
QUINCE

A modular approach to music editing

by Maximilian Marcoll
http://quince.maximilianmarcoll.de

mail@maximilianmarcoll.de

June 26, 2011



Abstract

This paper is an introduction to the basic concepts of the software “quince” as well
as to some fundamental ideas which lead to its development. Quince is a modular, non-
media-centric, open source editor that presents time based data in a very flexible way
which enables quince to be used for a multitude of applications.
Because of its open and extensible structure quince can be interesting for all those who
want to perform a variety of nonstandard operations on different types of data in a single
project.
This document does not cover all the functionality of quince, nore can it serve as a
tutorial or user guide. For tutorials and a more comprehensive discussion of features,
please refer to the documentation provided on the quince website.



1 Introduction

Almost all artists, working with digital me-
dia, at some point ask themselves:

What tools fit my needs best?

The problem that one encounters very of-
ten is that computer programs do not only
carry out tasks and give us options and pos-
sibilities, but also determine the ways in
which we use them. In order to find out
what tools we need, we first have to find
out what we actually want to do. This is
not as easy as it might seem. We tend to do
what technology suggests us and sometimes
we even confuse those suggestions with our
own ideas. In order to find out what we
really want, it is necessary to critically re-
flect on the use of technology and to over-
come the tendency to do what our tools
were made for, what is easy and convenient.
Sir Ken Robinson put it this way:

“Being creative means challenging
what you take for granted.”

but:

“The problem in challenging what
you take for granted is, that you
don’t know what it is, because you
take it for granted.”[1]

There are many excellent programs avail-
able, for all kinds of specialized tasks. Usu-
ally, they are solutions to one particular
problem. Quince, however, is not.
The process of composing music, as I un-
derstand it, is a complex network of many
interconnected tasks which have to be car-
ried out in ever changing orders on dif-
ferent stages of various kinds of data.
Quince’s structure corresponds to this non-
linear approach to the working process and
is not bound to any traditional working

paradigm. Its flat hierarchy and flexible
modular structure offer full responsibility
and control about the working process and
the treatment of data. Even more, quince
was designed to carry out operations I do
not yet know I want it to be able to. The
fundamental concept of quince is a gen-
uinely digital approach that cuts some old
strings in order to help users find suitable
workflows for their respective situations.
Just like the fruit, the usage of the pro-
gram quince requires quite some knowledge
about its features, its strengths and week-
nesses as well as some getting used to. Once
one knows how to deal with it thuogh, the
results can be very delicious.
The structure and working paradigm of
quince are very different from those of tra-
ditional editors and digital audio work sta-
tions or sequencers. It was made for those
who like to challenge the standard working
processes and paradigms and who seek to
gain responsibility for how they work with
their material.

2 General Structure

2.1 Working Paradigm

Quince breaks with the classic ”tape
recorder & mixing desk” paradigm. Every
digital audio work station presents audio
data in (monophonic) tracks that can be
mixed using a digital simulation of a mix-
ing board. The only aspect of these models
that quince does implement is the timeline.
Quince does not represent data arranged in
tracks and since there are no tracks, there
also is no mixer to mix them. Instead, data
is hosted by ”Strips”: Vertically aligned ar-
eas containing Layers in which data can be
displayed and edited. There can be virtu-
ally any number of Layers in a Strip. Lay-

1



ers in a Strip are displayed on top of each
other (just like in Photoshop [2]). Thus,
data can be arranged in three dimensions
(see Figure 1).

2.2 Modularity

Almost everything that does carry out sig-
nificant tasks in quince is a plug-in. The
views that display data, the components
that play back sequences as well as func-
tions which perform operations on data all
are external bundles loaded at runtime. It
is not necessary to rebuild the entire pro-
gram to add new functionality.

2.3 Media Types

Quince is non media centric. The only
constraint about data is that it has to be
time based if it should be edited in quince.
Wether an event represents an audio or
video file, a note in a score or the execu-
tion of a shell script - it does not matter as
long as the thing being represented some-
how happens in time. However, in order to
be drawn and played back appropriately,
there need to be plug-ins that can under-
stand the respective media type.

