
01
11

0111
0
1
10010101

10
1
1
0
0
01

10
0011011011

1
1
0
1
1
0110101100101

01
11
01
0
0
0
1
1
0
11
11

01
110

10001101000011
0
0
1
0
1
0
1
1
011000110100101101

11
00

11
10
1
0
1
0
1
1
1
1
0
0
0
01
10

00
01
011

10101011001000110100
1
0
1
1
0
1
1
1
1
0
1
10001101101111011011100

110
01
10

01
10
01
0
1
0
1
1
1
0
0
1
0
0
1
10
01
01

01
10
11
100

1100011011001010011001000
1
1
0
0
0
0
0
0
1
1
0
0
0
1
0011001001100001011101000111

010
00
11
01

00
00
11
0
0
1
0
1
0
1
1
0
0
0
1
1
0
1
1
0
01
01
01
10

11
10
01
110

1000110010101110010011001100110
1
1
1
1
0
1
1
1
0
0
1
0
0
1
1
0
0
01101101111011011010111000001110

10
sta

nf
or
d

un
iv
er
si
ty
,
ca

,
u
s
a

1
0
1
1
1
0
1
0
0
0
1
10
01
01
01
11

00
10
01
110

0100
1100101011100110110010101100001011

1
0
0
1
0
0
1
1
0
0
0
1
1
0
1
1
0
1
0
0
0011010010110111001101101011101010111

001
101

10
10
01
01

10
00
11
01
10
0
0
0
1
0
1
1
0
1
1
1
0
0
1
1
0
0
1
0
0
0
11
00
00
10
11
00

01
10
11
011

110
11101

0101110011011101000110100101100011011

01
11011

10
1
10

010101101
1
0
0
0110001101

10
11
1
1
0
1
1
0
11

01
011

00101011101
0
0
0
1
1
0
1
111011101000110

10
00

01
10
0
1
0
1
0
1
1
0
11
00

01
101

001011011100111010
1
0
1
1
1
1
0
0
0
011000010111010101100

10
00
11

01
00
1
0
1
1
0
1
1
1
1
0
1
1
00
01
10

11
01
111

0110 center for com
p
u
te
r
re
s
e
a
rc
h
in

m
u
sic

and
acoustics1110011

001
10
01

10
01
01
01
1
1
0
0
1
0
0
1
1
0
0
1
0
1
01
10
11

10
01
10

linu
x audio conference

2012
0011

0
1
1
0
0
1
0
1
0
0
1
1
0
0
1
0
001100000011000100110010011000

010
11
10
10
00

11
10
10
0
0
1
1
0
1
0
0
0
0
1
1
0
0
1
0
1
0
1
10
00
11
01

10
01
01
011

0111
0011101000110010101110010011001

1
0
0
1
1
0
1
1
1
1
0
1
1
1
0
0
1
0
0
1100011011011110110110101110000011

101
010

11
10
10

00
11
00
10
10
1
1
1
0
0
1
0
0
1
1
1
0
0
1
0
0
1
1
0
0
1
01
01
11
00
11

01
10
01
010

110
000101

11001001100011011010000110100101
1
0
1
1
1
0
0
1
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0111001101101001011000

Proceedings of the

Linux Audio Conference 2012
April 12th - 15th, 2012

Center for Computer Research in Music and Acoustics (CCRMA),
Stanford University, California

Published by
CCRMA, Stanford University, California, US
April 2012
All copyrights remain with the authors
http://lac.linuxaudio.org/2012

ISBN 978-1-105-62546-6

Credits
Cover design: Fernando Lopez-Lezcano
Layout: Frank Neumann
Typesetting: LATEX and pdfLaTeX
Logo Design: The Linuxaudio.org logo and its variations copyright Thorsten Wilms c©2006, im-
ported into the "LAC 2012" logo by Robin Gareus

Thanks to:
Martin Monperrus for his webpage "Creating proceedings from PDF files"

Printed in the US

ii

Partners and Sponsors

CCRMA Linux Weekly News

The Fedora Project SICa

Stanford University LinuxAudio.org

CiTU

iii

iv

Foreword
Stanford, California, March 2012

A long time ago in a country far far away, a group of Linux Audio enthusiasts got together
at LinuxTag 2002 in Karlsruhe/Germany, organized a Linux Audio Developers Booth there, and
plotted future plans. Little they knew (or perhaps they did?) that their initiative would have staying
power and rally new people from all over the world every year. Today, the Linux Audio Conference
celebrates its 10th anniversary being hosted in the United States for the first time. Read the whole
story and look at the pictures at http://lac.linuxaudio.org, and you will see that most of those early
enthusiasts are still around, as well as new ones that have been joining us every year.

We at Stanford University’s Center for Computer Research in Music and Acoustics (CCRMA,
pronounced “karma”) are very happy to be the hosts of LAC 2012. Bear with me as I tell you a bit
of our history. CCRMA has been using and sharing Free Software as part of a collaborative en-
vironment for research and the arts since its beginning in the early 1970’s. Mainframes were the
only game in town and computer time for making music and creating new sound algorithms was
so valuable that, at the beginning, it could only be borrowed at night in the Artificial Intelligence
Lab at Stanford. Eventually CCRMA had its own shared computing monster and similarly-sized
digital synthesizer (we called it the Samsom Box), and much music and research came out of
them. But in time, mainframes, minicomputers, and mammoth synths withered away and gave
way around 1990 to a network of nimble NeXT computers and pure software sound making (with
Unix under the hood!, alas, not a free and open hood...). The demise of that world around 1997
was followed by a gradual and determined transition to a fully free and open GNU/Linux comput-
ing environment. All thanks to a lot of hard work by hundreds of dedicated programmers, hackers,
enthusiasts, and visionaries from all over the world that pieced together a complete, working and
reliable computing environment seemingly out of nothing.

By now made up of millions and millions of lines of code, all completely free and open for the
world to see, use, share and improve. Amazing, if you “think abyte it!”

By 2001, the packages I had created and maintained to populate our GNU/Linux workstations
with free sound and music software became available through the Internet for anyone to down-
load. You could work at home in an environment similar to the one CCRMA users took for granted
every day. The collection of packages was named Planet CCRMA and was offered to the world in
the spirit of sharing. Planet CCRMA took me to the LAD conference for the first time in 2003 (LAC
was LAD at the time). I found it simply wonderful that I could match faces to email addresses,
and get to know a little about many of the people that had made possible the freedom we were
enjoying at CCRMA. After that first time, I’ve had the pleasure of attending LAC pretty much every
year, save for once, when the party for the inauguration of the renovated CCRMA building landed
on the same weekend as LAC 2006.

For some years many LAC’ers had asked the same question: when is CCRMA going to host
LAC? It was the enthusiasm of Bruno Ruviaro and his promise to help that convinced me that it
was possible. The timing was good, a fantastically energetic friend committed to free software

v

was offering to help, and we had encouragement from Chris Chafe (CCRMA’s Director, power
Linux user) and the community. This LAC is going to be, for the first time, far away from its usual
geographic “center of gravity,” so we will miss some friends for whom the trip is too long and
expensive. But we are sure we will meet new faces and match them with email addresses, ex-
changing new ideas with lots of people that could not go to LAC before because it was too far away.

The geekiest amongst us may see no reason to give special attention to the number 10 (after
all, it is not a power of two); still, let us celebrate the 10th anniversary of LAC with four days
of talks and music, science and art, free software and free and open hardware, new reflections
and, of course, a lot of food, beer and coffee. 25 technical and musical talks, 3 full concerts plus
the Linux Sound Night (20+ pieces total) and a continuous 3D listening session for 17 additional
pieces and sound installations, 5 workshops, etc, etc. Quite a program!

I’m glad to have an old friend and long-time Linux musician, Dave Phillips, to be the keynote
speaker this year. I’m sure he will captivate us with memories and prognostications, anecdotes
and numbers. His book and his patient encouragement helped raise awareness of the possibili-
ties of this evolving platform and provides a lot of the glue that holds the community together.

Many thanks to all those who made this conference a reality. Bruno Ruviaro specially, without
him this would not have happened, and of course Chris Chafe and Jonathan Berger for their sup-
port and help in so many ways. Robin Gareus, amazing, fast, impossible to stop, for his help with
the web site and organization. Frank Neuman for his (again!) amazing work in massaging tex,
pdf and figures, and creating a great book of proceedings. Julius Smith, Carr Wilkerson, Sasha
Leitman, Jaroslaw Kapuscinski and many others at CCRMA who volunteered their efforts to make
this a memorable event. Support for making this conference possible came from CCRMA itself,
the Music Department at Stanford, SiCa (the Stanford Institute for Creativity and the Arts), the
Fedora Project and other institutions and friends. Needless to say, thanks to Jörn Nettingsmeier,
Robin, and the streaming team helpers, if you are halfway around the world, you will be able to
tune in and interact with most events remotely.

Here’s my toast for many many more years of better and better software. Hey developers!,
surprise us yet again with cool unpredictable programs! Change the world for the better! Hope-
fully by next year’s LAC we will all be wearing cheap, fast, 16-core powered, GNU/Linux free
and completely open “communicator” devices on our wrists (Dick Tracy style, that was 1946!!), of
course with full bandwidth sound and running a super low latency Mini-Jack sound server that will
connect us to the world and to each other.

Fernando Lopez-Lezcano
LAC 2012 Conference Chair
http://lac.linuxaudio.org/2012/
https://ccrma.stanford.edu/

PS: and last but not least come and meet Ping in California: he will welcome you to his native
habitat. He’s been traveling with me to many events and conferences all over the world since 2004,
and he loves GNU/Linux! See what I mean here: http://ccrma.stanford.edu/~nando/ping/

vi

Conference Organization

Fernando Lopez-Lezcano
Bruno Ruviaro
Robin Gareus

Live Streaming

Jörn Nettingsmeier
Robin Gareus

Conference Design and Website

Robin Gareus

Concert Sound

Carr Wilkerson
Sasha Leitman
Bruno Ruviaro
Fernando Lopez-Lezcano

Paper Administration and Proceedings

Frank Neumann

Special Thanks to

Chris Chafe
Jonathan Berger
Julius Smith
Carr Wilkerson
Sasha Leitman
Jaroslaw Kapuscinski
Tricia Schroeter
Jay Kadis
Scott Kepley
Laura Dahl

...and to everyone else who helped in many ways after the editorial deadline of this publication!

vii

Review Committee
Fons Adriaensen Casa della Musica, Parma, Italy
Tim Blechmann Vienna, Austria
Ico Bukvic Virginia Tech, VA, United States
Götz Dipper ZKM|Institute for Music and Acoustics, Karlsruhe, Germany
John ffitch retired/U of Bath, United Kingdom
Robin Gareus Linuxaudio.org, France
Dr. Albert Gräf Johannes Gutenberg University Mainz, Germany
Fernando Lopez-Lezcano CCRMA, Stanford, United States
Frank Neumann PenguinNoises, Germany
Yann Orlarey Grame, France
Jussi Pekonen Finland
Dave Phillips linux-sound.org, United States
Martin Rumori Institute of Electronic Music and Acoustics, Germany
Bruno Ruviaro CCRMA, Stanford, United States
Julius Smith CCRMA, Stanford, United States
Michael Wilson CCRMA, Stanford, United States
IOhannes Zmölnig Institute of Electronic Music and Acoustics (IEM@KUG), Austria

Music Jury
Bruno Ruviaro
Fernando Lopez-Lezcano

viii

Table of Contents

• The IEM Demosuite, a large-scale jukebox for the MUMUTH concert venue 1
Peter Plessas, IOhannes Zmölnig

• Network distribution in music applications with Medusa 9
Flávio Luiz Schiavoni, Marcelo Queiroz

• Luppp - A real-time audio looping program 15
Harry van Haaren

• Csound as a Real-time Application 21
Joachim Heintz

• Csound for Android 29
Steven Yi, Victor Lazzarini

• Ardour3 - Video Integration 35
Robin Gareus

• INScore - An Environment for the Design of Live Music Scores 47
Dominique Fober, Yann Orlarey, Stéphane Letz

• A Behind-the-Scenes Peek at World’s First Linux-Based Laptop Orchestra -
The Design of L2Ork Infrastructure and Lessons Learned 55
Ivica Bukvic

• Studio report: Linux audio for multi-speaker natural speech technology 61
Charles Fox, Heidi Christensen, Thomas Hain

• A framework for dynamic spatial acoustic scene generation with Ambisonics
in low delay realtime 69
Giso Grimm, Tobias Herzke

• A Toolkit for the Design of Ambisonic Decoders 77
Aaron Heller, Eric Benjamin, Richard Lee

• JunctionBox for Android: An Interaction Toolkit for Android-based
Mobile Devices 89
Lawrence Fyfe, Adam Tindale, Sheelagh Carpendale

• An Introduction to the Synth-A-Modeler Compiler: For Modular and
Open-Source Sound Synthesis using Physical Models 93
Edgar Berdahl, Julius O. Smith III

• pd-faust: An integrated environment for running Faust objects in Pd 101
Albert Gräf

• The Faust Online Compiler: a Web-Based IDE for the Faust
Programming Language 111
Romain Michon, Yann Orlarey

ix

• FaustPad : A free open-source mobile app for multi-touch
interaction with Faust generated modules 117
Hyung-Suk Kim, Julius O. Smith

• The why and how of with-height surround production
in Ambisonics 121
Jörn Nettingsmeier

• Field Report II - A contemporary music recording in Higher-order Ambisonics 127
Jörn Nettingsmeier

• From Jack to UDP packets to sound, and back 137
Fernando Lopez-Lezcano

• Controlling adaptive resampling 145
Fons Adriaensen

• Signal Processing Libraries for FAUST 153
Julius Smith

• The Integration of the PCSlib PD library in a Touch-Sensitive Interface
with Musical Application 163
José Rafael Subía Valdez

• Rite of the Earth - composition with frequency-based harmony and
ambisonic space projection 171
Krzysztof Gawlas

• Minivosc - a minimal virtual oscillator driver for ALSA (Advanced Linux
Sound Architecture) 175
Smilen Dimitrov, Stefania Serafin

• An Open Source C++ Framework for Multithreaded Realtime
Multichannel Audio Applications 183
Matthias Geier, Torben Hohn, Sascha Spors

• Using the beagleboard as hardware to process sound 189
Rafael Vega González, Daniel Gómez

x

The IEM Demosuite, a large-scale jukebox for the MUMUTH concert
venue

Peter PLESSAS and IOhannes m ZMÖLNIG
Institute of Electronic Music and Acoustics (IEM), University of Music and Performing Arts (KUG)

Inffeldgasse 10/III
8010 Graz,

Austria
{plessas, zmoelnig}@iem.at

Abstract
In order to present the manifold possibilities of sur-
round sound design in the new MUMUTH concert hall
to a broad audience we developed an easy to use ap-
plication running and interacting with audio demon-
stration scenes from a mobile computing device. An
extensible number of such demonstrations using the
large-scale and variable loudspeaker hemisphere in the
hall are controlled with a user interface optimized for
touch-sensitive input. Strategies for improving operat-
ing safety, as well as the introduction of a client/server
model using the programming language Pure Data, are
discussed in connection with a 3D Ambisonics render-
ing server, both implemented using the Linux operat-
ing system.

Keywords
demonstration, interaction, client-server systems, Am-
bisonics, Pure Data

1 The Mumuth

The University of Music and Performing Arts
Graz (KUG) opened a new building, the Music
and Music Theatre House (MUMUTH), in 2009.
It holds a 600 sqm. concert hall, named in honor
of the Austrian composer György Ligeti. This
new venue is used for productions by the uni-
versity’s different departments. Therefore, the
hall has to suit music performances of different
styles as well as theatre and opera works. This
multi-faceted usage pattern demands a flexible
performance space in terms of stage machinery,
room acoustics, sound reinforcement, lighting and
seating. As consequence MUMUTH has no fixed
stage and audience position but offers an array
of pedestals making up the hall’s floor and which
can be individually raised to provide an elevated
audience platform or stages of variable size and
height. While this flexible layout allows for cre-
ative staging of different performances it also im-

poses a serious challenge for the installation of a
sound reinforcement equipment, since any part of
the room can now become the stage or audience
area and as such be of varying size.

Figure 1: MUMUTH top view: Floor pedestals
and loudspeaker hang points

1.1 Variable position loudspeaker
hemisphere

The university’s Institute of Electronic Music and
Acoustics (IEM) designed a unique sound rein-
forcement system in order to cope with the many
different demands. It consists of 33 loudspeakers,
which can be lowered from the ceiling on tele-
scopic lifts and be positioned at arbitrary heights
as well as rotation and elevation angles. Figure 2
gives an impression of the room. The speaker
layouts, which can be easily refined within sec-
onds, are stored and recalled, if desired also dy-
namically, during a show. Electroacoustic mea-
surements and listening tests with different loud-
speaker positions permit instantaneously perceiv-
able comparisons. It is this very setup that is
used in 3D sound field rendering using higher or-
der ambisonics from IEM’s own software. It is
also employed in the reproduction of the different
audio scenes in the IEM Demosuite.

1

Figure 2: Loudspeaker hemisphere

1.2 The integration of higher-order
Ambisonics

With many years of experience in the design
and development of Ambisonics capture and play-
back systems, IEM developed the scalable CUBE-
mixer ambisonics authoring and rendering system
[Musil et al., 2008], which is distributed under a
GPL license1. This system consists of a mixing
application that can run on general purpose hard-
ware and operating systems, and which is open to
user extention and external control being imple-
mented in the Pure Data (Pd) programming lan-
guage. CUBEmixer is employed in the discrete or
Ambisonic spatialization of an arbitrary number
of sources on the loudspeaker hemisphere. The
helical positions of the mount points on the ceiling
as shown in Figure 1 allow to arrange the loud-
speakers in a hemisphere encircling the venue’s
available space with a minimum angular differ-
ence between the speaker positions. CUBEmixer
integrates very well with the MUMUTH audio in-
frastructure, consisting of a Lawo HD Core mix-
ing engine and signal matrix, controlled through
the Lawo mc266 fanless mixing console. Inputs
and outputs are via dedicated interface racks in-
terconnected via MADI optical cables, providing
a total of 4096 physical input and output chan-
nels. Interfacing to the main rendering computer
is done via two RME HDSP MADI PCIe cards us-
ing Alsa drivers with 64 bit Debian/GNU Linux.

1http://ambisonics.iem.at/xchange/products/cubemixer

1.3 Enhanced room acoustics

In addition to the sound reinforcement sys-
tem described above, MUMUTH’s concert hall
is equipped with a variable room-acoustics sys-
tem2, allowing to switch between different rever-
beration scenarios enhancing reverb envelopment
and speech intelligibility. With this system the
venue’s acoustics can be tailored to different per-
formance styles such as theatre, classical music,
jazz and to IEM’s concerts of electronic music. As
the variable room-acoustics system is optimized
for sound sources located on the floor level, it is
in general not used together with the loudspeaker
hemisphere.

2 Presenting MUMUTH’s sonic
abilities to a broad audience

Having build a venue the size of MUMUTH, it is
important to convey the idea of a concert hall be-
ing ”a musical instrument on its own” to the gen-
eral public. In order to demonstrate how sound
in space can be creatively composed as well as in-
teractively explored, we decided to create a suite
of music demos that would immediately catch the
listener’s attention and present the abilities of this
new location in an entertaining and convincing
way. An easy-to-use and interactive demo appli-
cation for visitors, playable even while the room
may be set up for a different production, had to
be developed. While this suite of demos would
provide ready-to-run sound scenes, it should at
the same time invite pre-rendered or interactive
extensions to its repertoire playlist from other
artists and researchers alike.

