Eable o
Fitchindex

PitchIndex

PitchTransformation

Reference
Pitch

opcode NextVelocity, ii, i
i Voice xin
i Vel ocitylndex table iVoice, 5
i Vel ocityTransfornation table iVoice,
8
i Vel oci tyEl ement, i Vel ocityl ndex
Next Rowel enent 1, i Vel oci tyl ndex,
i Vel oci tyTransfornmation
i Velocity = iVelocityEl enent * 3 + 80
tabl ew i Vel oci tyl ndex, iVoice, 5
xout iVelocity, iVelocitylndex
endop

“ice

tii

“wilocty Transfimation
Next RowBement

“wilocity Index

“locity Bement

“welocity Transform
“izlocity Index Table Tatle
Eahle 8 table 15
“wialocity Index

expr Hi1 73 +80 h
Mexthlocity

opcode NextHarmonicity, ii,
i Voi ce xin
i Har moni ci tyl ndex table iVoice, 6
i Harnoni cityTransformation table
i Voice, 9
i Har noni ci t yEl enent
i Har moni ci tyl ndex Next RowEl enent 1,
i Har moni ci tyl ndex,
i Har moni ci tyTransfornati on
i Harmonicity table
i Harmoni ci tyEl ement, 3
t abl ew i Har noni ci tyl ndex, iVoice, 6
xout i Harnonicity, iHarnonicitylndex
endop

Harmonicity Index

Table fabiz 16

m Table

Harmonicity Trans form

| NextRowBement

Harmmonicity
Bement

table 19

Harmonicitw
Transformation

Hammonicity Index

e

ﬁ Mext Hammonicity

Figure 8 — NextPitch, NextVelocity and NextHarmatyiopcodes / patches

RestartRow Opcode

Rest ar t Row opcode initiates the row traversal mechanism feoiae and a musical parameter (for
example its sets R4 as the traversal methodfovdce). The transformation encoding takes place
in this opcode, and it then stores this transfoimnainteger number in the related table, using
i Transf or nTabl e parameteri | ndexTabl e also specifies the table number for the relatedical
parameter (for instance 4 is considered as Pitexifdble).

opcode RestartRow ,0, iiii
i Voice, i Transformation, i TransforniTable, ilndexTable Xin

tablew i Transformation, iVoice, i Transforniabl e
i Transformati onType = int (i Transformation / 100)

if i Transformati onType == 0 || iTransformati onType == 1 then;P or |
tabl ew 0, iVoice, ilndexTable
el seif iTransformationType == 2 || iTransformati onType == 3 then; R
or IR
tabl ew 11, i Voice, ilndexTable
endi f
endop
e Transformation TransformTableName Index Table Mame
1 a1
Lpack T EE |prepend refer | |prepend refer |
TransformationType

[if i1 ==0 111 == 1 then 0

[if §i1 == || §i1 == Zthen 11

pack ii

Figure 9 — RestartRow opcode / patch

NextRowElement Opcode

Next RowEl enent opcode manipulates the index tables, using therssformation command called
for each musical parameter and voice. It also esttte index, whenever it reaches to the end.

opcode Next RowEl enent, ii, iii
i RowNurber, ilndex, iTransformation xin
; i Transformlype : P=0 1=1 R=2 IR(X) =3
; R4 . i Transfornlype=2, i Transposition=4
i Transformlype = i Transformation / 100
i Transposition = i Transformati on % 100

; Set next Rowkl enentvalue, -1 if out of range
if ilndex > 0 & & ilndex <= 11 then
i Next RowEl enent tabl e ilndex, i RowNunber
el se
i Next RowEl enent = -1
endi f

; Advance index, rotate if it has reached to the end range
if iTransfornmlype == 0 || i Transfornmlype == 1 then; P or
if ilndex >= 11 then
ilndex = 0 ; Rotate

el se
ilndex = ilndex + 1
endi f
endi f
if i Transfornilype == 2 || i Transfornilype == 3 then;R or R

if ilndex <= 0 then
ilndex = 11 ; Rotate

el se
ilndex = ilndex - 1
endi f
endi f
xout (i Next RowEl enent + i Transposition) % 12, ilndex
endop
Transformation
Serie Mame m index ’] Transposition TransformationType

prepend refer | [if $il = 0 &8 §i1 <= 11 then $i1 else -1

O NS = T then 82| e

[2] Hextindex

expr (Rl + $i2) % 12

‘ Next Row Hement

Figure 10 — NextRowElement opcode / patch

Conclusion

Comparing Csound and Max./MSP is not an easy isshide both of them are powerful
environments in computer music domain. Having praogxperience, many complicated problems
can be implemented with each of them easily. Batetare some factors which can be pointed out
regarding these two alternatives.

Max/MSP provides a graphical user interface basetlock diagrams as building blocks to design
and implement some patches. This may be the easig$iod for modeling situations dealt with
connections and wirings. For example connectinges@udio units and components for audio
manipulation or live electronics is easily modelsing Max/Msp. Moreover, as Max/MSP patches
are shown in diagrams, they can reflect the delsednnd of a problem more easily than some lines
of code. In addition, providing a graphical useteiface is easy and straightforward, as Max/MSP
components are user interface components themsaheeslo not need another presentation layer
(like FLTK or Widgets in Csound). But sometimes ¢mning logic and user interface may cause
some drawbacks and may be misleading. It is abelta to separate logic and user interface in
different layers. The “Presentation View” in Max/M$%.0 is a method for separating user interface
and the underlying implementation logic.

On the other hand, Csound is a textual environrtefécilitate a computer music programmer to

develop a specific idea. Using Csound, the develdpes not face the problems of drawing, resizing
etc, and is able to implement the logic by meansomfe lines of code, like what is offered by the

programming languages. A value can be simply storedvariable and used later many times in the
code (while in Max/MSP different wires should beedido pass the value of a component to other
components). But, for a musician who is unfamiliath the programming concepts, it takes more

time to learn the Csound approach, comparing tameemser-friendly graphical environment (such

as Max/MSP). In Csound, the presentation and ltayiers can be separated completely (while in
Max/MSP both aspects are tied together), as thaeptation components can be designed
independently from logic code (Using e.g. FLTK ordgéts).

Apart from the differences between Max/MSP and @dopa so-called divide-and-conquer approach
would simplify implementing an idea. Dividing a ptem into different components, either Csound
opcodes or Max/MSP patches, may result in havipgoper solution, regardless of the used tools.
But the problem is how many divisions should bedutse have a proper balance in the size and
number of patches or opcodes, and the degree theatisn one would achieve [6]. All in all, the
ability to design properly and being familiar witlesign patterns and implementation techniques
such as divide-and-conquer, is more important tharused environment.

Acknowledgements

References and links

Csound FLOSS Manudtttp://www.flossmanuals.net/csound/

Serialism definitiorhttp://en.wikipedia.org/wiki/Serialism

Max/MSP Tutorialshttp://www.cycling74.com/docs/max5/tutorials/mspAtaspindex.html
Frequency Modulation in Csoutdtp://booki.flossmanuals.net/csound/ v/1.0/d-fieswry-
modulation/

Frequency Modulation in Max/MSRtp://www.cycling74.com/docs/max5/tutorials/msp-
tut/mspchapter11.htmi

Csound FLOSS Manual , User Defined Opcodes - “ir@n Optimal Design For A User
Defined Opcode?http://booki.flossmanuals.net/csound/ v/1.0/f-udefined-opcodes/