2.4 Hierarchy

Almost every piece of software is designed
in a hierarchical way, so that some func-
tions are easier to reach and some tasks are
easier to achieve than others - depending on
the judgement of the programer(s).
As stated earlier, it is my belief that a pro-
gram’s structure determines the ways in
which we use it. In this sense, the design
of the program (its hierarchy of functional-
ity) might have a great impact on the (sup-
posedly creative) choices that artists make
while using it.

To strengthen the decisions of the user and
to give him or her more freedom, quince im-
plements a flat hierarchy in which all func-
tionality is directly in one’s grasp. Nothing
is hidden in complicated drop down menu
trees and no function is considered to be
more important than any other. Of course
there are always tasks (and workflows) that
are complicated and involve multiple steps.
Quince does however offer a way to combine
multiple operations into one single step, in
order to create more powerfull tools and to
simplify the utilization of complicated op-
erations. (See the chapters Functions and
FunctionGraphs for an explanation.)

3 Data Representations

3.1 Events

An event in quince simply is a set of pa-
rameters. A parameter is a combination of
a keyword (e.g. ”volume”) and a value (e.g.
0dB). Every event is created with a basic
set of parameters like ”start”, ”duration”
and ”description” that can be extended to
virtually any number. Apart from a few re-
served words, any string can be used as the
keyword of a parameter.

3.2 Sequences

There actually is no difference between an
event and a sequence in quince: Every
event can contain an arbitrary number of
sub-events. If an event contains sub-events
it may be regarded as a sequence. Hence,
it is a question of perspective wether some-
thing is an event or a sequence, which is
why I prefer the term object. A selection
of objects can always be folded into a se-
quence by the push of a button. Respec-
tively, a sequence can always be unfolded
in a similar manner.

2



Figure 1: Project window with three strips containing multiple layers.

3.3 Data Types

For a better understanding of how data is
being represented it might be helpful to
know about a few internal data types used
to distinguish between different kinds of ob-
jects:

• QuinceObject, the most basic type
of object, used for Events and Se-
quences.1

• Envelope, a representation of a volume
envelope, typically extracted from an
audio file.

• DataFile, a reference to any kind of
file.

• AudioFile, a reference to an audio file.

1QuinceObject also is the superclass of all other
data types.

3.4 Visual Representations

3.4.1 ContainerViews

ContainerViews are plug-ins that display
data and provide interfaces for the editing
and arrangement of objects. There are dif-
ferent ContainerViews available for differ-
ent types of data and for the display of dif-
ferent parameters. While the time related
parameters (”start” and ”duration”) are al-
ways assigned to the x-axis of the Contain-
erView, the parameter that is displayed on
the y-axis, is determined by the view. Ev-
ery Layer contains one ContainerView to
show its contents.

3.4.2 ChildViews

While ContainerViews display the contents
of objects, ChildViews are plug-ins used to
graphically represent the sub-events of the

3



object loaded by the surrounding Contain-
erView.

4 Manipulating Data

4.1 Functions

Functions are plug-ins which perform oper-
ations on objects. The result of the perfor-
mance of a function can either be

• a new object,

• a change in the object the function op-
erated on, or

• the export of data into an external file.

There already is a great variety of functions
available. A few examples are:

• EnvToSeq (a transient detector),

• ImportFrequencies (imports analytical
data created by Praat [3] and SPEAR
[4]),

• LilyPondExport (the translation of se-
quences into LilyPond code[5]),

• Quantization,

• several functions for the alignment and
equal distribution of objects in various
parameters,

• functions performing the basic set op-
erations, and many more.