3 Software and Hardware

While looking for a suitable software platform in
which to implement the Demosuite, we decided it
would be preferable to use an environment that
future contributors would most likely be familiar
with. In our research we and our colleagues of-
ten use Pure Data, so taking that environment
as the starting point for implementing the De-
mosuite seemed a good choice: in theory, soft-
ware taken out of our development department
could be transferred directly to the suite. An ad-
ditional bonus was the graphical nature of Pd, as
there was no need to switch between environments

2Meyersound Constellation

2

when creating the visual user-interface and the
DSP side of a demo. Finally, the cross-platform
nature of Pd would make it possible to develop
demos on one’s own preferred platform, before de-
ploying it on a stable and low-latency operating
system in the venue.
The MUMUTH had already been equipped with a
PC for realtime signal processing running Debian
GNU/Linux, so we decided to use that machine
as a stable and well-tested base platform that was
already well integrated into the existing audio in-
frastructure.
This computer is usually controlled from the MU-
MUTH’s separate sound recording studio, though
it is possible to extend keyboard/monitor/mouse
into the concert hall.
However, for the needs of the Demosuite, this ap-
proach was discarded as it would involve the need
to set up a workstation in the concert hall ev-
ery time the demo should be presented, which
might in fact happen spontaneously between two
rehearsals of an opera without advance warning.
Instead we decided to control this computer with
a convenient and portable remote control the pre-
senter could carry around while running the de-
mos. While the environment of our choice (Pd)
is known to run well on both iOS and Android
based smartphone and tablet devices [Brinkmann
et al., 2011], this is unfortunately only true for
the DSP-part of Pd and not for the user inter-
face requiring Tcl/Tk. The only available touch
device we found that could run the Pd-GUI was
the Neophonie WePad. This tablet device runs a
stock i386 based Linux system3, making it very
easy to develop new and deploy already existing
software on it.
In order to make Pd suitable for tablet use, its
visual appearance was slightly adapted with a
”kiosk mode” gui plug-in [zmoelnig, 2011] dis-
playing a single patch window in full-screen mode
without any menus.

4 Demosuite Software Design

The Demosuite software consists of two semanti-
cally different parts:

• a static framework that takes care of selecting
and activating a demo and that is controlling

3Linux Foundation’s MeeGo

Figure 3: Example demo GUI with global volume
fader right and demo selector strip on top

some global parameters such as master vol-
ume, all optimized for touch sensitive user
interfaces.

• a growing number of demos, which are inter-
active audio applications implemented as Pd
patches.

Demos are mutually exclusive, meaning that if a
given demo is currently loaded/running, no other
demo can be loaded/running at the same time.
An example of a user interface for a selected demo,
controlling the playback of pre-rendered sound
files allowing directly switchable different Am-
bisonics orders is shown in Figure 3. Here, play-
back of pre-rendered sound files is controlled along
with switchable Ambisonics orders for direct com-
parison, with additional written comments about
the demo’s contents.
To complicate things a bit, the Demosuite soft-
ware is to run on two hosts in parallel:

• a powerful DSP server, capable of processing
and interfacing multichannel sound fields in
realtime

• a lightweight GUI client that controls this
server over a network connection

The Demosuite software has to provide the com-
munication between the DSP and the GUI parts
and ensure that the internal states of the two
parts stay synchronized even during network dis-
ruptions. In order to add a new demo to the
playlist, corresponding GUI and DSP patches
have to be copied to the two machines respec-
tively.

3

4.1 Slot Management
We call the container mechanism, that ensures
that the matching parts (GUI and DSP patches)
of a single demo are active and synchronized
across the two computers, the ”slot”.
Basically two different approaches to managing a
variable number of demos via this slot mechanism
exist:

• either all demos are preloaded into a match-
ing number of slots and, upon selection of a
given demo its containing slot gets activated
while all other slots are deactivated

• or there is only a single slot that manages
the synchronous loading and activation of an
arbitrary demo across the two hosts.

Both methods have their advantages and draw-
backs. In the case of the MUMUTH Demosuite
we identified the following relevant characteristics
of the ”pre-load” technique:

• Pros

– fast (since initialization can be done at
startup time)

• Cons

– more resources needed (scales badly)

– ”deactivated” demos can remain half-
active (e.g. by continuously generating
messages)

– co-existing demos can influence each
other (if not carefully implemented)

Whereas with the technique of ”dynamic loading
into a single slot” can be characterized as follows:

• Pros

– resources allocated on demand (scales
well)

– ”deactivated” demos don’t exist and can
therefore not take any resources

– demos never co-exist

• Cons

– resources allocated on the fly (slow, since
no pre-loading is possible)

– instantiation locks the Pd process

– requires dynamic patching which makes
code less readable (bad for long term
maintenance)

Since the demos are to be implemented by mul-
tiple collaborators and will presumably be of di-
verse code quality, the perfect isolation between
demos in the ”dynamic loading” approach was the
winning argument. Assuming that a single demo
will consume moderate resources in return, the
elongated load time due to dynamic resource al-
location was considered acceptable. Furthermore,
this approach scales well even for a very large
number of demos.

4.2 Slot Interface

A slot consists of two separate programs (the DSP
and the GUI part) that communicate with each
other as well as produce perceptible output (the
DSP will usually render sound, whereas the GUI
will visualize an interface to control the former).
The communication channels for the two parts are
standardized, in order to be able to globally re-
place them with different networking techniques.

4.2.1 control communication
Usually GUI and DSP will run on different com-
puters that are linked via a network connection.
To keep the implementation simple, this commu-
nication is abstracted as unidirectional and asyn-
chronous busses. The network message interface
inside PD is implemented as single [inlet] resp.
[outlet] objects in the GUI and DSP patch of
each demo. Each Pd message that is to be sent
from one peer to the other, has to go through that
single [outlet] and will then appear on the other
side’s sole [inlet] object. No assumption must
be made on the speed of the transmission.

4.2.2 audible and visible output
In addition to choosing and interacting with a
demo, the user should be able to control the
global volume with a single fader, in a unified
way for each and every demo. It is therefore
important that the DSP patch does not access
the soundcard’s DACs (or rather Pd’s representa-
tion thereof) directly, but through a global au-
dio bus. The Demosuite applies a few post-
processing steps on this multi channel audio bus,
namely master volume, multichannels limiting
and a global mute. This is achieved by using

4

a special [throw˜ chn-<N>] object rather than
Pd’s own [dac˜ <N>].
The GUI part is trying to make best use of the
allocated screen estate by being implemented as
a Pd ”graph on parent” interface of a fixed size,
defining the available area for the UI part of a
demo.4

4.3 Loading a Demo
Since the GUI and DSP parts are asynchronous
processes, it is necessary to pay special attention
to the sequence of actions in which to load a demo
in order to guarantee consistent behavior and de-
fined states of both systems at each instant in
time.
Loading is initiated by the user selecting a scene
(e.g. ”foobar”) on the interface. The GUI will
then delete the previously loaded demo, so it can
no longer send control messages to the DSP part
of the demo, and enter a transitional state, (show-
ing a ”loading...” splash screen). Once this is ac-
complished, a request ”/playlist entry foobar” is
sent to the DSP part.
Once DSP receives such a request, it will first
delete its part of the the previous scene and sub-
sequently load the ”foobar/dsp.pd” patch, which
receives an initialization trigger. Once the DSP
part of the demo is initialized, it must then send
a ”/dsp init done” message, which will cause the
DSP to send a ”/create gui slot foobar” request
back to the GUI. Now that the GUI knows that
the DSP is properly loaded, it can load and dis-
play the ”foobar/gui.pd” patch. The GUI part of
demos having non-trivial internal states can now
query the DSP to transmit the current state of
internal parameters.

5 Communication between GUI and
DSP

Since the DSP and the GUI are running on two
different machines, their communication is done
via a network connection. In MUMUTH, the
tablet is connected via a wireless LAN to en-
sure maximum mobility of the presenter. This
required the following considerations.

4This is probably the most tedious part when writ-
ing new demos. Unfortunately, at the time of this writ-
ing, Pd does not provide a usable auto-scaling function of
”graph on parent” interfaces, which means that whenever
the screen resolution of the remote control changes, the
GUI patches have to be adapted...

5.1 TCP/IP vs. UDP
Traditionally, network connections involving re-
altime audio environments use the simple UDP
rather than the more reliable TCP/IP protocol,
mainly because of the following two reasons:

• overhead: due to it’s simpler nature UDP has
less traffic overhead than TCP/IP, and will
therefore consume less resources

• robustness: since UDP does not track ac-
tive connections, it handles loss of connec-
tivity more gracefully than TCP/IP; esp. it
does not cause the remote point to hang if
the local point experiences a network out-
age. This is especially important considering
the volatile connection with a wireless mobile
device and the non-threaded network imple-
mentation in Pd (that would cause the main
audio thread to hang in case the TCP/IP re-
mote control left the coverage of the wireless
LAN access point!)

5.2 to OSC or not to OSC...
State of the art communication between net-
worked audio workstations is usually implemented
using Open Sound Control (OSC). While Pd still
has no built-in support for OSC and instead pro-
vides objects that speak PD’s own FUDI protocol,
it can be extended using Martin Peach’s ”osc” li-
brary. Unfortunately we found the various avail-
able network transport implementations needed
for this ”osc” library to be less stable than ex-
pected, especially in cases where the connection
can easily drop, which is expected to happen once
the tablet leaves the W-LAN coverage. Rather
than fixing these implementations, we decided to
write a set of abstractions that hide the actual
implementation of the OSC transport.
On the application layer directly accessible within
a demo (and within most parts of the framework),
”OSC-style” messages are used. On the layer
below, these messages are currently transmitted
within FUDI containers. Once the issues of the
network transport libraries are addressed with the
ongoing development of Pd’s externals, the wrap-
per objects can easily be switched back to use
OSC containers.

5.3 Network Security
In the current implementation, absolutely no net-
work security is built into the system. An intruder

5

who has knowledge of the protocol, the network
address and port of the DSP machine can send
arbitrary commands. Since the wireless network
is only available within the concert hall and is
encrypted, we have not experienced any security
related problems so far. In any case, it should be
easy enough to protect the two hosts via a clever
set of firewall rules and network tunnelling tech-
nology such as ssh, SSL or VPN.

5.4 Operating Safety
Whenever the connection between the main DSP
computer machine and the GUI remote control
is interrupted, it is necessary to fallback into a
safe state. In order to monitor the status of the
UDP connection, a special ”heartbeat” message
is constantly exchanged between the two comput-
ers. Whenever the user interface assumes to be
connected to the DSP server, it sends out a mes-
sage ”/client alive 1” in regular intervals (cur-
rently about 3 times per second), which is an-
swered by a ”/server alive 1” message in return.
If either side does not receive its peer’s ”alive”
message for a certain amount of time, it considers
the remote side to have disconnected. Once the
DSP server detects a disconnected GUI, it will
immediately mute its audio outputs in order to
prevent damage to the listener’s ears as well as
to the equipment by uncontrollable audio signals.
Whenever the GUI detects a disconnected DSP
server, it displays a warning message of the lost
connection and locks the interface that otherwise
would control the DSP part of a demo. This is last
measure is important in order to ensure that the
state on both DSP and GUI sides divert as little
as possible, making the reconnection and resum-
ing of a demo an easy task. The GUI will try
to reestablish the connection by periodically at-
tempting to reconnect, send a ”/conn request 1”
message. This message will eventually trigger an
reconnection attempt of the DSP server.
As soon as the connection is re-established, the
GUI queries the DSP server about it’s current
state and adjusts its internal state and hence the
state of the user controls accordingly.

6 Repertoire

Current examples of demos available in the suite
are:

• Audio scenes of pre-rendered Ambisonic

sources on different spatialisation paths on
the hemisphere with dynamically changing
early reflections and late reverberation, with
Ambisonics-encoded reverb return signals.

• Ambisonic sources in comparison to discrete
loudspeaker playback with additional depth
perception cues.

• Extracts from IEM concert productions.

• Dedicated pieces from IEM staff and featured
guest composers.

• A 3D panning demo using allowing interac-
tive user control.

• Ambisonics field recording examples.

7 Summary

In this contribution we described how an easy-
to-use system of audio demo scenes for the in-
teractive exploration of the new MUMUTH con-
cert space has been realised. We presented an ap-
proach towards networked Pd patches using con-
nection state monitoring together with dynamic
patch creation on different host computers. A so-
lution allowing for easy extensibility of the demo
repertoire while preserving system stability was
discussed along with an alternative network trans-
port layer for Pd messages. The adaption of Pd to
touch-based tablet interfaces and considerations
regarding operational reliability with regard to
high-volume PA systems were shown.

8 Acknowledgements

While the design and realisation of the audio in-
frastructure in MUMUTH has been the result
of a huge team of collaborators, the authors
would especially like to express their gratitude to
IEM/KUG members Gerhard Eckel for initiating
the Demosuite project, and Thomas Musil, Stefan
Warum and Ulrich Gladisch for their exceptional
support.

References

Peter Brinkmann, Peter Kirn, Richard Lawler,
Chris McCormick, Martin Roth, and Hans-
Christoph Steiner. 2011. Embedding pure data
with libpd. In Proceedings of the Pure Data
Convention 2011, Weimar, Germany. http://
www.uni-weimar.de/medien/wiki/images/
Embedding_Pure_Data_with_libpd.pdf.

6

Thomas Musil, Winfried Ritsch, and Johannes
Zmölnig. 2008. The cubemixer a performance-,
mixing- and masteringtool. In Proceedings of
the Linux Audio Conference 2008, Cologne,
Germany. http://old.iem.at/projekte/
publications/paper/cm/cm.pdf.

IOhannes zmoelnig. 2011. New clothes
for pure data. In Proceedings of the Linux
Audio Conference 2011, Maynooth, Ire-
land. http://lac.linuxaudio.org/2011/
download/lac2011_proceedings.pdf.

7

8

Network distribution in music applications with Medusa

Flávio Luiz SCHIAVONI and Marcelo QUEIROZ
Computer Science Department

University of São Paulo
São Paulo

Brazil,
{fls, mqz}@ime.usp.br

Abstract

This paper introduces an extension of Medusa, a dis-
tributed music environment, that allows an easy use of
network music communication in common music ap-
plications. Medusa was firstly developed as a Jack
application and now it is being ported to other au-
dio APIs as an attempt to make network music ex-
perimentation more widely accessible. The APIs cho-
sen were LADSPA, LV2 and Pure Data (external).
This new project approach required a complete review
of the original Medusa architecture, which consisted
of a monolithic implementation. As a result of the
new modular development, some possibilities of us-
ing networked audio streaming via Medusa plugins in
well-known audio processing environments will be pre-
sented and commented on.

Keywords

Network Music, Pure Data, LADSPA, LV2, Medusa.

1 Introduction

Ever since the availability of network and In-
ternet connections became an undisputed fact,
collaborative and cooperative music tools have
been developed. The desire of using realtime au-
dio streaming in live musical performances in-
spired the creation of various tools focused on
distributed performance, where synchronous mu-
sic communication is a priority. Some related
network music tools which address the prob-
lem of synchronous music communication be-
tween networked computers are NetJack [Carôt
et al., 2009], SoundJack [Carôt et al., 2006],
JackTrip [Cáceres and Chafe, 2009b; Cáceres
and Chafe, 2009a], llcon [Fischer, 2006] and
LDAS [Sæbø and Svensson, 2006].

The success cases of network music perfor-
mance concerts could give the wrong impression
that the only use for network music is distributed

performance, but several other problems in com-
puter music can take advantage of or benefit from
network music distribution. For instance, record-
ings can be made using a pool of networked com-
puters, a resource which might be seen as a scal-
able distributed sound card; music spatialization
could be done using a mesh network topology;
digital signal processing power can be vastly im-
proved using clusters of computers; and musi-
cal composition may explore fresh new grounds
by viewing computer networks as nonstandard
acoustical environments for performance and lis-
tening.

There are at least two requirements for all these
scenarios to be fully explorable by potentially in-
terested users, which are often musicians or afi-
cionados and usually nonprogrammers; first, flex-
ible audio network tools must be made available,
and second, easy integration with popular mu-
sic/sound processing applications must be guar-
anteed. Despite the fact that most high-level
linux music applications nowadays run over Jack
and ALSA, we see that time and again end users
can’t deal with this audio infrastructure lying
below the application they are running. Also,
the lack of automated setup and graphical user
interfaces shun common users from many exist-
ing tools, like the network music tools mentioned
above.

The work presented in this paper is part
of the investigation behind the development of
Medusa [Schiavoni et al., 2011], a distributed au-
dio environment. Medusa is a FLOSS project
which is primarily focused on usability and trans-
parency, as means to making network music con-
nections easier for end users. The first implemen-
tation of Medusa, presented in LAC 2011, was de-
veloped in C++ with Qt GUI and Jack as sound

9

API. The Jack API was extended with a series of
network functionalities, such as add/remove re-
mote ports and remote control of the Jack Trans-
port functionality.

Recently, the development of Medusa has been
strongly guided by the attempt to deal with the
two aforementioned requirements, namely flexibil-
ity and integrability. These goals may be reached
by extending regular sound processing applica-
tions, such as Pure Data, Rosegarden or Ardour,
allowing them to function as network music tools.
The very basic idea is trying to reach end users
wherever they already are.

Most music applications can be extended by
plugins: Pure Data can be extended by the cre-
ation of C externals (which might be viewed as a
plugin), whereas digital audio workspaces such as
Ardour, Rosegarden, Qtractor and Traverso can
be extended by LADSPA, VST and LV2 plugins.
In this paper we will explore the possibility of
developing Medusa network music plugins using
three popular audio APIs: LADSPA, LV2 and
Pure Data API (via C externals). It is worth
mentioning that these APIs are all open-source,
developed in C and widely used in Linux music
environments.

A reimplementation of Medusa has been re-
quired in order to grant code reuse in the im-
plementation of these plugins, and also for easy
maintenance of the source code. All source code
of the Medusa project, including Medusa plug-
ins, are freely available in the project site1. This
reimplementation of Medusa and the proposed ar-
chitecture are presented in section 2; section 3
discusses the chosen audio APIs and presents the
developed plugins, and section 4 brings some con-
clusions and a discussion of future works.

2 Medusa

Although some promising preliminary results
had been achieved with the first version of
Medusa [Schiavoni et al., 2011], the original
monolithic implementation raised several diffi-
culties in the implementation of the proposed
Medusa plugins, which eventually triggered a
fundamental architectural change in the project.
First, the implementation language was changed
from C++ to ANSI C, which is more compatible

1http://sourceforge.net/projects/medusa-audionet/

with the chosen sound APIs. Second, the mono-
lithic structure has been changed to the devel-
opment of a core Medusa library (libmedusa.so),
comprising control and network functions, which
could be re-used by each new plugin implemen-
tation. Third, graphical user interfaces, text-
based interfaces and plugins now occupy a sep-
arate layer, that uses the core Medusa library as
an API on its own.

Figure 1: Medusa Jack implementation with Qt
GUI

The new Medusa architecture is divided in
three layers: Sound, Control and Network. The
Control and Network layers are implemented as a
unique library and are used by all Medusa imple-
mentations. The Sound layer corresponds to spe-
cific applications, like the proposed plugins, that
are built using each plugin API and the Medusa
library. This architecture facilitates code mainte-
nance and bug correction.

Figure 2: Architectural view of the implementa-
tion

10

2.1 Network layer
The network layer is responsible for managing
connections between network clients and servers.
This layer’s implementation was made based on
a fixed set of network transport protocols, which
are normally provided as part of the operating
system kernel, since its development and deploy-
ment requires superuser privileges. Medusa cur-
rently allows the user to choose among 4 transport
protocols: UDP, TCP, SCTP e DCCP:

UDP [Postel, 1980]: User Datagram Protocol is
the classical unreliable (but faster) transport
protocol.

TCP [Padlipsky, 1982]: Transmission Control
Protocol is a reliable transport protocol,
which ensures absence of packet losses.

SCTP [Ong and Yoakum, 2002]: Stream Con-
trol Transmission Protocol is a connection-
oriented transport protocol that provides a
reliable full-duplex association. This proto-
col was not originally meant as a replacement
for TCP, but was developed for carrying voice
over IP (VoIP).

DCCP [Kohler et al., 2006; Floyd et al.,
2006]: Datagram Congestion Control Pro-
tocol is a transport protocol that combines
TCP-friendly congestion control with unre-
liable datagram semantics for applications
that transfer fairly large amounts of data [Lai
and Kohler, 2005].

This multi-protocol network communication
layer is intended to offer alternatives for users that
may need different specific features in data trans-
fer according to application context. For instance,
an interactive musical performance with strong
rhythmic interactions may require the smallest
possible latency while tolerating audio glitches
due to packet losses, and a remote recording ses-
sion may tolerate high latency and jitter, but still
require that every packet be delivered. With a few
alternatives available, the user may choose which
protocol is more appropriate to its own musical
use.

2.2 Control layer
The next layer in the Medusa API is the Con-
trol layer. The Control layer essentially creates

senders and receivers and provides them to the
Sound layer. Instead of requiring that all pro-
tocols in the Network layer to have full-duplex
communication, the Control layer always sepa-
rates the roles of sending and receiving network
data.

Figure 3: Sender / Receiver communication

In order to create a sender it is necessary to in-
form the network protocol, the network port and
the number of channels that will be sent. The
sender creates the network server and one ring
buffer for each channel, and provides functions
for the sound API to have easy access to these
buffers. Each ring buffer receives sound content
from applications (usually in DSP chunks), out of
which the sender prepares network chunks (usu-
ally of a different size) for the Network Layer.

The receiver is created in a way similar to the
sender, but besides the basic parameters the cor-
responding server IP address is also required. The
receiver creates a network client and the required
number of ring buffers (one per channel). Un-
like the sender, the ring buffer of the receiver will
be fed by a network client and consumed by the
sound API.

2.3 Sound layer
The outermost Medusa layer is the Sound layer,
which deals not only with audio streams but also
with MIDI streams. The Sound layer lies be-
tween the Medusa API and several sound applica-
tion APIs, and represents a collection of Medusa
front-ends or interfaces, since each integration of
Medusa with a particular sound application may
have its own user interface, defined by each sound
application API.

The integration of Sound and Network layers
uses the Control layer through its sender / re-
ceiver plugins. Sender and receiver roles defined
by the Control layer are converted into Sound
layer plugins that simply exchange audio streams
between machines.

Each plugin has a host application and a partic-
ular way to communicate with it. The API defines
how a plugin is initialized, how it processes data
and how it is presented. Each plugin implemen-

11

tation generates an independent software pack-
age that can be individually used and distributed.
The separation of these implementations avoids
the mixing of different plugin libraries, which is
better for code maintenance, chasing bugs and so
on.

3 Implementations

3.1 LADSPA
LADSPA [Furse, 2000] stands for “Linux Audio
Developer Simple Plugin API”, and it is the most
common audio plugin API for Linux applications.
Many Linux programs, such as Audacity, Ardour,
Rosegarden, QTractor and Jack Rack, support
LADSPA plugins. The LADSPA API is captured
within a header file and is very easy to use. Some
examples are provided with an SDK and there is a
lot of open source code with great documentation
available.

Figure 4: Medusa LADSPA implementation

Figure 4 presents Medusa LADSPA sender and
receiver interfaces. The controls of a LADSPA
plugin are represented exclusively by 32 bit float-
ing point numbers, and it was awkward to
use these to represent IP addresses. LADSPA
GUIs are defined in RDF files that cannot be
changed on-the-fly, which makes them very cum-
bersome as interfaces for network audio connec-
tions. LADSPA doesn’t support MIDI and the

documentation suggests the use of Rosegarden
DSSI to deal with it.

3.2 LV2

LV2 (LADSPA version 2) [Steve Harris, 2008] is
acknowledged as the official LADSPA successor.
An LV2 plugin is a bundle that includes the plugin
itself, an RDF descriptor in Turtle and any other
resource needed. The LV2 bundle may include a
GTK GUI, thus offering developers a way to cre-
ate better user interfaces. As LADSPA, LV2 is an
easy-to-use library, and plenty of documentation
and examples are provided by the developers.

Figure 5: Medusa LV2 implementation

The possibility of creating GTK interfaces al-
lowed a more natural integration of Medusa as an
LV2 plugin. The IP mask entry allows easy input
for the user, and on-the-fly changes to the inter-
face may be used by Medusa in the future to allow
for finding users and sound resources and keeping
this information up-to-date on the interface.

3.3 Pure Data external

Pure Data [Puckette, 1996] (aka Pd) is a largely
used realtime programming environment for au-
dio, video, and graphical processing, which can
be extended by the use of externals written in
C/C++ language [Zmölnig, 2001]. Pure Data
does have some network externals available, but
none offers all transport protocols provided by
Medusa. A Pd external may also be implemented
with a tcl/tk GUI, which can be useful to improve
usability and also to implement Medusa service
control in the future. In addition, Pd offers a good
environment to measure latency, packet loss and
jitter in Medusa Network layer implementation.

12

Figure 6: Medusa Pure Data external implemen-
tation

The Medusa Pd external implementation is ac-
tually a collection of externals (a library) that
includes the sender and receiver objects (see fig-
ure 6) and a network meter to measure latency
and packet loss. Some examples of use were also
developed and are available on the project web-
site.

4 Conclusions and Future Works

The possibility of exchanging sound data between
applications using the Jack sound server, for in-
stance, has brought new perspectives in audio
software development and usage. Extending this
possibility to allow for network data exchange
from within popular user applications may fa-
cilitate the emergence of new ways to compose,
record or play music. It may be early to con-
clude that network plugins for audio software will
really expand the musical use of computer net-
works, but it is not early to observe in users and
musicians new expectations about what might be
done in network music, and also the desire to try
out new ways to do old things, maybe more easily
and more transparently than before.

The effort that went into changing Medusa ar-
chitecture and reimplementeing it is totally justi-
fied, in the sense that now the effort of implement-
ing other network music plugins (i.e. Medusa plu-
gins for other sound applications) involve a lot of
code reuse and thus have been made much lighter.

On the other hand, the first version of Medusa
had an additional structure called Control Ser-
vice, which was responsible for helping users to
connect to network music resources in a transpar-
ent way, in other words, without having to specify
IP, network ports or audio configuration, using
broadcast messages to publish networked audio
resources.

With that in mind, the level of usability orig-
inally pretended by this project will only be
reached when Medusa’s control service is imple-
mented in the presented Medusa plugins, which is
the very next step in our work. This control ser-
vice is going to be responsible for improving trans-
parency and usability, by including a discovery
service, and a name server to publish networked
music resources, thus allowing users to refer to
other users and audio streams, instead of IP ad-
dresses and network ports. Probably the Medusa
LADSPA plugin will have to be abandoned at this
point because the control service is impossible to
implement without on-the-fly GUI modification
(although the current version of the plugin, with-
out control service, should be kept).

Up to this point the plugin development has
focused on audio streaming, but some other fea-
tures must soon be addressed, such as treating
MIDI streams and designing better GUIs. There
are also other sound APIs that are been inves-
tigated and maybe soon will be incorporated in
Medusa Sound layer.

Acknowledgements

Thanks to uncountable developers of LADSPA,
LV2 and Pure Data externals and their amazing
open source code. Without their anonymous help
this project would not have been possible.

Thanks also go to André Jucovsky Bianchi,
Beraldo Leal, Santiago Davila, Antônio Goulart,
Giuliano Obici, Danilo Leite and the Computer
Music Group of IME/USP for their interest, feed-
back and support.

This work has been supported by the fund-
ing agencies CNPq (grant 141730/2010-2) and
FAPESP - São Paulo Research Foundation (grant
2008/08623-8).

References

Juan-Pablo Cáceres and Chris Chafe. 2009a.
Jacktrip: Under the hood of an engine for net-
work audio. In Proceedings of International
Computer Music Conference, page 509–512,
San Francisco, California: International Com-
puter Music Association.

Juan-Pablo Cáceres and Chris Chafe. 2009b.
Jacktrip/Soundwire meets server farm. In In
Proceedings of the SMC 2009 - 6th Sound

13

and Music Computing Conference, pages 95–
98, Porto, Portugal.

A. Carôt, U. Kramer, and G. Schuller. 2006.
Network music performance (NMP) in narrow
band networks. In Proceedings of the 120th AES
Convention, Paris, France.

A. Carôt, T. Hohn, and C. Werner. 2009.
Netjack–remote music collaboration with elec-
tronic sequencers on the internet. In In Pro-
ceedings of the Linux Audio Conference, page
118, Parma, Italy.

Volker Fischer. 2006. Internet jam session soft-
ware. http://llcon.sourceforge.net/.

S. Floyd, E. Kohler, and J. Padhye. 2006. Pro-
file for Datagram Congestion Control Proto-
col (DCCP) Congestion Control ID 3: TCP-
Friendly Rate Control (TFRC). RFC 4342
(Proposed Standard), March. Updated by RFC
5348.

Richard Furse. 2000. Linux audio devel-
oper’s simple plugin api (ladspa). http://www.
ladspa.org/.

E. Kohler, M. Handley, and S. Floyd.
2006. Datagram Congestion Control Proto-
col (DCCP). RFC 4340 (Proposed Standard),
March. Updated by RFCs 5595, 5596.

Junwen Lai and Eddie Kohler. 2005. A
congestion-controlled unreliable datagram
api. http://www.icir.org/kohler/dccp/ nsdiab-
stract.pdf.

L. Ong and J. Yoakum. 2002. An Introduction
to the Stream Control Transmission Protocol
(SCTP). RFC 3286 (Informational), May.

M.A. Padlipsky. 1982. TCP-on-a-LAN. RFC
872, September.

J. Postel. 1980. User Datagram Protocol. RFC
768 (Standard), August.

Miller Puckette. 1996. Pure data: another inte-
grated computer music environment. In in Pro-
ceedings, International Computer Music Con-
ference, pages 37–41.

Asbjørn Sæbø and U. Peter Svensson. 2006. A
low-latency full-duplex audio over IP streamer.
In Proceedings of the Linux Audio Conference,
pages 25–31, Karlsruhe, Germany.

Flávio Luiz Schiavoni, Marcelo Queiroz, and
Fernando Iazzetta. 2011. Medusa - a dis-
tributed sound environment. In Proceedings of
the Linux Audio Conference, pages 149–156,
Maynooth, Ireland.

David Robillard Steve Harris. 2008. Lv2 track.
http://lv2plug.in/trac/.

Johannes M Zmölnig. 2001. Howto write an
external for puredata. http://pdstatic.iem.
at/externals-HOWTO/.

14

Luppp - A real-time audio looping program

Harry VAN HAAREN,
University of Limerick,

Ireland

harryhaaren@gmail.com
http://harryhaaren.blogspot.com

https://github.com/harryhaaren/Luppp

Abstract
Luppp is a live performance tool that allows the play-
back of audio while applying effects to it in real time.
It aims to make creating and modifying audio as easy
as possible for an artist in a live situation.

At its core lies the JACK Audio Connection Kit
for access to audio and MIDI, usable effects include
LADSPA, LV2 and custom Luppp effects. There is a
GUI built using Gtkmm, however it is encouraged to
use a hardware controller for faster and more intuitive
interaction.

Keywords
Live performance, real-time looping, audio production

1 Introduction

Luppp is the ”Luppp Untuitive Personal Perform-
ing Program”, it’s a tool to be used in a live sce-
nario to creatively produce music. The fact that
it is to be used live imposes certain requirements
like low latency input-output and real-time effect
rendering.

This paper gives an overview of the structure of
the audio processing engine in Luppp and how it
delegates tasks to different threads, as well as how
communication between the threads is achieved.
The loading of effects is discussed, as is the user
interface and its design.

2 Engine

2.1 Dependencies
The core engine depends on a number of different
libraries:

• JACK [1]

• Gtkmm [2]

• libsndfile [3]

• Fluidsynth [4]

• libconfig [5]

• SUIL [6]

• LILV [7]

2.2 Overview of components

The core of the program consists of a process-
ing engine. Its function is to process all input
events and produce its output within a certain
time frame. Its primary inputs are MIDI mes-
sages and events from the GUI, while its primary
output is audio data that is written to the JACK
ports. It also facilitates the display of data on
screen in the user interface. This involves trans-
porting data from the real-time engine thread to
the user interface thread to be displayed.

2.3 Engine Events

The EngineEvent class is a class that represents
any action that the engine can perform. For each
action there is a function to set the right parame-
ters in the class, while reading data from the class
is done through the use of public data members.

2.4 Events and ring-buffers

To communicate between the various threads in
the engine in a lock-free manner ring-buffers are
used. Pointers to instances of the EngineEvent
class are passed through the ring-buffers, which
allows the use of these events from a real-time
thread. The GUI thread creates a pool of
EngineEvent instances while the real-time JACK
thread can pull event pointers from this queue,
sending the messages without having to allocate
them. This causes minimal overhead in the real-
time thread while a background thread occasion-
ally polls the ring-buffer for write space, and fills
it with new instances.

15

2.5 State store

The StateStore class holds the state of all other
components of the engine. It is a centralized loca-
tion for all data like AudioBuffers, AudioSinks,
BufferAudioSourceStates etc. The real-time
thread takes EngineEvents, and writes the data
contained within it to the StateStore. This state
data is later requested by each engine component
when it is required to do its processing.

The requesting of state data is done using
unique identification numbers for each state in-
stance. When an instance of a class that needs
a state is created, it automatically increments its
own ID number, while also adding a new state
with its own ID number to the StateStore. It
can now request the state with its own ID num-
ber from StateStore and it will receive its own
state data.

2.6 Audio processing

The AudioTrack is the main structure in au-
dio processing, with the track’s AudioSource
providing a channel of mono audio, a list of
Effects being applied to this signal, and finally
the AudioSink passes the produced data to the
Mixer class. The Mixer then takes each track’s
output, applies master effects and writes the data
to the master output ports.

Meta data is available to each element in-
side an AudioTrack so AudioSource, Effect and
AudioSink class instances can make informed de-
cisions how to process the next block of audio
based on the engines current state.

2.6.1 Audio sources
The AudioSource base class is defined as the start
of the processing chain. It is subclassed to provide
varying functionality: The BufferAudioSource
reads samples from an AudioBuffer, and then
writes them to the AudioTrack’s buffer. In the
case of instrument sources like Fluidsynth or a
LV2 synth, it gathers incoming MIDI data from
JACK or a playing MIDI clip and generates sam-
ples and writes them to the AudioTrack’s buffer.

2.6.2 Effects and plugins
The Effect base class is defined as a class that re-
quests its state from the StateStore using its own
ID, sets its new parameters, and performs some
processing on an AudioTrack’s buffer. Currently
there is no latency compensation done for any of

Figure 1: AudioTrack block diagram

the effects, however the effects that are available
have been extensively tested to comply both with
the real time requirements of the program, as well
as not inducing unacceptable latency to the track.

This base class can be subclassed to host any
kind of audio effect, the only constraint is that the
number of input samples must match the number
of output samples. LADSPA[8] and LV2[9] ef-
fects are implemented, however theoretically any
type of plugin format could be supported.

2.6.3 Audio sinks
The AudioSink class is the base class that rep-
resents the end of the processing chain. Every
track has an OutputAudioSink, whose purpose it
is to mix the mono input samples into ambisonic
B-format, while also copying the samples to the
post-fade send buffer and headphones pre-fade lis-
ten buffers.

2.6.4 Headphones PFL
Each track has headphones pre-fade listen func-
tionality, which allows the user to preview tracks
before actually mixing them into the master out-
put. This functionality is achieved by writing the
mono signal that is passed to the AudioSink to
the headphones buffer in Mixer. After each track
has been processed, Mixer will write the head-
phones buffer to the JACK port.

2.6.5 Post-fade Sends
Each track has a post-fade send. All tracks are
summed together into a single buffer, which is
then written to a JACK audio port. This JACK
port can be connected to arbitrary JACK clients
to add effects to the signal. Although a mono sig-
nal is sent, the return ports are B-format to sup-

16

port scenarios where an ambisonic effect is used.
The returned signal is then mixed into the master
bus.

2.7 Real-time recording
In order to record an arbitrary length of audio an
arbitrary length array is needed to store it, and
due to real-time constraints we cannot create one
such array in the real-time thread. This problem
was solved by writing all incoming audio to a ring-
buffer, and allowing the GUI thread to create the
actual buffers that are later used in the engine.
The buffer is passed to the real-time thread us-
ing an event and ring-buffer as described earlier.
This allows the user to record any length of audio
in real-time without any non-real-time operations
occurring.

3 User Interface

The user interface for Luppp is geared towards
live use, and hence it makes as little use of popup
dialogs and extra windows as possible. The main
view is laid out with tracks oriented vertically,
and song-parts horizontally.

3.1 Clip view
The main part of the GUI is dedicated to the
clip view, which selects the currently playing
AudioBuffer. To load a buffer into a clip we
right click on the desired clip, and we will be pre-
sented with a file-chooser dialog. It is also possi-
ble to drag-and-drop samples onto the clip using
the side-pane file browser. Recording audio from
a JACK audio input port is also possible, just
record enable the track and click on the clip.

3.2 Track view
The lower part of the window shows the state of
the currently selected track. Its AudioSource is
on the left while any effects are listed to the right.
The main parameters of effect can be modified
using the mouse, by click-and-drag in the graph
area. The X and Y axis of the graph are mapped
to the two most used parameters of that effect
type.

3.3 Master track
The master track provides feedback as to what
scene is currently playing, the rotation and eleva-
tion values of the B-format ambisonic output and
headphones volume levels.

3.4 Side-pane browser
On the left of the UI there is a browser that al-
lows the previewing of samples, instruments and
effects. Drag-and-drop operations from the sam-
ples to the clips is supported, as is dropping effects
and instruments onto the track view. The browser
filters its contents based on file extension, samples
must have a .wav extension. The Instrument and
Effect lists are hard coded.

4 Meta data files

To inform the engine how long an audio loop is
in musical beats, meta data files are used. The
files are read by libconfig, and can provide infor-
mation like the length of the loop in beats, or the
key of a loop. This gives the engine a chance to
process the audio in a musically meaningful way,
like stretching drum loops to match the tempo of
the currently playing material.

4.1 Sample meta data
When loading a sample, Luppp attempts to
open a file called lupppSamplePack.cfg from
the same directory as the sample is located.
If this file exists, we iterate trough all infor-
mation in the file, and check if any of the
metadata is relevant to the sample that we
want to load. If meta data exists about the
sample, we set properties on the AudioBuffer
instance that the sample will get loaded into.
These properties can be its number of beats (in
the musical sense), or what musical key its in, etc.

Example lupppSamplePack.cfg file:

luppp :
{
samplePack:
{

name = "SamplePackName";
numSamples = 1;

s0:
{
name = "sampleName.wav"
numBeats = 16;

}
}

}

17

Figure 2: Luppp user interface showing the clip selector, track effects and file browser.

5 Future work

In future I would like to implement more features
for Luppp, particularly around easier access to
core Luppp functionality from controllers. Also
on the todo list is MIDI sequencing functionality
which will allow a faster workflow while creating
new musical ideas.