4.2 FunctionGraphs

There is a way to create powerful
customized tools right within quince:
Functions can be combined, very similarly
to the way in which events can be folded
into sequences. Using the FunctionCom-
poser, two Functions can be combined into

a bigger unit, called FunctionGraph.
Not all combinations of functions are
possible, though. Two functions are com-
patible if the output object of the first is of
the same type as one of the inputs of the
second. For example, if the output of the
first function is an envelope (an object of
type Envelope), and the second expects a
sequence (an object of type QuinceObject),
they can not be combined.
Although only two functions can be joined
together at a time, much more complex
FunctionGraphs can be built: Function-
Graphs behave just like functions, so you
can combine them both with one another.

Figure 2: FunctionComposer Example

4



5 Playback

Objects are played back using Players,
plug-ins which interpret an object’s param-
eters in a certain way and produce output
in real time. When playback is started,
quince sends all the data to the currently
selected player plug-in. How the player re-
acts to the data is dependent on its imple-
mentation.
There are currently two players available:

• The AudioFilePlayer that interprets
events as references to audio files and

• The CSoundPlayer, an actual instance
of Csound [6] that converts events into
Csound score lines and performs the
resulting Csound score in realtime us-
ing one of the template Csound instru-
ments or a custom orchestra written by
the user.2

6 Expandability

Quince is released under the GNU Pub-
lic License3. It is written in Objective-C
and can easily be extended by writing plug-
ins (also in Objective-C). The QuinceApi
is lightweight and simple to use. It was de-
signed in such a way that in order to create
a new plug-in, only a minimum of admin-
istrative code has to be written.4 Players,
Views and Functions can all be added by
users to customize quince to their respec-
tive needs.

2The orchestra files used for the playback of se-
quences using the CSoundPlayer can be written di-
rectly in quince, too. In this way quince can also
be used as a front end for Csound.

3http://www.gnu.org/licenses
4For a simple function plug-in that performs an

operation on an object without creating a new out-
put object: four lines.

7 Conclusion

It is a well known fact that new technolo-
gies can have a great influence on the works
of artists. This is of course also true the
other way around: Whenever art changes
in respect of content and aesthetics, the
techniques and technologies have to change
as well.
Quince was developed to implement a new
working paradigm that corresponds to new
ways of composing music.5 In addition to
that, it opens up possibilities for decision
where many traditional programs have au-
tomatic solutions. It is a working envi-
ronment for all those who think beyond
the boundaries of traditional software so-
lutions.

8 Future Work

Although there already is a variety of plug-
ins available, there are also still lots of
things missing: FFT and pitch detection
plug-ins, export and import to and from
various formats (Midi, SDIF, MusicXML,
to name a few), players that support video,
OSC, amongst others.
So far quince only runs under Mac OS
X. Although it should be possible to port
it to Linux/Unix and Windows using the
GNUStep framework [7], there are no plans
to do so in the near future.

5Over the last years I developed a working
method that I call nonlinear composition. The
composition process can be split up into three
stages: creation, disposition and processing of ma-
terial. Where the paradigm of what I call axiomatic
composition starts with a (conceived) nucleus - a
singularity - and tries to derive almost everything
from this central model, nonlinear composition is
a bottom-up approach. It starts with a multiplic-
ity (e.g. with a detailed transcriptions of recorded
sounds), the material disposition is rhizomatic and
pieces mostly are not written from start to end.

5



Of course, contributions of any kind are
very welcome and much appreciated!

9 Acknowledgements

I would like to thank Paul Boersma and
David Weenink for the development of the
program Praat[3], one of the most innova-
tive pieces of software I have come across.
Many ideas concerning the structure of
quince were inspired by Praat.
I would also like to thank Roman Pfeifer
and Sönke Hahn for their help, support and
shared thoughts.

References

[1] Sir Ken Robinson, Address
during a honoraring de-
gree ceremony, available at
http://our.risd.edu/2009/06/02/sir-
ken-robinson

[2] http://www.photoshopcafe.com/tutorials/
layers/intro.htm

[3] http://www.fon.hum.uva.nl/praat

[4] http://www.klingbeil.com/spear

[5] http://www.lilypond.org

[6] http://www.csounds.com

[7] http://www.gnustep.org

6