Some improvements can be made in perfor-
mance, and multi-threading the actual audio pro-
cessing path in the engine is a possibility.

5.1 MIDI sequencing and editing

It is intended to support the looping of MIDI clips
in a similar fashion to Seq24. MIDI clips will be
shown in the user interface just like audio clips,
and clicking on one will select it to be shown in
the MIDI editor.

The MIDI editor will be as streamlined as possi-
ble, with minimal features and as fast a workflow
as is possible. Some initial sketches of possible
workflows have been made, however this function-
ality is still in its planning stages.

5.2 Immutable Engine

For performance reasons it is planned to make
AudioBuffer instances immutable, so that they
can be used in the real-time thread as well as
shown in the GUI without expensive copying.
Plotting the audio clips in the GUI will be-
come an easier task, as we can safely access the
AudioBuffers from multiple threads due to its
immutability.

To modify an AudioBuffer a new one will be
created in the GUI thread, and that new instance
will be swapped into engine. This modified buffer
will keep the same unique ID number, so that all
other parts of the engine will automatically use to
the updated buffer.

5.3 Sidechain compression

In order to fully support sidechain compression
between tracks, it will be necessary to change the
direction of sample requesting in an AudioTrack.
This is due to the fact that for sidechain compres-
sion audio data from another track is needed, and

18

hence a method to request the processing of an-
other AudioTrack than the current one is needed.

If each SidechainCompressor instance has a
pointer to a SidechainSource, it can request the
source to produce the needed samples, and then
continue to process its own AudioTrack’s audio
based on the sidechain buffer of samples. This
also involves implementing a system whereby each
Effect or AudioSource can be marked as finished
processing, so that we avoid re-calculating parts
of a track that has already been processed because
of the call to the SidechainSource.

Essentially this makes the SidechainSource a
cache for audio samples, which can be requested
to process the next block of audio either from
the AudioTrack that is it part of, or another
AudioTrack which needs this SidechainSource’s
output to complete its own processing.

5.4 Additional effect classes
Initial work to host Pure Data patches or CSound
instruments as AudioSources or Effects has
went well, although some design is needed with
regards to real-time constraints of the effects and
loading files. Another issue that needs to be
addressed is that non real-time safe operations
might be carried out by user defined patches.

VAMP plugins[10] will hopefully be supported
in the future, to allow the user analyze existing
material, and work with a higher level of con-
trol over the music. If more meta data can be
provided to the Luppp engine, more high level
features can be implemented as more data exists
for use during the processing cycle. I feel this is
quite an important aspect of Luppp to develop,
as it gives the user more scope for creativity and
inspiration instead of hindering the workflow with
mathematical details of the processing that is go-
ing on behind the GUI.

6 Conclusions

While Luppp is currently in a usable state, there
are some known issues that must be dealt with. I
would like to rethink the method of communica-
tion between the Engine and the StateStore for
the user interface. The way that the user inter-
face widgets are stored in the gui class can also
be much improved. Some design issues like the
concept of tracks and how ID number related to
tracks could also be upgraded, as currently some
functionality is hindered by how the ID’s are set.

7 Acknowledgments

I would like to thank the entire LAD community
for all that I have learnt through reading their
code, asking questions on the LAD mailing list as
well as on IRC.

Thanks also to all those who have helped me
in any way while I have been working on Luppp
for providing suggestions, testing buggy code and
just chatting about the project in general.

8 References

[1] JACK Audio Connection Kit
http://www.jackaudio.org

[2] Gtkmm, official C++ interface for the
popular GUI library GTK+
http://www.gtkmm.org

[3] libsndfile, C library for reading and
writing files containing sampled sound
http://www.mega-nerd.com/libsndfile

[4] Fluidsynth, a real-time software synthesizer
based on the SoundFont 2 specifications
www.fluidsynth.org/

[5] libconfig, a simple library for processing
structured configuration files
http://www.hyperrealm.com/libconfig

[6] SUIL, a lightweight C library for loading
and wrapping LV2 plugin UIs
http://drobilla.net/software/suil

[7] LILV, a library to make the use of LV2
plugins as simple as possible
http://drobilla.net/software/lilv

[8] LADSPA, Linux Audio Developer’s Simple
Plugin API
http://www.ladspa.org

[9] LV2, a plugin standard for audio systems
http://lv2plug.in/trac/

[10] VAMP, an audio processing plugin system
for plugins that extract descriptive
information from audio data
http://vamp-plugins.org/

19

20

Csound as a Real-time Application
Typical Problems and Solutions for the Use of Csound in a Live Context

Joachim HEINTZ
Incontri - Institute for new music

HMTM Hannover
Emmichplatz 1, 30175 Hannover, Germany

joachim.heintz@hmtm-hannover.de

Abstract

This article discusses the usage of Csound for live
electronics. Embedding Csound as an audio engine in
Pd is shown as well as working in CsoundQt for live
performance. Typical problems and possible solutions
are demonstrated as examples. The pros and contras of
both environments are discussed in comparison.

Keywords

Csound, Pd, Live Electronics.

1 Introduction

Csound [1] is well known as one of the most
powerful and approved audio libraries, but its main
programming model stems from a non-real-time
approach: 'instruments' are called for specified
durations by a 'score'. This is perfectly suited for
tape compositions, and there is still a predominant
opinion that Csound is good for fixed media
compositions but cannot be used in live situations.
Or at least, that it is a pain to do so.

Indeed, if the user does not want to hit a dead end
when using Csound in a real-time situation, the
architecture and event structure of Csound needs to
be carefully considered. It is the aim of this
contribution to exemplify how Csound can be used
successfully for live performance.

As Csound has no native user interface, it can be
embedded in different hosts. Each host application
offers different advantages and its own manner of
interfacing with Csound. In the field of free
software, the use of Csound in Pd [2], and the use of
Csound in CsoundQt [3] are probably the most

interesting choices.1 The examples given here utilize
these two hosts. They will describe the real-time
transposition of a live input, which would represent
a typical real-time transformation.

2 Csound in Pd: Building a polyphonic real-
time transposer

Combining Csound's DSP power with Pd's
flexibility and interfacing should be a really nice
idea, both for Csound and Pd users. Victor
Lazzarini's csoundapi~ external for Pd2 offers this
connection. Strange enough, it is much fewer used
than it would be expected to – perhaps due to a
certain lack of documentation. The first example
uses Csound as a polyphonic transposition machine
inside Pd and discusses some typical issues.

2.1 Running the csoundapi~ object

It is beyond the scope of this article to describe the
installation of the csoundapi~ external in Linux, MS
Windows and Apple OSX. Descriptions can be
found, for instance, in the Csound Floss Manual.3

Once the csoundapi~ object has been installed, it
is available in Pd and refers to a Csound file (*.csd).

1 For commercial software, the use of Csound in
MaxMsp is well known and perfectly documentated by
Davis Pyon [4]. As any Max object itself can be embedded
in Ableton Live via "Max4Live", it is possible to call
Csound in Ableton Live, too. This has been popularized
by Richard Boulanger and partners as "Csound4Live" [5].

2 The sources can be found in the "frontends" directory
of the csound code [1] or in the git repository at
http://csound.git.sourceforge.net/git/gitweb-index.cgi

3 www.flossmanuals.net/csound/index

21

Now audio and control data can be sent from Pd to
Csound and back.

2.2 Building a four voice transposition
instrument

In this example, audio from a microphone is
received by Pd and passed to Csound which then
creates the four voice transposition which is then
sent back to Pd as stereo mix. Csound implements
these transpositions by first converting the received
audio into a frequencydomain signal and then
creating the four pitch shifted signals. These four
signals are converted back into the timedomain and
panned and mixed to create a stereo output.4 This
stereo signal is finally passed back into Pd which in
turn sends it to the speakers.

The related Csound file is very simple:

<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr transp
;input from pd

4 A quadrophonic output redirection into Pd would also
be possible.

aIn inch 1
;transform to frequency domain

fIn pvsanal aIn, 1024, 256, 1024, 1
;transposition

fTransp1 pvscale fIn, cent(-600)
fTransp2 pvscale fIn, cent(-100)
fTransp3 pvscale fIn, cent(200)
fTransp4 pvscale fIn, cent(500)

;back to time domain
aTransp1 pvsynth fTransp1
aTransp2 pvsynth fTransp2
aTransp3 pvsynth fTransp3
aTransp4 pvsynth fTransp4

;panning
aL1, aR1 pan2 aTransp1, .1
aL2, aR2 pan2 aTransp2, .33
aL3, aR3 pan2 aTransp3, .67
aL4, aR4 pan2 aTransp4, .9
aL = (aL1+aL2+aL3+aL4)/3
aR = (aR1+aR2+aR3+aR4)/3

;output to pd
outs aL, aR

endin

</CsInstruments>
<CsScore>
i "transp" 0 99999
</CsScore>
</CsoundSynthesizer>

The whole Pd patch looks like this:

2.3 Sending and receiving control data

For a fuller interaction between Pd and the
embedded Csound it is normally desirable to also
pass control signals between Pd and Csound. The
transposition values in the given example might
have to be controlled from Pd instead of being fixed:

Figure 1: Scheme of embedding Csound in Pd for a
four-voice live transposition

Figure 2: Pd patch for four-voice live transposition
embedding Csound via csoundapi~

22

From Pd's point of view, the cent values are a
"message" to be sent to Csound. From Csound's
point of view, the cent values are "control signals"
which are received on certain "control channels".

The csoundapi~ object understands the message
"chnset ...". A Pd message box containing "chnset
cent1 -600" means: send the value -600 on the
software channel named "cent1".

In Csound, the related message needs to be
received by a chnget opcode.5 The instrument code
has to be changed slightly now, as follows:

...
instr transp

;audio input from pd
aIn inch 1

;control input from pd
kCent1 chnget "cent1"
kCent2 chnget "cent2"
kCent3 chnget "cent3"
kCent4 chnget "cent4"

;transform to frequency domain
fIn pvsanal aIn, 1024, 256, 1024, 1

;transposition
fTransp1 pvscale fIn, cent(kCent1)

5 The alternative choice is to send messages as
"control ..." from Pd to Csound, and receive them with the
invalue opcode in Csound.

fTransp2 pvscale fIn, cent(kCent2)
fTransp3 pvscale fIn, cent(kCent3)
fTransp4 pvscale fIn, cent(kCent4)
...

And this is the Pd patch, with some choices to
send values:

2.4 The "just once" problem

It is worth to have a closer look at what is actually
happening in the example above. It looks easy, and it
works, but actually two languages are
communicating with each other in a strange way. In
this case, they understand each other, but this is pure
chance if the differences have not been understood
by the user.

Pd differentiates between messages and audio
streams.6 Messages are sent just once, while audio
streams are sending data continuously, in the sample
rate. Csound has no type for sending something in
realtime "just once". If something is sent as a control
value to Csound, like the cent values in the example
above, Csound considers this as a control signal, i.e.
a continuous stream of control data.7

In this case, it works. Pd sends a new cent
message just once, and Csound interpretes this as a
repeated control message. It works, because the
pvscale opcode needs a control-rate input. But if the
user wants to trigger something "just once", they

6 This is the same in MaxMsp, and is the well known
difference between an object with a tilde and an object
without a tilde. For instance, the object '*' multiplies two
numbers: just once, when the left inlet has received a
number as message. The object '*~' multiplies two audio
streams (or an audio stream and a number) continuously.

7 This stream of control data has a lower rate than the
audio rate, depending on the ksmps value. If ksmps=32,
one control sample is used for 32 audio samples.

Figure 3: Sending cent values from Pd to Csound

Figure 4: Pd sending cent values to Csound

23

have to ensure that Csound does not repeat the
message from Pd all the time.

As a simple example, the user may want to trigger
a short beep each time a message box with a '1' has
been pressed:

It looks straightforward to code the beep.csd in
this way:

<CsoundSynthesizer>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

instr master ;wrong!
kTrigger chnget "trigger"
if kTrigger == 1 then

event "i", "beep", 0, 1
endif
endin

instr beep
aBeep oscils .2, 400, 0
aEnv transeg 1, p3, -6, 0

out aBeep * aEnv
endin

</CsInstruments>
<CsScore>
i "master" 0 99999
</CsScore>
</CsoundSynthesizer>

A master instrument would receive the data on the
channel called 'trigger' from Pd, and call a
subinstrument "beep" each time a '1' has been
received. That's the wish of the user. But what really
happens: the kTrigger variable will always be set to
'1', because there is no other message coming from
Pd, and so Csound will trigger a beep not "just
once", but once at each control cycle, in this case
44100/32 times per second ...

Two things have to be done here: Pd must send a
'0', if the message box has not been pressed. The

following patch sends, when hitting the 'bang' first a
'1' and then after 10 milliseconds a '0':8

On the Csound site, just the first '1' received after
any zeros should trigger a beep. So Csound has to
ignore the repetitions. This is done by the following
code in the master instrument:

instr master ;now correct
kTrigger chnget "trigger"
kNewVal changed kTrigger
if kTrigger == 1 && kNewVal == 1 then

event "i", "beep", 0, 1
endif
endin

This opcode returns '1' exactly in the control cycle
when a new value of kTrigger has been received. So
the if-clause has to ask whether both, kNewVal and
kTrigger equal 1. Only in this case the subinstrument
is to be triggered.

2.5 Results

The use of Csound for realtime applications in Pd
can be considered as easy and straightforward in
general. The major difficulties come from the the
different signal paradigms in both languages. Special
care has to be taken by the user for "just once" cases,
which are common in Pd but need cautious coding in
Csound.

8 Using a trigger in Pd which sends a '1' from the right
output, followed by a '0' from the left output will not work,
because Csound will just receive the '0'.

Figure 5: Sending a '1' message from Pd to Csound
Figure 6: Pd sending '1' followed by '0' to Csound

24

3 Presets, software channels and more: An
extended live instrument in CsoundQt

CsoundQt has been written and developed by
Andrés Cabrera since 2008.9 It is now the most
widely used frontend for Csound. It uses the Qt
toolkit10 for building a graphical user interface.

CsoundQt offers all necessary tools to work with
live electronics in Csound, without using another
host application. But how can Csound be trimmed to
support presets which are necessary for each
extended live electronic context? An example is
given which uses a midi keyboard as instrument for
controlling both some real-time processings of a
microphone input, and electronic sounds generated
in real time.

3.1 Presets

A preset is a general configuration in a live
electronic application which defines the meaning of
certain input signals in the context of this preset
environment. For instance, if the midi key number
60 has been pressed in the context of preset 1, it may
mean "open the live input with a fade in". If the
same key has been pressed in preset 2, it may mean
something totally different, for instance "play a
percussive sound".

As CsoundQt has native widgets, these widgets
can be used to represent a preset.11 Csound will then
look at the value of this widget, and will decide what
to do at a certain midi input. This is the general
scheme:

As "triggering an event" in Csound usually means
"calling an instrument", the Csound code looks like
this:

instr midi_receive
;getting the midi note number

iNotNum notnum
;getting the actual preset number

9 The name has been changed from QuteCsound to
CsoundQt after discussions at the Csound Conference in
Hannover in october 2011.

10 http://qt.nokia.com
11 CsoundQt also offers a possibility to store widget

states as presets. This is very useful in many cases, but not
sufficient here, because here the presets do not affect just
widgets, but also determine the effect of a Midi key
pressed, a parameter being set, and more.

iPreset = i(gkPreset)
;bindings for preset 1

if iPreset == 1 then
if iNotNum == 60 then

event_i "i", "live_fade_in", 0, 1
elseif iNotNum == ... then

event_i ...
endif

;bindings for preset 2
elseif iPreset == 2 then
if iNotNum == 60 then

event_i "i", "trigger_sound", 0, 1
elseif iNotNum == ... then

event_i ...
endif

;bindings for preset ...
elseif ...
...
endif
endin

The gkPreset variable which holds the status of
the preset given by the preset widget, is created in an
"always on" instrument. This instrument should be
the first of all the instruments,12 and its definition
should contain a line like this ("preset" is a string
which defines the name of the widget's channel):

12 Technically speaking: the instrument with the
smallest number.

Figure 7: General preset scheme

25

gkPreset invalue "preset"

By this, the current preset state is received from
the spin box widget, and sent as the global variable
gkPreset to each instrument. The widget itself can be
changed by the user either via the GUI or via any
input event, for example a reserved midi note for
increasing, and another note number for decreasing
the preset number. Assuming the reserved midi note
for increasing is 72, and for decreasing 48, the code
looks like this:13

if iNotNum == 72 then
outvalue "preset", iPreset + 1

elseif iNotNum == 48 then
outvalue "preset", iPreset - 1

endif

The method proposed here for handling presets
offers the user all flexibility. All events are
embedded in instruments which are triggered if a
midi key is received in the context of a particular
preset. General conditions for a new preset can be
set in a similar way as shown in chapter 2.4 with the
changed method. For instance, if the live
microphone is to be open at the beginning of preset
1, but closed at the beginning of preset 2, the code in
the master instrument could be:

gkPreset invalue "preset"
kNewPrest changed gKPreset
if kNewPrest == 1
if gkPreset == 1 then

kLiveVol = 1 ;mic open
elseif gkPreset == 2 then

kLiveVol = 0 ;mic closed
endif

endif

3.2 Software busses for control and audio data

Many situations need a flexible interchange of
control data. Suppose the user wants to transpose the
live input first in four voices with the cent values
-449, -315, 71 and 688, and then in the next bar with
the cent values -568, -386, 428 and 498. Both events
– activating the four voice transposition and

13 The instrument is the same as the one above called
"midi_receive". This instrument is triggered directly by a
midi note on message. It works during Csound's
initialization pass, which is in some cases another option
for the "just once" problem.

changing the values – are to be triggered by two
different midi keys, for instance 60 and 62.

This is a typical case for the use of internal
software busses. Four audio signals are set. For each
of them a software control bus is created, holding the
transposition value. The first instrument sets the
initial values. When the second instrument is
triggered, the control busses are set to the new
values (figure 8).

This is the related Csound code:

instr set_transp
;create software busses

chn_k "transp1", 3
chn_k "transp2", 3
chn_k "transp3", 3
chn_k "transp4", 3

;set initial values
chnset -449, "transp1"
chnset -315 "transp2"
chnset 71, "transp3"
chnset 688, "transp4"

;receive the values from the software busses
kCent1 chnget "transp1"
kCent2 chnget "transp2"
kCent3 chnget "transp3"
kCent4 chnget "transp4"
;receive the live audio input
aLvIn chnget "live_in"

;perform fourier transform
fLvIn pvsanal aLvIn,1024,256,1024,1

;perform four voice transposition
fTp1 pvscale fLvIn, cent(kCent1)
fTp2 pvscale fLvIn, cent(kCent2)
fTp3 pvscale fLvIn, cent(kCent3)
fTp4 pvscale fLvIn, cent(kCent4)

;resynthesize
aTp1 pvsynth fTp1

Figure 8: Working with software channels to change
transposition values

26

aTp2 pvsynth fTp2
aTp3 pvsynth fTp3
aTp4 pvsynth fTp4

;add and apply envelope
aTp = aTp1+aTp2+aTp3+aTp4
kHul linsegr 0,.3,1,p3-0.3,1,.5,0
aOut = aTp * kHul

;mix to global audio bus for live out
chnmix aOut, "live_out"

endin

instr change_transp
chnset -568, "transp1"
chnset -386, "transp2"
chnset 428, "transp3"
chnset 498, "transp4"

endin

As can be seen from this example, the software
busses are not just used for control but also for audio
signals. The live audio input is sent to a channel
called "live_in". The instrument set_transp gets the
live input via the line

aLvIn chnget "live_in"

After processing, the live transposed signals are
sent to an audio bus called "live_out". As other
instruments may also send audio to this bus, chnmix
is used instead of chnset:

chnmix aOut, "live_out"

Software channels are the solution to many
different situations in programming live electronics:
mixing, routing, interchanging of values. The chn
opcodes offer a flexible and reliable system to work
with them in Csound.

3.3 Performance tweakings

Csound's performance for live applications
depends mainly on its vector and buffer sizes.14 As
mentioned above, the ksmps constant defines the
internal vector size. A value of ksmps=32 should be
adequate for most live situations. The software and
hardware buffer sizes must not be kept at Csound's
defaults, but should be set to lower values to avoid

14 There are some opcodes which are not suited for live
in Csound. Usually they have a fast and modern
alternative. Especially the old pv (phase vocoder)
opcodes should in pratical use be substituted by the
excellent pvs (phase vocoder streaming) opcodes:
www.csounds.com/manual/html/SpectralRealTime.html

an audible latency.15 CsoundQt offers an easy way to
adjust them in the configure panel. These are fair
values:

In future versions of Csound, the use of multiple
cores and threads, will further improve the
performance.16 This would also be adjusted in
CsoundQt's configure panel.

In addition to these general Csound adjustments,
there are some performance tweaks particularly
related to CsoundQt. The python callback,
especially, must be disabled for the best live
performance:

3.4 Results

CsoundQt offers a nice graphical user interface for
the use of "pure" Csound with standard widgets for
live electronics. Instead of changing between
different platforms, the users have an easier

15 More information can be found at
www.csounds.com/manual/html/UsingOptimizing.html

16 Thanks to the work of John ffitch and others, the new
parser for Csound is at the time of writing this article (end
of the year 2011) in the process of becoming the default.
Amongst other improvements, it will offer multithreading.

Figure 10: Performance
tweaks in CsoundQt

Figure 9: Adjusting the
buffer sizes in CsoundQt's
configuration panel

27

workflow than using Csound in Pd. (When making
changes to a Csound file running within Pd it is
necessary to save the Csound file and to reset the
csoundapi~ object that uses it for those changes to
take effect.) Users can add their own functions
("user defined opcodes") or integrate any from the
repository,17 for instance for simplifying the use of
the ascii keyboard or for easily recording and
playing buffers.

On the user's wish list for using CsoundQt live is
certainly an increased array of widgets, for example
an audio meter, a midi keyboard widget and an
interactive table editor. The possibility of creating
more than one widget panel would certainly make
CsoundQt much more flexible for use live.18

4 Conclusion

Csound can be used perfectly for any live
application. The usage of Csound in Pd is very easy.
It offers many new possibilities for Pd users, and an
easy connection with any external devices (game
pads, arduino boards and more) for Csound users.

The usage of CsoundQt for live applications offers
a clean and pleasant internal graphical interface and
a comfortable workflow to the user. Complex
features like presets and software busses can be
programmed easily. However, some additional
widgets and GUI options might be desireable.

Ultimately, whether a user ought to use Csound
live within Pd or purely with CsoundQt as the front-
end, will depend on their personal preferences and
the situation.

So it depends on the users, their preferences and
situations, whether they prefer working with Csound
for live in Pd or in CsoundQt.

5 Acknowledgements

Thanks to Anna, Alex, Andrés and Iain for reading
the manuscript.

17 www.csounds.com/udo
18 Although not covered in this article, it should be
http://www.youtube.com/watch?v=O9WU7DzdUmE
http://www.youtube.com/watch?v=Hs3eO7o349k
http://www.youtube.com/watch?v=yUMzp6556Kw

References

[1] Csound: http://csound.sourceforge.net (with
many links to related sites)

[2] Pd: http://puredata.info
[3] CsoundQt: http://qutecsound.sourceforge.net
[4] csound~ (a Max external to run Csound):

www.davixology.com/csound~.html
[5] Csound4Live (Csound for use in Ableton Live

via csound~ [4] and the Max4Live bridge):
www.csoundforlive.com

28

Csound for Android

Steven YI and Victor LAZZARINI
National University of Ireland, Maynooth
{steven.yi.2012, victor.lazzarini}@nuim.ie

Abstract

The Csound computer music synthesis system has
grown from its roots in 1986 on desktop Unix sys-
tems to today’s many different desktop and embed-
ded operating systems. With the growing popularity
of the Linux-based Android operating system, Csound
has been ported to this vibrant mobile platform. This
paper will discuss using the Csound for Android plat-
form, use cases, and possible future explorations.

Keywords

Csound, Android, Cross-Platform, Linux

1 Introduction

Csound is a computer music language of the MU-
SIC N type, developed originally at MIT for
UNIX-like operating systems[Boulanger, 2000]. It
is Free Software, released under the LGPL. In
2006, a major new version, Csound 5, was re-
leased, offering a completely re-engineered soft-
ware, which is now used as a programming library
with its own application programming interface
(API). It can now be embedded and integrated
into several systems, and it can be used from a
variety of programming languages and environ-
ments (C/C++, Objective-C, Python, Java, Lua,
Pure Data, Lisp, etc.). The API provides full con-
trol of Csound compilation and performance, soft-
ware bus access to its control and audio signals,
as well as hooks into various aspects of its inter-
nal data representation. Several frontends and
composition systems have been developed to take
advantage of these features. The Csound API has
been described in a number of articles [Lazzarini,
2006], [Lazzarini and Piche, 2006] [Lazzarini and
Walsh, 2007].

The increasing popularity of mobile devices for
computing (in the form of mobile phones, tablets

and netbooks), has brought to the fore new plat-
forms for Computer Music. Csound has already
been featured as the sound engine for one of the
pioneer systems, the XO-based computer used in
the One Laptop per Child (OLPC) project [Laz-
zarini, 2008]. This system, based on a Linux ker-
nel with the Sugar user interface, was an excel-
lent example of the possibilities allowed by the
re-engineered Csound. It sparked the ideas for
a Ubiquitous Csound, which is steadily coming to
fruition with a number of parallel projects, collec-
tively called the Mobile Csound Platform (MCP).
One such project is the development of a soft-
ware development kit (SDK) for Android plat-
forms, which is embodied by the CsoundObj API,
an extension to the underlying Csound 5 API.

Android 1 is a Linux-kernel-based, open-source
operating system, which has been deployed on a
number of mobile devices (phones and tablets).
Although not providing a full GNU/Linux envi-
ronment, Android nevertheless allows the devel-
opment of Free software for various uses, one of
which is audio and music. It is a platform with
some good potential for musical applications, al-
though at the moment, it has a severe problem for
realtime use that is brought by a lack of support
for low-latency audio.

In this article we will discuss Csound usage on
Android. We will explore the CsoundObj API
that has been created to ease developing Android
applications with Csound, as well as demonstrate
some use cases. Finally, we will look at what
Csound uniquely brings to Android, with a look
at the global Csound ecosystem and how mobile
apps can be integrated into it.

1http://www.android.com

29

2 Csound for Android

The Csound for Android platform is made up
of a native shared library (libCsoundandroid.so)
built using the Android Native Development Kit
(NDK)2, as well as Java classes that are com-
pilable with the more commonly used Android
Dalvik compiler. The native library is linked us-
ing the the object files that are normally used to
make up the libcsound, libcsnd, and libsndfile3

libraries that are found part of the desktop ver-
sion of Csound. The Java classes include those
commonly found in the csnd.jar library used for
desktop Java-based Csound development, as well
as unique classes created for easing Csound devel-
opment on Android.

The SWIG4 wrapping used for Android con-
tains all of the same classes as those used in the
Java wrapping that is used for desktop Java devel-
opment with Csound. Consequently, those users
who are familiar with Csound and Java can trans-
fer their knowledge when working on Android,
and users who learn Csound development on An-
droid can take their experience and work on desk-
top Java applications. However, the two plat-
forms do differ in some areas such as classes for
accessing hardware and different user interface li-
braries. To help ease development, a CsoundObj
class was developed to provide out-of-the-box so-
lutions for common tasks (such as routing audio
from Csound to hardware output). Also, applica-
tions using CsoundObj can be more easily ported
to other platforms where CsoundObj is imple-
mented (i.e. iOS).5

One of the first issues arising in the develop-
ment of Csound for Android was the question of
plugin modules. Since the first release of Csound
5, the bulk of its unit generators (opcodes) were
provided as dynamically-loaded libraries, which
resided in a special location (the OPCODEDIR
or OPCODEDIR64 directories) and were loaded
by Csound at the orchestra compilation stage.
However, due to the uncertain situation regard-
ing dynamic libraries (not only in Android but

2http://developer.android.com/sdk/ndk/index.html
3http://www.mega-nerd.com/libsndfile/
4http://www.swig.org
5There are plans to create CsoundObj implementations

for other object-oriented desktop development languages/-
platforms such as C++, Objective-C, Java, and Python,
but at the time of this writing, CsoundObj is only avail-
able in Objective-C for iOS.

also in other mobile platforms), it was decided
that all modules without any dependencies or li-
censing issues could be moved to the main Csound
library code. This was a major change (in Csound
5.15), which made the majority of opcodes part
of the base system, about 1,500 of them, with
the remaining 400 or so being left in plugin mod-
ules. The present release of Csound for Android
includes only the internal unit generators. An-
other major internal change to Csound, which was
needed to facilitate development for Android, was
the move to use core (memory) files instead of
temporary disk files in orchestra and score pars-
ing.

Audio IO has been developed in two fronts: us-
ing pure Java code through the AudioTrack API
provided by the Android SDK and, using C code,
as a Csound IO module that uses the OpenSL API
that is offered by the Android NDK. The latter
was developed as a possible window into a future
lower-latency mode, which is not available at the
moment. It is built as a replacement for the usual
Csound IO modules (PortAudio, ALSA, JACK,
etc.), using the provided API hooks. The Csound
input and output functions, called synchronously
in its performance loop, pass a buffer of audio
samples to the DAC/ADC using the OpenSL en-
queue mechanism. This includes a callback that
is used to notify when a new buffer needs to be
enqueued. A double buffer is used, so that while
one half is being written or read by Csound, the
other is enqueued to be consumed or filled by
the device. The code fragment below in listing 1
shows the output function and its associated call-
back. The OpenSL module is the default mode
of IO in Csound for Android. Although it does
not currently offer low-latency, it is a more ef-
ficient means of passing data to the audio device
and it operates outside the influence of the Dalvik
virtual machine garbage collector (which executes
the Java application code).

The AudioTrack code offers an alternative
means accessing the device. It pushes/retrieves
input/output frames into/from the main process-
ing buffers (spin/spout) of Csound synchronously
at control cycle intervals. It is offered as an option
to developers, which can be used for instance, in
older versions of Android without OpenSL sup-
port.

30

3 Application Development using
CsoundObj

Developers using the CsoundObj API will essen-
tially partition their codebase into three parts:
application code, audio code, and glue code. The
application code contains the standard Android
code for creating applications, including such
things as view controllers, views, database han-
dling, and application logic. The audio code is
a standard Csound CSD project that contains
code written in Csound and will be run using a
CsoundObj object. Finally, the glue code is what
will bridge the user interface with Csound.

31

/* this callback handler is called every time a buffer finishes playing */
void bqPlayerCallback(SLAndroidSimpleBufferQueueItf bq, void *context)
{

open_sl_params *params = (open_sl_params *) context;
params ->csound ->NotifyThreadLock(params ->clientLockOut);

}

/* put samples to DAC */
void androidrtplay_(CSOUND *csound , const MYFLT *buffer , int nbytes)
{

open_sl_params *params;
int i = 0, samples = nbytes / (int) sizeof(MYFLT);
short* openslBuffer;

params = (open_sl_params *) *(csound ->GetRtPlayUserData(csound));
openslBuffer = params ->outputBuffer[params ->currentOutputBuffer];
if (params == NULL)

return;
do {

/* fill one of the double buffer halves */
openslBuffer[params ->currentOutputIndex ++] = (short) (buffer[i]* CONV16BIT);
if (params ->currentOutputIndex >= params ->outBufSamples) {

/* wait for notification */
csound ->WaitThreadLock(params ->clientLockOut , (size_t) 1000);

/* enqueue audio data */
(*params ->bqPlayerBufferQueue)->Enqueue(params ->bqPlayerBufferQueue ,

openslBuffer ,params ->outBufSamples*sizeof(short));
/* switch double buffer half */
params ->currentOutputBuffer = (params ->currentOutputBuffer ? 0 : 1);
params ->currentOutputIndex = 0;
openslBuffer = params ->outputBuffer[params ->currentOutputBuffer];

}
} while (++i < samples);

}

Listing 1: OpenSL module output C function and associated callback

public interface CsoundValueCacheable {
public void setup(CsoundObj csoundObj);
public void updateValuesToCsound ();
public void updateValuesFromCsound ();
public void cleanup ();

}

Listing 2: CsoundValueCacheable Interface

String csd = getResourceFileAsString(R.raw.test);
File f = createTempFile(csd);
csoundObj.addSlider(fSlider , "slider", 0.0, 1.0);
csoundObj.startCsound(f);

Listing 3: Example CsoundObj usage

32

CsoundObj uses objects that implement the
CsoundValueCacheable interface for reading value
from and writing values to Csound (listing 2).
Any number of cacheables can be used with
CsoundObj. The design is flexible enough such
that you can design your application to use one
cacheable per user interface or hardware sensor
element, or one can make a cacheable that reads
and writes along many channels.

CsoundObj contains utility methods for bind-
ing Android Buttons and SeekBars to a Csound
channel, as well as for a method for binding the
hardware Accelerometer to preset Csound chan-
nels. These methods wrap the View or sensor ob-
jects with pre-made CsoundValueCacheables that
come with the CsoundObj API. Since these are
commonly used items that would be bound, the
utility methods were added to CsoundObj as a
built-in convenience to those using the API. Note
that CsoundValueCacheables are run within the
context of the audio processing thread; this was
done intentionally so that the cacheable could
copy any values it needed to from Csound, then
continue to do processing in another thread and
eventually post back to the main UI thread via a
Handler.

Figure 1: Android Emulator showing Simple Test
1 Activity

Listing 3 shows example code of using
CsoundObj with a single slider, from the Simple
Test 1 Activity, shown in Figure 1.The code above

shows how a CSD file is read from the projects re-
sources using the getResourceFileAsString utility
method, saved as a temporary file, then used as an
argument to CsoundObj’s startCsound method.
The 2nd to last line shows the addSlider method
being used to bind fslider, an instance of a Seek-
Bar, to Csound with a channel name of ”slider”
and a range from 0.0 to 1.0. When Csound is
started, the values from that SeekBar will be read
by the Csound project using the chnget opcode,
which will be reading from the ”slider” channel.

Figure 2 shows the relationships between dif-
ferent parts of the platform and different us-
age scenarios. An application may work with
CsoundObj alone if they are only going to be
starting and stopping a CSD. The application
may also use CsoundValueCacheables for read-
ing and writing values from either CsoundObj or
the CsoundObject. Finally, an application may
do additional interaction with the Csound object
that the CsoundObj has as its member, taking
advantage of the standard Csound API.

Figure 2: CsoundObj Usage Diagram

A Csound for Android examples project has
been created the contains a number of differ-
ent Csound example applications. These ex-
amples demonstrate different ways of using the
CsoundObj API as well as different approaches
to applications, such as realtime synthesis instru-
ments and generative music. The examples were
ported over from the Csound for iOS examples
project and users can study the code to better
understand both the CsoundObj API on Android
as well as what is required to do cross-platform

33

development with Csound as an audio platform.

4 Benefits of using Csound on
Android

Using Csound on Android provides many bene-
fits. First, Csound contains one of the largest
libraries of synthesis and signal processing rou-
tines. By leveraging what is available in Csound,
the developer can spend more time working on
the user interface and application code and rely
on the Csound library for audio-related program-
ming. The Csound code library is also tested and
supported by a open-source community, meaning
less testing work required for your project.

In addition to the productivity gain of using a
library for audio, Csound projects–developed in
text files with .csd extensions–can be developed
on the desktop, and later moved to the Android
application. Developing and testing on the desk-
top allows for a faster development process than
testing in the Android emulator or on a device,
as it removes the application compilation and de-
ployment stage, which can be slow at times.

Having the audio-related code in a CSD file
for a project also brings with it two benefits.
First, development of an application can be split
amongst multiple people; one can work on the
audio code while the other focuses on developing
other areas of the application. Second, develop-
ing an application based around Csound allows
for moving that CSD to other platforms, such as
iOS or desktop operating systems. The developer
would then only have to develop the user-interface
and glue code to work with that CSD on each
platform.

Additionally, cleanly separating out the audio
system of an application and enforcing a strict
API (Application Programmer Interface) to that
system is a good practice for application devel-
opment. This helps to prevent tangled, hard to
maintain code. This is of benefit to the beginning
and advanced programmer alike.

5 Conclusions

From its roots in the Music N family of programs,
Csound has grown over the years, continually ex-
panding it features as a synthesis library as well as
its usefulness as a music platform. With its avail-
ability on multiple operating systems, Csound of-
fers a multi-platform option for developing musi-

cal applications. Current Csound 6 developments
to enable realtime modification of the process-
ing graph as well as other features will expand
the types of applications that can be built with
Csound. As Android is now supported within the
core Csound repository, it will continue to be de-
veloped as a primary platform for deployment as
part of the MCP distribution.

6 Availability

The Csound for Android platform and exam-
ples project are included in the main Csound
GIT repository. Build files are included for
those interested in building Csound with the
Android Native Development Kit. Archives in-
cluding a pre-compiled Csound as well as exam-
ples are available at http://sourceforge.net/
projects/csound/files/csound5/Android/.

7 Acknowledgements

This research was partly funded by the Program
of Research in Third Level Institutions (PRTLI
5) of the Higher Education Authority (HEA) of
Ireland, through the Digital Arts and Humanities
programme.

References

R. Boulanger, editor. 2000. The Csound Book.
MIT Press, Cambridge, Mass.

V Lazzarini and J. Piche. 2006. Cecilia and tclc-
sound. In Proc. of the 9th Int. Conf. on Digital
Audio Effects (DAFX), pages 315–318, Mon-
treal, Canada.

V Lazzarini and R. Walsh. 2007. Developing
ladspa plugins with csound. In Proceedings of
5th Linux Audio Developers Conference, pages
30–36, Berlin, Germany.

V Lazzarini. 2006. Scripting csound 5. In Pro-
ceedings of 4th Linux Audio Developers Confer-
ence, pages 73–78, Karlsruhe, Germany.

V Lazzarini. 2008. A toolkit for audio and mu-
sic applications in the xo computer. In Proc. of
the International Computer Music Conference
2008, pages 62–65, Belfast, Northern Ireland.

34

Ardour3 - Video Integration

Robin Gareus
gareus.org, linuxaudio.org, CiTu.fr

Paris, France
robin@gareus.org

Abstract

This article describes video-integration in the Ardour3
Digital Audio Workstation to facilitate sound-track
creation and film post-production.

It aims to lay a foundation for users and developers,
towards establishing a maintainable tool-set for using
free-software in A/V soundtrack production.

To that end a client-server interface for communi-
cation between non-linear editing systems is specified.
The paper describes the reference implementation and
documents the current state of video integration into
Ardour3 and future planned development. In the final
sections a user-manual and setup/install information
is presented.

Keywords

Ardour, Video, A/V, post-production, sound-track,
film

1 Introduction

The idea of combining motion pictures with sound
is nearly as old as the concept of cinema itself.

Ever since the invention of the moving pic-
ture, films have entailed sound and music. Be
it mechanical music-boxes accompanying candle-
light projections, the Kinetoscope in the late 19th
century; live-music supporting silent-films in the
early 20th century to completely digital special
effects in the 2000s.

Charlie Chaplin composed his own music for
City Lights (1931) and many of his later movies.
He was not clear whose job was to score the sound-
tracks [Scaruffi, 2007]. That was the exception,
and few film-makers would imitate him. In the
1930s, after a few years of experimentation, scor-
ing film soundtracks became an art in earnest. By
the mid-1940s, cinema’s composers had become a
well-established category.

Apart from the film-score (music), a film’s
soundtrack usually includes dialogue and sound
effects.

One goal is to synchronize dramatic events hap-
pening on screen with musical events in the score
- but there are many different (artistic) methods
for syncing music to picture. With only a few ex-
ceptions - namely song or dance scenes - music
composition and sound-design usually takes place
after recording and editing the video [Wikipedia,
2011].

Major problems persisted, leading to motion
pictures and sound recording largely taking sep-
arate paths for a generation. The primary is-
sue was - and is - synchronization: pictures and
sound are recorded and played back by separate
devices, which were difficult to start and main-
tain in tandem. This stigma still prevails for most
professional audio/video recordings for both cre-
ative and technical: ie. there is too much gear
on camera already, more (budgetary) choices are
available, unions define different job functions. . . .

Post-production requires to synchronize the
original audio recorded on the set (on-camera
voice) with the edited video. In the analog days
visual cues (slate) have been used towards that
end. With the advent of digital technology time-
code (most commonly SMPTE produced by the
camera) is commonly recorded along with the
sound to allow reconstructing the audio-tracks af-
ter the video has been cut.

As you can imagine, the technical skills and de-
tails involved can become quite complex and nei-
ther composers nor sound-designers do want to
concern themselves with that task. Creative tech-
nicians have come up with various tools to aid the
process.

These days many Digital Audio Workstations

35

provide features to import EDL (edit decision
lists) or variants thereof (AAF: Advanced Author-
ing Format, MXF: Material eXchange Format,
BWF: Broadcast Wave Format, OMF+OMFI:
Open Media Framework Interchange,. . .) and
display a film-clip in sync with the audio in or-
der to facilitate soundtrack creation.

There are very few to none free-software solu-
tions for this process. However, Ardour [Davis
and others, 1999 2012] provides nearly all rele-
vant features for composition, recording as well
as mastering. The underlying JACK audio con-
nection kit allows for inter-application synchro-
nization [Davis and others, 2001 2012] and sug-
gests itself to be used in the context of film post-
production.

Figure 1: Ardour 3.0-beta1 with video-timeline
patch and video-monitor

2 Design

Other FLOSS projects are tackling the process of
video production (NLE: non-linear editing), most
notably Blender [Foundation, 1999 2012], lives
[Finch, 2004 2012] and cinelerra [Ltd, 2002 2011];
however these emphasize on the visuals and often
significantly lack on the audio side.

Other free-software digital audio workstations
(DAWs) capable of the job include musescore
[Schweer and others, 1999 2012] and qtractor
[Capela, 2005 2011] amongst others, however
with MIDI support arriving in Ardour3, contin-
ued cross-platform support and available high-end
professional derivatives (Mixbus, Harrison) it is
currently the most suitable and promising DAW
from a developer’s perspective.

2.1 Design-goals and use-cases
The aim is to provide an easy-to-use, professional
workflow for film-sound production using free-
software. More specifically: Integration of video-
elements into the Ardour Digital Audio Worksta-
tion.

The resulting interface must not be limited to
the software at hand (Ardour, Xjadeo, icsd) but
allow for further adaption or interoperability.
2.1.1 General
An important aspect of the envisaged project is
modular design. This is a prerequisite to allow the
project to be developed gradually and maintained
long-term. With Interface definitions in place, the
building blocks can be implemented individually.
It is also crucial to cope with the current situation
of video-codec licensing: Depending on the avail-
ability of licenses and user preferences, it should
be possible to en/disable certain parts of the sys-
tem without breaking overall functionality.

The utter minimum for both composing as well
as producing sound-tracks is a video-player that
synchronizes to an external time-source provided
by the DAW.

To navigate around in larger projects a time-
line becomes very valuable.

Session-management as well as archiving is im-
portant as soon as one works on more than one
project. Project-revisions or snapshots come in
handy.

Import, export and inter-operability with other
software: Those are likely going to be the hardest
part, yet also the most important.

Transcoding the video on import is neces-
sary to provide smooth response times for for-
ward/backward seeking. It may also be re-
quired for inter-operability (codecs). Demuxing is
needed to import edited video-tracks along with
the original set of audio tracks, aligned to time-
code.

Exporting the soundtrack means aligning the
materials and multiplexing the original video with
the audio or to provide exact information on how
to do that. Various formats - both proprietary
and free - are in use which complicates the pro-
cess.

Sometimes you (or the director) notices dur-
ing sound-design, that some video edit decisions
were not optimal; or that there is just a video
frame missing for proper alignment. With digital

36

technology incremental updates of the video are
not only feasible but relatively simple. Empower-
ing the audio-engineer to quickly do minor video
editing is a very useful but also dangerous feature.

2.1.2 Short-Term
Increase the usability of existing tools with fo-
cus on soundtrack creation (video-timeline, video-
monitor).

In particular the learnability and efficiency
for the workflow should be streamlined: video-
transcoding, video-monitor and A/V-session
management functionality should be accessible
from a single application. The complexity of the
whole process should be abstracted and focus on
the use-case at hand while not limiting the actual
system.

Practically this is mapped to adding support
into Ardour3 to communicate with and control
the Xjadeo [Gareus and Garrido, 2006 2012b]
video-monitor. Furthermore a video-timeline axis
is aligned to the Ardour-canvas. Lastly, the pos-
sibility to invoke ffmpeg from within Ardour’s
GUI to import and export audio/video is im-
plemented. The user-interaction is kept to a
minimum: Import Video, Show/Hide Timeline,
Show/Hide video-monitor.

2.1.3 Mid-Term
Improve system integration. Configuration pre-
sets for multi-host setups. Streamline video-
export, MUX/codec/format presets.

Stabilize video-session and edit API. Add in-
teroperability with external video-editors. Import
various EDL dialects.

2.1.4 Long-Term
Top Notch client-server distributed A/V non-
linear editor, using Ardour3 for the sound, dedi-
cated GUI for the video. Seamless integration.

2.2 Architecture

Ardour itself is separated in two main parts: the
back-end (audio-engine, libardour) which man-
ages audio-tracks, audio-routes and session-state
and the front-end (gtk2-ardour) which provides a
stateless graphical user interface to the back-end.

The idea is to construct the system such than
intrusion in Ardour itself is minimal: Only Ar-
dour’s front-end GUI should be aware of video-
elements.

The video-decoding and video-session manage-
ment is done in a separate application. A client-
server model is used to partition tasks. Ardour as
client does not share any of its resources, but re-
quests video-content from the server. The overall
outline is depicted in figure 2.

Figure 2: Overview of the client-server architec-
ture

The video-server itself is a modular system.
The essential and minimum system comprises
a video-decoder and video-frame cache. Video-
frames are referenced by frame-number. Time-
code mapping is optional and can be done on
the client and server-side (using server-side ses-
sions). However, the server must provide infor-
mation about the file’s (or session’s) frame-rate,
aspect-ratio and start-time-offset. Furthermore,
the server must be able to present server-side ses-
sions as single file to the client.

Minimal configuration that needs to be shared
by the server and client is the server’s access URL
and document-root.

Even though tight integration is planned,
the prototype architecture leaves room for side-
chains. In particular this concerns extraction of
audio-tracks from video files as well as final mul-
tiplexing and mastering the final video. While
interfaces are specified to handle these on the
server-side, tight user-interface integration and
rapid prototyping motivates a client-side imple-
mentation. This is accomplished by sharing the
underlying file-system storage.

3 Interface

For read-only (no video-editing) access to video
information, all communication between the
client (here: Ardour) and the video-server is via
HTTP.

37

This is motivated by:

• HTTP is a well supported protocol with ex-
isting infrastructure.

• with client-side caching: throughput is more
important than low latency. HTTP overhead
is reasonably small1

• web-interface possibility

• persistent HTTP connections are possible

• possibility to make use of established proxy
and load-balancing systems

3.1 Protocol: Request Parameters
HTTP verbs can be taken into account for spe-
cific requests e.g. HEAD: query file-information,
DELETE: remove assets, regions, files. The vast
majority will bet GET and POST requests.

The server URL must conform to RFC3986
specifications. It must be possible to have
the server in a sub-path on the server’s
root (e.g. http://example.org/my/server/).
The URI must allow path and file-
names to be added below that path (e.g.
http://example.org/my/server/status.html). A
default endpoint handler needs to catch access to
the doc-root and provide service for the following
requests URLs, which are described in further
detail below:

/status print server-status (user-readable, ver-
sion, etc) must return 200 OK if the server is
running.

/info return file or session info

/frame query image-frame data

/ generic handler to above according to request-
parameters

/admin/flush cache (optional, POST) reset
cache

/admin/shutdown (optional, POST) request
clean shutdown of server

/stream (optional) server-side rendering of
video chunks - export and preview

1RGB24 frame sizes, thumbnail 160x90: 337kiB,
768x576/PAL:10.1MiB, 1920x1080/full-HD: 47.5MiB.
HTTP request/response headers are typically between 200
and 800 bytes.

/index/* (optional) file and directory index

/session/* (optional) server-side project and
session management

The file extension defines the format of the re-
turned data. For textual (non-binary) data, valid
requests include .html, .htm , .json, .xml, .raw,
.edl, .null. Valid image file extensions are .jpg,
.jpeg, .png, .ppm, .yuv, .rgb, .rgba. For video
streaming, the extension defines the container for-
mat e.g. .avi, dv, .rm, .ogg, .ogv, .mpg, .mpeg,
.flv, .mov, .mp4, .webm, .mkv, .vob, The
extension is case-insensitive.

Alternatively the format can be specified using
the format=FMT query parameter which overrides
the extension, if any.
3.1.1 File and Session information
The /info handler returns basic information
about the file or session.

Request parameters:

file file-name relative to the server’s document
root.

Reply:

version reply-format version. Currently 1, may
change in the future

framerate a double floating point value of video
frames-per-second

duration long integer count of video-frames

start-offset double precision - time of first video-
frame; specified in (fractional) seconds

aspect-ratio floating point value of the
width/height geometry ratio including
pixel and display-aspect ratio multipliers

width (optional) integer video width in pixels

height (optional) integer video height in pixels

length (optional) video-duration in seconds

size (optional) video-size in bytes

The raw (un-formatted) reply concatenates the
values above in order, separated by unix-newlines
(’\n’, ASCII 0x0a). Optional values require all
previous values to be given: i.e. length requires
width and height.

json or xml formatted replies must return an
associative array with the key-name as specified

38

#curl -d file=tmp/test.avi \
http://localhost:1554/info

1
25.000
15262
0.0
1.833333

Figure 3: Example request of file information

in the reply format list. html or txt replies are
intended for user readability and may differ in
formatting, but should include the required in-
formation.
3.1.2 Image (preview, thumbnails)
Request parameters:

file file-name relative to the server’s document
root.

frame the frame-number (starting at zero for the
first frame).

w (optional) width in pixels - default -1: auto

h (optional) height in pixels - default -1: auto

format (optional) image format and/or encoding

If neither width or height are specified, the
original size (in pixels, not scaled with pixel or
display-aspect ratio) must be used. If both width
and height are given, the image must be scaled
disregarding the aspect-ratio. If either width or
height are specified, the returned image must be
scaled according to the movie’s real aspect ratio.

The default format is raw RGB, 24 bits per pix-
els.
3.1.3 Request video export, rendering
The /stream handler is used to encode a video on
the server.

Request parameters:

file file-name relative to the server’s document
root or session-id.

frame (optional) the frame-number (starting at
zero for the first frame) where to start encod-
ing. the default is 0, start at the beginning.

duration (optional) number of frames to en-
code (minus one), negative values indicate no
limit. A value of 0 (zero) must encode exactly

one video frame. the default value is -1: until
the end.

w (optional) width in pixels; default -1: auto

h (optional) height in pixels; default -1: auto

container (optional) video format; default : avi

nosound (optional) if set (1) only video is en-
coded - default: unset, 0

3.1.4 Server administration
Since the only way to communicate with the
server is HTTP, specific interfaces are needed for
administrative requests. The current standard de-
fines only two; namely re-start (or cache-flush)
and shutdown.

These commands are mostly for debugging and
development purposes: The clean shutdown was
motivated to check for memory-leaks; but comes
in handy to launch temporary servers with each
Ardour-session.

Cache-flush is useful if the video-file changes.
Cached images must be cleaned and the de-
coders must release open file-descriptor and re-
read the updated video-file. Future implementa-
tions should actually monitor the file for modifi-
cation and do this automatically.
3.1.5 The Session API
Session API replicates /info, /frame and
/stream request-URLs below the /session/
namespace. Each request to those handlers must
specify a session query parameter. The file pa-
rameter - if given - can be used to identify chunks
inside a session.

Additional request handlers are needed to pro-
vide access to editing functionality, in particular
asset-management and clip arrangement.

The detailed description of the session API is
beyond the scope of this paper and will be pub-
lished separately 2.

3.2 Extensions
3.2.1 Web GUI
The /gui/ namespace is reserved for an end-user
web-interface which is out of the scope of this
paper. Currently a prototype using XSLT and
icsd2’s XML function is prototyped in XHTML

2A prototype of the session API for research
is implemented in libs/libsodan/jvsession.c and
src/ics sessionhandler.c

39

and JavaScript and available with the source-code
(see figures 4, 7).

Figure 4: icsd2: JavaScript+XHTML EDL editor

3.2.2 Out-of-band notifications
Since it is not possible to use HTTP to send out-
of-band notifications, it is not a suitable protocol
for concurrent editing.

Both XMPP (Extensible Messaging and Pres-
ence Protocol) and OSC (OpenSoundControl) are
options.

OSC has less overhead, yet only OSC over
TCP provides reliable transport. XMPP has
the advantage that by spec processing between
any two entities at the server must be in order.
Furthermore XMPP is a protocol intended for
publish/subscribe, and capable to notify multiple
clients. Authentication methods have also been
defined for XMPP, whereas both authentication
and Pub/Sub would require custom development
on top of OSC.
3.2.3 Authentication and Access Control
Both HTTP as well as XML offer means of au-
thentication below the application layer.

While some requests motivate access-control as
part of the protocol - e.g. user-specific read-only
access to certain frame-ranges or chunks - these
can in general be handled by URI filtering, much
as a .htaccess files does in apache.

3.3 Server Internal API
This section covers the planned interface for
server-side sessions and non-linear video-editing.
The back-end is partially implemented in icsd2
and there is a basic web-interface to it.

3.3.1 Database and persistent session
information storage

The server keeps a database for each session. A
session consists of one or more chunks (audio or
video sources) and a map how to combine them.
Furthermore the session-database includes config-
uration and session-properties in a generic key-
value store.

An extended EDL table is used to for map-
ping the chunks. It provides for (track) layer-
ing of chunk-excerpts (in-point, out-point). The
data-model does not yet provide for per edit or
per chunk attributes (zoom, effect automation)
but transitions between chunks can be specified
in EDL style. The current database schema can
be found in source-code.
3.3.2 Server-side video monitoring
An important feature is to be able to to physi-
cally separate audio (Ardour) and video (server
and monitor). This is motivated by various fac-
tors: All video-outputs of the client computer
may be needed for audio, leaving none available
for a full-screen video projector. It also preempts
resource conflicts between audio processing and
video-decoding.

To provide server-side video monitoring (video-
display), two approaches are currently proto-
typed:

• monolithic approach: share the decoder and
frame-cache back-end between the HTTP-
server and the video-monitor using shared-
memory.

• modular approach: share the source-
code/libraries: HTTP-server and video-
monitor are independent applications.

The former obviously requires less resource and
puts less strain on the server (memory and CPU
usage) at the cost of potential instability (resource
conflicts) since maintaining cache-coherence com-
plicates the code.

A middle-ground - building a video-monitor on
top of the existing HTTP frame/ interface - is
unsuitable for low-latency seeks. Even though it
performs nicely in linear playback it effectively
purges the cache and introduces a penalty for
time-line use.

With computing resources being easily avail-
able (and cheap compared to video-production in

40

general), a modular approach - using independent
video-monitor software - is the way to follow.
3.3.3 Server to Server communication
A cache-coherence protocol MOESI (Modified,
Owned, Exclusive, Shared, Invalid) is envisaged
to distribute load among servers. An algorithm
based on file-id and frame-number can be used to
dispatch requests to servers in a pool. This can
be done directly in the client implementation or
by a proxy-server (http load balancer).

Server-to-server communication will use pub-
lish/subscribe to synchronize and distribute up-
dates among servers in the pool.

4 Implementation

Historically things went a bit backwards. Af-
ter the groundwork (Xjadeo, Ardour1) had been
laid, different endeavours (gjvidtimline, xj-five)
culminated in the video-editing-server software
(vcsd) for Ardour3. The recurring need to fo-
cus on movie-soundtracks motivated the short-
term goals of the current implementation: Ar-
dour3 [Davis and others, 1999 2012] provides the
DAW as well as the GUI. The video-server (icsd)
project is named Sodankylä [Gareus, 2008 2012]
after its place of birth.

4.1 client – Ardour3
The patch3 can be broken out into small parts.

• Video-timeline display

• HTTP interaction with the video-server

• Xjadeo remote control

• ffmpeg interaction

• Dialogs (the largest part)

• Support and helper functions

The implementation is completely additive4, and
all video related code is separated by #ifdefs.
4.1.1 Video timeline
gtk2 ardour/video timeline.cc defines the
timing and alignment of the video-frames depend-
ing on the current scroll-position and zoom-level
of the Ardour canvas.

3http://gareus.org/gitweb/?p=ardour3.git;a=
commitdiff_plain;hp=master;h=videotl

4No existing code is removed or changed, however the
build-script and some of the documentation is modified.

The video-timeline is a unique “ruler”
in Ardour (similar to bar/beat or
markers) and globally accessible via
ARDOUR UI::instance()->video timeline.
The video-timeline contains video-frame images:
gtk2 ardour/video image frame.cc.

The timeline is populated by aligning the first
video-frame. The zoom-level (audio-frames per
pixel) and timeline-height * aspect-ratio (video-
frame width in pixels) define the spacing of video-
frames after the first frame. Images on the current
page of the canvas as well as the next and previous
page are requested and cached locally to allow
smooth scrolling.
VideoTimeLine and VideoImageFrame are the

only two classes that communicate with the video-
server. The former is used to request video-session
information (frame-rate, duration, aspect-ratio),
the latter handles (raw RGB) image-data. The
actual curl http get() function is defined in the
file video image frame.cc which also includes a
threaded handler for async replies of image-data.

The GET request-parameters to query infor-
mation about the video-file are:
SERVER-URL/info?file=fileURI&format=plain
The GET request-parameters for image data are
as follows:
SERVER-URL/?frame=frame-number
&w=width&h=height
&file=fileURI&format=rgb

The width and height are calculated by us-
ing the video’s aspect-ratio and the height of the
timeline-ruler. Current options are defined in
editor rulers.cc and include:

• “Small”: 3Ht

• “Normal”: 4Ht

• “Large”: 6Ht

with Ht = Editor::timebar height = 15.0;
pixels defined in editor.cc.

4.1.2 system-exec
Starting an external application with bi-
directional communication over standard-IO,
requires dedicated code.
gtk2 ardour/system exec.cc implements a
cross-platform compatible (POSIX, windows)
API to launch, terminate and pipe data to/from
child processes.

41

It is used to communicate with Xjadeo 5 as well
as to launch ffmpeg and the video-server (on lo-
calhost).

4.1.3 transcoding
gtk2 ardour/transcode ffmpeg.cc includes
low-level interaction with ffmpeg. It is concerned
with locating and starting ffmpeg and ffprobe
executables as well as parsing output and
progress information. The command-parameters
(presets, options) as well as progress-bar display
is part of the transcode video dialog.cc.

4.1.4 Dialogs
The vast majority of the code contributed to Ar-
dour consists of dialogs to interact with the user.

gtk2 ardour/video server dialog.cc asks to
start the video-server on localhost. It is
shown on video-import if the configured
video-server can not be reached.

gtk2 ardour/add video dialog.cc Called from
Session-menu→ Import→ Video, asks which
file to import. The file-selection dialog as-
sumes that the video-server runs on localhost
or the server’s document-root is shared via
NFS6. The dialog offers options to transcode
the file on import, or copy/hardlink it
to the session folder. Furthermore there
are options to launch the video-monitor
and set the Ardour session’s timecode-rate
to match the video-file’s FPS (see figure
5). gtk2 ardour/video copy dialog.cc is
a potential follow-up dialog with progress-bar
and overwrite confirmation.
If the video-server is running on localhost,
the dialog also checks if the (imported) file
is under the configured document-root of the
video-server.

gtk2 ardour/transcode video dialog.cc
allows to transcode video-files on import. It
is recommended to do so in order to decrease
the CPU load and optimize I/O resource
usage of the video-decoder. The dialog
also allows to select an audio-track to be

5actually xj-remote which in turn communicates with
Xjadeo, platform dependent either via message-queues or
RPC calls

6A prefix can be configured to be removed from the
selected path for making requests to the video-server.

Figure 5: A3: the video-open dialog

extracted from the video-file and imported
as audio-track into Ardour.

Figure 6: A3: the import-video, transcode dialog

gtk2 ardour/open video monitor dialog.cc
optional settings for Xjadeo. This dialog
can be bypassed (configuration option)
and allows to customize settings of Xjadeo
that should be retained between sessions:
e.g. window-size, position and state,
On-Screen-Display settings, etc.

gtk2 ardour/export video dialog.cc is the
most complex dialog. It includes various
(hardcoded) presets for video-encoding and
ffmpeg options. It also includes a small
wrapper around Ardour’s audio-export
function.

4.1.5 video-monitor / Xjadeo
gtk2 ardour/video monitor.cc implements in-
teraction with Xjadeo. In particular sending
video-seek messages if Ardour is using internal

42

transport and time-offset parameters if the video
is re-aligned.

Switching Ardour’s sync mechanism between
JACK and internal-transport automatically tog-
gles the way Ardour controls Xjadeo. Also
Xjadeo’s window state (on-top), on-screen-display
mode (SMPTE, frame-number display) as well
as the window position and size are remembered
across sessions. Ardour sets override-flags in
Xjadeo’s GUI that disable some of the direct user-
interaction with Xjadeo; in particular: you can
not close the monitor-window nor load different
files by drag-drop on the Xjadeo window or nei-
ther modify the time-offset using keyboard short-
cuts. These interactions need to be done through
Ardour.

4.1.6 misc
There are various small patches - mostly glue
- to Ardour’s editor *.cc, ardour ui*.cc
as well as preference (video-server URL) and
session-option (sync, pull up/down) dialogs.
Dedicated video functions have been collected
in gtk2 ardour/editor videotimeline.cc and
gtk2 ardour/utils videotl.cc

4.1.7 libardour
While the video-timeline patch itself only con-
cerns the Ardour GUI, a few helper functions se-
mantically belong in libardour. They are almost
exclusively related to saving preferences or resolv-
ing directories.

4.2 prototype server
The source-code includes a simple PHP script
tools/videotimeline/vseq.php that emulates
the behaviour of the video-server (no frame-
caching) and implements the minimal interface
protocol specifications. It is built on top of the
command-line applications: ffmpeg, ffprobe and
ImageMagick’s convert.

4.3 video-server – Sodankylä – icsd
The video-server was born in Sodankylä June
2008. It’s a motley collection of tools for handling
video files. The ‘image compositor socket dae-
mon’ (icsd - the names goes back to Ardour-1)
implements a video-frame-caching HTTP server
according to specs defined in section 3.1. icsd2 in
the same source-tree is a (work-in-progress) ver-
sion adding the video-session and NLE capabili-
ties.

By default icsd listens on all network inter-
faces’ TCP port 1554 and runs in foreground,
serving files below a given document-root.

usage: icsd [OPTION] <document-root>

The number of cached video-frames can be
specified with the -C <num> option. It defaults to
128. The IP address to listen on can be set with
-P <IPv4 address> (default: 0.0.0.0). There are
various options regarding daemonizing, chroot,
set-uid, set-gid and logging that allow icsd be
started as system-service. They are documented
in the manual-page.

Note that, icsd does not perform any access
control. As with a web-server, all documents be-
low the document-root are publicly readable.

The internal video frame-cache uses LRU
(least-recently requested video-frame) cache-line
expiry strategy. icsd is multi-threaded, it keeps
a pool of decoders and tries to map consecutive
frames from one keyframe to the same-decoder;
however a new decoder is only spawned if the cur-
rent one is busy in another thread.

Figure 7: icsd2: JavaScript+XHTML video-
monitor

icsd2 extends the simple API towards video-
session and non-linear-editing.

To allow interoperability with various client-
side tools, a REST-API is being defined. XLST
is used to export information in XML, as well as
generate XHTML pages. For prototyping and de-
bugging a simple web-player and JavaScript EDL
editor came to be (screenshot in figure 7).

43

5 QA and Performance Tests

The most important part is to assure fitness for
the purpose. Usability and integration is useless
if fundamental quality is not sufficient. Criteria
that require verification include accuracy, time-
code mapping, as well as latency and system-load.

Depending on the zoom-level video-frames in
the audio-timeline must be properly aligned. Dur-
ing playback the video-monitor must not lag be-
hind. Audio latency must be compensated so
that the video-frame on screen corresponds to
the audio-signal currently reaching the speakers.
The system load must remain within reasonable
bounds and the applications should run smoothly
without spiking.

5.1 Quality Assurance and Testing
Audio/Video frame alignment has been tested us-
ing the “time-stamp-movie-maker” [Gareus and
Garrido, 2006 2012a]. It was used to create
movies with time-code and frame-number ren-
dered on the image at most common frame-rates
(23.976, 24, 24.976, 25, 29.97df, 30, 59.94 and 60
fps) using common codecs + format combinations
(mjpeg/avi, h264/avi, h264/mov, mpeg4/mov,
theora/ogg). All 40 videos have been loaded into
Ardour and tested to align correctly.

Figure 8: testing time-code mapping using a time-
stamped movie

Latency compensation is verified by playing a
movie of a unique series of black and white frames
full-screen synchronously to an audio-track that
sends an impulse on every white frame. The
audio-impulse signal must occur aligned to the
(luminance) signal of the video within the bounds
of display frequency. Since there are 3 differ-
ent clocks (display-refresh frequency, video frame-
rate, audio sample-rate) involved the problem is
not trivial. However audio sample-rate is an order
of magnitude smaller than the usual video frame-

rates and can be neglected. Systematic latency-
compensation tests have successfully been per-
formed at 25fps file of alternating black and white
frames on a 75Hz display frequency. Other rates
have been verified but not analyzed in depth.

5.2 Performance tests
Performance is evaluated by benchmarking unit-
tests of the individual components as well as mon-
itoring overall system performance.

The former includes measuring request latency
to query video-frames which is further broken
up into distributing workload on multiple video-
decoders. An average session will spawn 16-20
video-decoders on a dual-core. The memory foot-
print of a decoder is negligible compared to the
cached image data, yet it greatly improves re-
sponse time when seeking in files to use a decoder
positioned close to the key-frame.

Request and decode latencies have been mea-
sured with ab - The Apache HTTP server bench-
marking tool as well as by timing the requests
with Ardour. Cache hits are dominated by trans-
fer time which is on the order of a few (1-3) mil-
liseconds depending on image-size and network.
Decoder latency is highly dependent on the geom-
etry of the movie-file, codec, scaling and CPU or
I/O. On slower CPUs (< 1.6 GHz Intel) a full HD
video can be decoded and scaled at 25 fps using
mjpeg codec width only intra-frames at the cost of
high I/O. Faster CPUs can shift the load towards
the CPU. Parallelizing requests increases latency
to up to a few hundred milliseconds. This is in-
tended behavior: image for a whole view-point
page will arrive simultaneously.

6 User Manual

6.1 Setup
• get Ardour3 with video-timeline patch.

• install icsd (≥alpha-11) and optionally ffm-
peg, ffprobe and Xjadeo (≥ 0.4.12) to
$PATH.

• make sure that there is no firewall on local-
host TCP-port 1554 (required for communi-
cation between Ardour and the video-server).

If you run the video-server on the same host as
Ardour, no further configuration is required.

When opening the first video, Ardour3 will ask
for the path of the video-server binary (unless

44

Figure 9: latency for decoding thumbnail frames
for 1,2 and 8 parallel requests

Figure 10: decoder and request latency for PAL
video.

it is found in $PATH) and also allows you to
change the TCP port number as well as the set
cache size. Transcoding is only available if ffm-
peg and ffprobe are found in $PATH (fallback on
OSX: /usr/local/bin/ffmpeg sodankyla - pro-
vided with icsd.pkg).

The video-monitor likewise requires xjremote
to be present in $PATH or on OSX under
/Applications/Jadeo.app/Contents/MacOS/
and windows $PROGRAMFILES\xjadeo\. Xjre-
mote comes with Xjadeo and Jadeo respectively.

6.2 Getting Started

It is pretty much self-explanatory and intended to
be intuitive. All functions are available from the
Ardour Menu. Select actions are accessible from
the context-menu on the video-timeline.

• Menu → Session → Open Video

• Menu → Session → Export → Video

• Menu → View → Rulers → Video (or right-
click the ruler/marker bar)

• Menu → View → Video Monitor (Xjadeo)

• Menu → Edit → Preferences → Video

• Menu → Session → Video maintenance →
. . . (manual video server interaction)

A quick walk-through goes something like this:
Launch Ardour3, Menu → Open Video. If the
video-server is not running, Ardour asks to start
it. You choose a video-file and optionally extract
the original sound of the video to an Ardour track.
By default Ardour also sets the session FPS and
opens a video-monitor window.

From then on, everything else is plain Ardour.
Add audio-tracks, import samples, mix and mas-
ter,. . .

Eventually you’ll want to export your work.
Session → Export → Video covers the common
cases from file-creation for online-services over
producing a snapshot for the client at the end
of the day to optimized high-quality two-pass
MPEG encoding. However it is no substitute
for dedicated software (such as dvd-creator) or a
video engineer with a black-belt in ffmpeg or ex-
pertise in similar transcoding software, especially
when it comes to interlacing and scan-ordering..

The export dialog defaults to use the imported
video as source, note however that using the orig-
inal file usually produces better results; every
transcoding step potentially decreases quality.

6.3 Advanced Setups

The video-server can be run on a remote-machine
with Ardour connecting to it. In this case you
need to launch icsd on the server-machine and
configure Ardour to access it. The server’s URL
and docroot configuration can be accessed via Ar-
dour’s menu → Edit → Preferences.

45

You should have a fast network connection
(≥100Mbit/s, low latency (a switch performs bet-
ter than router) and preferably a dedicated net-
work) between the machine running Ardour and
the video-server.

While not required for operation, it is handy
to share the video-server’s document-root file-
system with the machine running Ardour. It is,
however, required to

• browse to a video-file to open7

• display local video-monitor window

• import/transcode a video-file to the Ardour
session folder

• extract audio from a video-file 7

• export to video-file7

File-system sharing can be done using any
network-file-system (video-files reside on the
server, not the Ardour workstation) or using NAS.
Alternatively a remote replica of the Ardour-
project-tree that only contains the video-files is an
option. The local project folder only needs a copy
of the video-file for displaying a video-monitor.

The document-root configured in Ardour is re-
moved from the local absolute-path to the selected
file when making a request to the video-server.

Xjadeo itself includes a remote-control API
that allows to control the video-monitor over a
network connection. Please refer to the Xjadeo
manual for details.

6.4 Known Issues
Video-monitor settings (window state, position,
size) are sent to Ardour when the video-monitor
is terminated. Ardour saves and restores these
settings. The video-monitor is closed when a ses-
sion is closed. If any of the video-settings have
changed since the last save, session-close will ask
again to save the session, even if it was saved just
before closing. Every session-save should query
and save the current state of the video-monitor
to prevent this.

Operating Ardour with very close-up zoom
(only one or two video-frames visible in the time-
line), caching images only for the previous and
next viewpoint is not sufficient. On playback

7later versions of the video-server and Ardour may not
require this anymore.

video-frames are missing (black-cross images) in
the timeline. The Ardour internal frame-cache
should require a minimum of frames regardless of
canvas pages to compensate for the request and
redraw latency.

7 Acknowledgements

Thanks go to Paul Davis, Luis Garrido, Rui Nuno
Capela, Dave Phillips and Natanael Olaiz.

This project would not have been possible with-
out various free-software projects, most notably
ffmpeg/libav. Kudos go to the Ardour and JACK
development-teams and to linux-audio-users for
feedback.

Last but not least to Carolina Feix for motivat-
ing this project in the first place.

References

Rui Nuno Capela. 2005–2011. Qtractor. http:
//qtractor.sourceforge.net/.

Paul Davis et al. 1999–2012. Ardour. http:
//ardour.org.

Paul Davis et al. 2001–2012. Jack trans-
port. http://jackaudio.org/files/docs/
html/transport-design.html.

Gabriel Finch. 2004–2012. Lives. http://
lives.sourceforge.net/.

Blender Foundation. 1999–2012. Blender.
http://blender.org.

Robin Gareus and Luis Garrido. 2006–
2012a. Time-stamp-movie-maker. http://
xjadeo.sf.net.

Robin Gareus and Luis Garrido. 2006–2012b.
Xjadeo - the x-jack-video-monitor. http://
xjadeo.sf.net.

Robin Gareus. 2008–2012. Sodankylä, icsd.
http://gareus.org/wiki/a3vtl.

Heroine Virtual Ltd. 2002–2011. Cinelerra.
http://cinelerra.org/.

Piero Scaruffi. 2007. A brief history of Popular
Music before Rock Music. Omniware.

Werner Schweer et al. 1999–2012. Musescore:
Music score editor. .

Wikipedia. 2011. Film-score. http://en.
wikipedia.org/wiki/Film_score.

46

INScore
An Environment for the Design of Live Music Scores

D. Fober and Y. Orlarey and S. Letz
Grame - Centre national de création musicale

9, rue du Garet BP 1185
69202 Lyon Cedex 01,

France,
{fober, orlarey, letz}@grame.fr

Abstract
INScore is an open source framework for the design of
interactive, augmented, live music scores. Augmented
music scores are graphic spaces providing representa-
tion, composition and manipulation of heterogeneous
and arbitrary music objects (music scores but also im-
ages, text, signals...), both in the graphic and time do-
mains. INScore includes also a dynamic system for
the representation of the music performance, consid-
ered as a specific sound or gesture instance of the score,
and viewed as signals. It integrates an event based in-
teraction mechanism that opens the door to original
uses and designs, transforming a score as a user in-
terface or allowing a score self-modification based on
temporal events. This paper presents the system fea-
tures, the underlying formalisms, and introduces the
OSC based scripting language.

Keywords
score, interaction, signal, synchronization

1 Introduction

Music notation has a long history and evolved
through ages. From the ancient neumes to the
contemporary music notation, the western culture
is rich of the many ways explored to represent the
music. From symbolic or prescriptive notations
to pure graphic representation, the music score
has always been in constant interaction with the
creative and artistic process.

However, although the music representations
have exploded with the advent of computer music
[Dannenberg, 1993; Hewlett and Selfridge-Field,
2001], the music score, intended to the performer,
didn’t evolved in proportion to the new music
forms. In particular, there is a significant gap
between interactive music and the static way it is
usually notated: a performer has generally a tra-
ditional paper score, plus a computer screen dis-
playing a number or a letter to indicate the state

of the interaction system. New needs in terms of
music representation emerge of this context.

In the domain of electro-acoustic music, ana-
lytic scores - music scores made a postériori, be-
come common tools for the musicologists but have
little support from the existing computer music
software, apart the approach proposed for years
by the Acousmograph [Geslin and Lefevre, 2004].

In the music pedagogy domain and based on a
mirror metaphor, experiments have been made to
extend the music score in order to provide feed-
back to students learning and practicing a tradi-
tional music instruments [Fober et al., 2007]. This
approach was based on an extended music score,
supporting various annotations, including perfor-
mance representations based on the audio signal,
but the system was limited by a monophonic score
centered approach and a static design of the per-
formance representation.

Today, new technologies allow for real-time in-
teraction and processing of musical, sound and
gestural information. But the symbolic dimen-
sion of the music is generally excluded from the
interaction scheme.

INScore has been designed in answer to these
observations. It is an open source framework1 for
the design of interactive, augmented, live music
scores. It extends the traditional music score to
arbitrary heterogeneous graphic objects: it sup-
ports symbolic music notation (Guido [Hoos et al.,
1998] or MusicXML [Good, 2001] format), text
(utf8 encoded or html format), images (jpeg, tiff,
gif, png, bmp), vectorial graphics (custom basic
shapes or SVG), video files, as well as an original
performance representation system [Fober et al.,
2010b].

Each component of an augmented score has a

1http://inscore.sf.net

47

graphic and temporal dimension and can be ad-
dressed in both the graphic and temporal space.
A simple formalism, is used to draw relations be-
tween the graphic and time space and to repre-
sent the time relations of any score components
in the graphic space. Based on the graphic and
time space segmentation, the formalism relies on
simple mathematical relations between segments
and on relations compositions. We talk of time
synchronization in the graphic domain [Fober et
al., 2010a] to refer to this specific feature.

INScore is a message driven system that makes
use of the Open Sound Control [OSC] 2 format.
This design opens the door to remote control and
to interaction using any OSC capable application
or device. In addition, it includes interaction fea-
tures provided at score component level by the
way of watchable events.

All these characteristics make INScore a
unique system in the landscape of music notation
or of multi-media presentation. The next section
gives details about the system features, including
the underlying formalisms. Next the OSC API is
introduced with a special emphasis on how it is
turned into a scripting language. The last section
gives an overview of the system architecture and
dependencies before some directions are presented
for future work.

2 Features

Table 1 gives the typology of the graphic resources
supported by the system. All the score elements
have graphic properties (position, scale, rotation,
color, etc.) and time properties as well (date and
duration).

INScore provides a message based API to cre-
ate and control the score elements, both in the
graphic and time spaces. The Open Sound Con-
trol [OSC] protocol is used as basis format for
these messages, described in section 3.

2.1 Time to graphic relations

All the elements of a score have a time dimension
and the system is able to graphically represent the
time relationships of these elements. INScore is
using segmentations and mappings to achieve this
time synchronization in the graphic domain.

The segmentation of a score element is a set
of segments included in this element. A segment

2http://opensoundcontrol.org/

may be viewed as a portion of an element. It
could be a 2D graphic segment (a rectangle), a
time interval, a text section, or any segment de-
scribing a part of the considered element in its
local coordinates space.

Mappings are mathematical relations between
segmentations. A composition operation is used
to relate the graphic space of two arbitrary score
elements, using their relation to the time space.
Table 2 lists the segmentations and mappings
used by the different component types. Mappings
are indicated by arrows (↔). Note that the ar-
rows link segments of different types. Segmen-
tations and mappings in italic are automatically
computed by the system, those in bold are user
defined.

Note that for music scores, an intermediate
time segmentation, the wrapped time, is necessary
to catch repeated sections and jumps (to sign, to
coda, etc.).

Figure 1: Graphic segments of a score and its
performance displayed using colors and annotated
with the corresponding time segments.

Figure 1 shows segments defined on a score and
an image, annotated with the corresponding time
segments. Synchronizing the image to the score
will stretch and align the graphic segments corre-
sponding to similar time segments as illustrated
by figure 2.

Description of the image graphic to time rela-
tion is given in table 3 as a set of pairs including
a graphic segment defined as 2 intervals on the x
and y axis, and a time segment defined as 2 ratio-
nals expressing musical time (where 1 represents
a whole note).

48

Symbolic music description Guido Music Notation and MusicXML formats
Text plain text or html (utf8)

Images jpg, gif, tiff, png, bmp
Vectorial graphics line, rectangle, ellipse, polygon, curve, SVG code

Video files using the phonon plugin
Performance representations see section 2.2

Table 1: Graphic resources supported by the system.

type segmentations and mappings required
Symbolic music description graphic ↔ wrapped time ↔ time

Text graphic ↔ text ↔ time
Images graphic ↔ pixel ↔ time

Vectorial graphics graphic ↔ vectorial ↔ time
Performance representations graphic ↔ frame ↔ time

Table 2: Segmentations and mappings for each component type

Figure 2: Time synchronization of the segments
displayed in figure 1.

([0, 67[[0, 86[) ([0/2, 1/2[)
([67, 113[[0, 86[) ([1/2, 1/1[)
([113, 153[[0, 86[) ([1/1, 5/4[)
([153, 190[[0, 86[) ([5/4, 3/2[)
([190, 235[[0, 86[) ([3/2, 4/2[)

Table 3: A mapping described as a set of relations
between graphic and time segments.

2.2 Performance representation

Music performance representation is based on sig-
nals, whether audio or gestural signals. To pro-
vide a flexible and extensible system, the graphic
representation of a signal is viewed as a graphic
signal, i.e. as a composite signal made of:

• a y coordinate signal

• a thickness signal h

• a color signal c

Such a composite signal (see figure 3) includes
all the information required to be drawn without
additional computation.

�

�
�

�

Figure 3: A composite graphic signal at time t.

The following examples show some simple rep-
resentations defined using this model.

2.2.1 Pitch representation

Represents notes pitches on the y-axis using the
fundamental frequency (figure 4).

Figure 4: Pitch representation.

The corresponding graphic signal is expressed
as:

g = Sf0 / kt / kc

where Sf0 : fundamental frequency

49

kt : a constant thickness signal
kc : a constant color signal

2.2.2 Articulations

Makes use of the signal RMS values to control the
graphic thickness (figure 5). The corresponding

Figure 5: Articulations.

graphic signal is expressed as:

g = ky / Srms / kc

where ky : signal y constant
Srms : RMS signal
kc : a constant color signal

2.2.3 Pitch and articulation combined

Makes use of the fundamental frequency and RMS
values to draw articulations shifted by the pitches
(figure 6).

Figure 6: Pitch and articulation combined.

The corresponding graphic signal is expressed
as:

g = Sf0 / Srms / kc

where Sf0 : fundamental frequency
Srms : RMS signal
kc : a constant color signal

2.2.4 Pitch and harmonics combined

Combines the fundamental frequency to the first
harmonics RMS values (figure 7). Each harmonic
has a different color.

Figure 7: Pitch and harmonics combined.

The graphic signal is described in several steps.
First, we build the fundamental frequency graphic
as above (see section 2.2.3) :

g0 = Sf0 / Srms0 / kc0

where Sf0 : fundamental frequency
Srms0 : f0 RMS values
kc0 : a constant color signal

Next we build the graphic for the harmonic 1:

g1 = Sf0 / Srms1 + Srms0 / kc1

Srms1 : harmonic 1 RMS values
kc1 : a constant color signal

Next, the graphic for the harmonic 2:

g2 = Sf0/ Srms2 + Srms1 + Srms0 / kc2

Srms2 : harmonic 2 RMS values
kc2 : a constant color signal

etc.
Finally, the graphic signals are combined into a
parallel graphic signal:

g = g2 / g1 / g0

2.3 Interaction

INScore is a message driven system that makes
use of Open Sound Control [OSC] format. It in-
cludes interaction features provided at individ-
ual score component level by the way of watch-
able events, which are typical events available in
a graphic environment, extended in the temporal
domain. The list of supported events is given in
table 4.

mouse events time events misc.
mouse enter time enter new element
mouse leave time leave (at scene level)

mouse down
mouse up

mouse move
double click

Table 4: Typology of watchable events.

Events are associated to user defined messages
that are triggered by the event occurrence. The
message includes a destination address (INScore

by default) that supports a url-like specification,
allowing to target any IP host on any UDP port.
The message associated to mouse events may use
predefined variables, instantiated at event time
with the current mouse position or the current
position time.

50

This simple event based mechanism makes easy
to describe for example an intelligent cursor i.e.
an arbitrary object that is synchronized to the
score and that turns the page to the next or pre-
vious one, depending on the time zone it enters.

3 INScore messages

The INScore API is an OSC messages API. The
general format is illustrated in figure 8: it con-
sists in an address followed by a message string,
followed by parameters.

g

OSCAddress message parameters☞
✍

✎
✌

Figure 8: General format of a message.

The address may be viewed as an object
pointer, the message string as a method name
and the parameters as the method parameters.
For example, the message:

/ITL/scene/score color 255 128 40 150

may be viewed as the following method call:
score->color(255 128 40 150)

3.1 Address space

The OSC address space is strictly organized like
the internal score representation, which is a tree
with 4 depths levels (figure 9). Messages can be
sent to any level of the hierarchy.

The first level is the application level: a static
node with a fixed address that is also used to
discriminate incoming messages. An application
contains several scenes, which corresponds to dif-
ferent windows and different scores. Each scene
contains components and two static nodes: a sync
node for the components synchronization and a
signal node, that may be viewed as a special
folder containing signals. The name in blue are
user defined, those in black are static reserved
names.

3.2 Message strings

This section gives some of the main messages sup-
ported by all the score components. The list is far
from being exhaustive, it is intended to show ex-
amples of the system API.

Score components are created and/or modified
using a set message (figure 10) that takes the

�����������

�����

����������

�������

����

������ ������ ������

�������������������� �������� ��������

���� ����

Figure 9: INScore address space.
setMsg

set
✎✍ ☞✌type data

Figure 10: The set message.

object type as argument, followed by type specific
parameters.

Messages given in figure 11 are used to set the
objects graphic properties.

x
✎✍☞✌float32

✎✍ ☞✌☞
✍ y

✎✍☞✌float32
✎✍ ☞✌✍ z

✎✍☞✌float32
✎✍ ☞✌✍angle

✎✍ ☞✌float32
✎✍ ☞✌✍scale

✎✍ ☞✌float32
✎✍ ☞✌

✎
✌
✌
✌
✌

Figure 11: Graphic space management.

Messages given in figure 12 set the time proper-
ties. Time is encoded as rational values represent-
ing music time (where 1 is a whole note). Graphic
space and time management messages have rela-
tive positioning forms: the message string pre-
fixed with ’d’.

All the messages that modify the system state
have a counterpart get form illustrated by figure
13.

Synchronization between components is based
on a master / slave scheme. It is described by
a message addressed to the static sync node as
illustrated by figure 14. syncmode indicates how
to align the slave component to its master: hori-
zontal and/or vertical stretch, etc.

Interactive features are available by request-
ing to a component to watch an event using

51

date
✎✍ ☞✌time☞

✍duration
✎✍ ☞✌time

✎
✌

Figure 12: Time management.

get
✎✍ ☞✌☞

✍ getParam✎
✍

☞
✌

✎
✌

Figure 13: Querying the system state.

a message like figure 15, where what indicates
the event (mouseUp, mouseDown, mouseEnter,
mouseLeave, timeEnter, timeLeave) and OSCMsg
represents any valid OSC message including the
address part.

The example in figure 16 creates a simple score,
do some scaling, creates a red cursor and synchro-
nizes it to the score with a vertical stretch to the
score height. Output is presented by figure 17.

3.3 INScore scripts

Actually, the example given in figure 16) is mak-
ing use of the file format of a score, which consists
in a list of textual OSC messages, separated by a
semi-colon. This textual form is particularly suit-
able to be used as a scripting language and addi-
tional support is provided in the form of variables
and javascript and/or lua support.

3.3.1 Variables

INScore scripts supports variables declarations
in the form illustrated by figure 18. Variables may
be used in place of any message parameter pre-
fixed using a $ sign. A variable must be declared
before being used.

3.3.2 Scripting support

INScore scripts may include javascript sections,
delimited by <?javascript and ?> The javascript
code is evaluated at parse time. It is expected
to produce valid INScore messages as output.
These messages are then expanded in place of the
javascript code.

Variables declared before the javascript section
are exported to the javascript environment, which
make these variables usable in both contexts.

slave
1

master ☞
✍ syncmode

✎
✌

☞
✍2

✎
✌

Figure 14: Synchronization message: the second
form (2) removes the synchronization from the
slave object.

watch
✎✍ ☞✌what oscMsg

Figure 15: Watching events.

Similarly, INScore may support the lua lan-
guage in sections delimited by <?lua and ?>.
By default, lua support is not embedded in the
INScore binary distribution. The engine needs
to be compiled with the appropriate options to
support lua.

4 Architecture

INScore is both a shared library and a standalone
score viewer application without user interface.
Some insight of the system architecture is given
in this section for a better understanding and an
optimal use of the system. The general architec-
ture is a Model View Controller [MVC] designed
to handle OSC message streams.

4.1 The MVC Model

The MVC architecture is illustrated in figure 19.
Modification of the model state is achieved by in-
coming OSC messages or by the library C/C++
API, that is actually also message based. An
OSC message is packaged into an internal mes-
sages representation and stacked on a lock-free
fifo stack. These operations are synchronous to
the incoming OSC stream and to the library API
call.

On a second step, messages are popped from
the stack by a Controler that takes in charge

/ITL/scene/score set ’gmn’ ’[g e f d]’;
/ITL/scene/score scale 5.0;
/ITL/scene/cursor set ’rect’ 0.01 0.1;
/ITL/scene/cursor color 255 0 0 150;
/ITL/scene/sync ’cursor’ ’score’ ’v’;

Figure 16: INScore sample script.

52

Figure 17: Sample script output.

ident
✎✍ ☞✌=

✎✍☞✌ int32
✎✍ ☞✌☞

✍float32
✎✍ ☞✌✍string
✎✍ ☞✌

✎
✌
✌

;
✎✍☞✌

Figure 18: Variable declaration.

address decoding and message passing to the cor-
responding object of the model. The final opera-
tion concerns the view update. An Updater is in
charge of producing a view of the model, which is
currently based on the Qt Framework.

This second step of the model modification
scheme is asynchronous: it is processed on a reg-
ular time base.

4.2 Dependencies

The INScore project depends on external open
source libraries:

• the Qt framework3 providing the graphic
layer and platform independence.

• the GuidoEngine4 for music score layout

• the GuidoQt static library, actually part of
the Guido library project

• the oscpack library5 for OSC support

• and optionally:

– the MusicXML library6 to support the
MusicXML format.

– the v8 javascript engine7 to support
javascript in INScore script files.

– the lua engine8 to support lua in
INScore script files.

3http://qt.nokia.com/
4http://guidolib.sourceforge.net
5http://www.rossbencina.com/code/oscpack
6http://libmusicxml.sourceforge.net
7http://code.google.com/p/v8/
8http://www.lua.org/

��� �������

�������� �����

��� ��������
���������

����� �����

����

�������
���

�����������

������������

���������� ������ ��������������

������� �����

���������

����

����� ���������� ���������

�������

����

�� ����

Figure 19: An overview of the MVC architecture

The GuidoEngine, the GuidoQt and oscpack li-
braries are required to compile INScore.

Binary packages are distributed for Ubuntu
Linux, Mac OS and Windows. Detailed instruc-
tions are included in the project repository for
compiling.

5 Future work

Interactive features described in section 2.3 result
from an experimental approach. The formaliza-
tion and extension of these features are planned.

Time synchronization features are based on a
continuous music time. Supporting other time
representations like the Allen relations [Allen,
1983] is part of the future work.

Due to its dynamic nature, INScore is particu-
larly suitable to interactive music, i.e. where parts
of the music score could be computed in real-time
by an interaction system. It could be particularly
interesting to provide a musically meaningful vi-
sualization of the interaction system state; exten-
sions in this direction are also planned.

53

6 Acknowledgements

INScore was initiated in the Interlude project
funded by the French National Research Agency
[ANR- 08-CORD-010].

References

James F. Allen. 1983. Maintaining knowl-
edge about temporal intervals. Commun. ACM,
26:832–843, November.

R. B. Dannenberg. 1993. Music representation
issues, techniques and systems. Computer Mu-
sic Journal, 17(3):20–30.

D. Fober, S. Letz, and Y. Orlarey. 2007. Ve-
mus - feedback and groupware technologies for
music instrument learning. In Proceedings of
the 4th Sound and Music Computing Confer-
ence SMC’07 - Lefkada, Greece, pages 117–123.

D. Fober, C. Daudin, S. Letz, and Y. Orlarey.
2010a. Time synchronization in graphic domain
- a new paradigm for augmented music scores.
In ICMA, editor, Proceedings of the Interna-
tional Computer Music Conference, pages 458–
461.

D. Fober, C. Daudin, Y. Orlarey, and S. Letz.
2010b. Interlude - a framework for augmented
music scores. In Proceedings of the Sound and
Music Computing conference - SMC’10, pages
233–240.

Yann Geslin and Adrien Lefevre. 2004. Sound
and musical representation: the acousmo-
graphe software. In ICMC’04: Proceedings of
the International Computer Music Conference,
pages 285–289. ICMA.

M. Good. 2001. MusicXML for Notation and
Analysis. In W. B. Hewlett and E. Selfridge-
Field, editors, The Virtual Score, pages 113–
124. MIT Press.

Walter B. Hewlett and Eleanor Selfridge-Field,
editors. 2001. The Virtual Score; representa-
tion, retrieval and restoration. Computing in
Musicology. MIT Press.

H. Hoos, K. Hamel, K. Renz, and J. Kilian.
1998. The GUIDO Music Notation Format -
a Novel Approach for Adequately Represent-
ing Score-level Music. In Proceedings of the In-
ternational Computer Music Conference, pages
451–454. ICMA.

54

A Behind-the-Scenes Peek at World's First Linux-Based Laptop Orchestra – The
Design of L2Ork Infrastructure and Lessons Learned

Ivica Ico Bukvic
Virginia Tech, DISIS, L2Ork, ICAT

Department of Music - 0240
Blacksburg, VA, 24061

ico@vt.edu

Abstract

In recent years we've experienced a proliferation of
laptop orchestras and ensembles. Linux Laptop
Orchestra or L2Ork founded in the spring 2009
introduces exclusive reliance on open-source
software to this novel genre. Its hardware design also
provides minimal cost overhead. Most notably,
L2Ork provides a homogenous software and
hardware environment with focus on usability and
transparency. In the following paper we present an
overview of L2Ork's infrastructure and lessons
learned through its design and implementation.

Keywords

Linux Laptop Orchestra, L2Ork, Infrastructure,
Lessons Learned

1 Introduction
Laptop orchestras arguably need no introduction.

Their number is now growing at an exponential rate
with new ensembles being introduced at Universities
and other independent institutions across the world
(“International Association of Laptop Orchestras,”
n.d.). With the ensuing growth, the laptop ensemble
repertoire is increasingly hampered by the lack of
software and hardware standardization. The
mounting cost of obtaining and/or building
supporting infrastructure has resulted in
compromises, further exacerbating the said
fragmentation (I. Bukvic, Martin, Standley, &
Matthews, 2010; Kapur et al., 2010; Trueman, Cook,
Smallwood, & Wang, 2006; Wang, Bryan, Oh, &
Hamilton, 2009). One notable aspect of ensembles
based on the PLOrk model (Trueman et al., 2006), is
the use of hemispherical speakers whose purpose is
to provide co-located sound. Prior to the
introduction of the hemispherical speakers, the

computer music genre has primarily relied on either
acousmatic spatialization or a more traditional
stereoscopic means of sound reproduction. Both of
the said approaches pose a challenge in that they can
disassociate the music-making process with its
source. In such a setting typically one or more
computer musicians located on stage making (or
mixing) sound are being heard across a vast array of
speakers, none of which correspond with their
physical location. This is where hemispherical
speakers make a considerable difference in bridging
the said cognitive gap (Smallwood, Cook, &
Trueman, 2009) and reintroducing the critical notion
of co-located sound inherent to acoustic music
instruments.

2 Introducing L2Ork
Linux Laptop Orchestra or L2Ork (I. Bukvic et al.,

2010) was founded in Spring 2009 as part of a
research initiative with focus on providing a
discipline-agnostic point of convergence for arts,
technology, and engineering. The initiative has
gained considerable traction, attracting twenty on-
campus stakeholders and four corporate sponsors. In
part due to its open design, and in part due to its
ambitious goal of complementing K-12 (elementary
school to high school) education by introducing this
unusual integration of arts and sciences, L2Ork has
also received an unprecedented amount of media
attention, including the front cover feature in the
Linux Journal (Phillips, 2010). By partnering with
the regional Boys & Girls Club (an after-school
program for inner city children) and through the help
of a series of grants the project has produced a
smaller complementing satellite laptop orchestra for
the purpose of training 4th and 5th graders in the
newfound art of making laptop ensemble music

55

(Ivica Bukvic, Martin, & Matthews, 2011). Since its
inception, the ensemble has had four major tours,
including a twenty-one-day tour of Europe with
stops at STEIM and IRCAM. Last February, a work
titled Half-Life won the first place on the first
international laptop orchestra composition
competition (Elliott, 2011). Apart from the fact that
the ensemble is a result of academic research and a
part of academic curriculum, one of its core goals is
also to establish L2Ork as a professional and active
ensemble outside the academic circles.

By its very design, the ensemble attracts students
from various backgrounds, amounts of musical
training, and/or computer literacy. For this reason, a
part of the project's focus is on the development of
optimal interfaces for the delivery of critical musical
cues with the assumption that users have no prior
musical experience. This challenge is further
amplified by ensemble's focus on physical presence
and choreography, most recently with the inclusion
of Taiji (Tai Chi) mind-body practice and system's
ability to “harvest” ensuing motion data and
translate it into meaningful musical cues audience
can clearly associate with.

Four unique, yet mutually dependent components
that in many ways define the ensemble's approach to
the laptop orchestra genre are:

1. interest in developing physical presence and
choreography;

2. exclusive reliance on open-source;
3. affordable design, and
4. focus on homogenous environment and optimal

usability.

In the following section we will visit some of the
most notable challenges and solutions to problems
related to both the genre and the Linux platform.

3 Homogenous Environment
One of the challenges in maintaining a laptop

orchestra is the uncertainty caused by the use of
individualized software platforms. Even for
ensembles relying on fairly homogenous
environments, such as Windows and OSX, hurdles
remain in terms of installed software, some of which
can at times collide with each other and cause
compatibility problems. Such challenges can easily
waste a majority of time allocated for a rehearsal on
seemingly trivial things, often resulting in a

frustrating experience. There is clearly a need for a
turnkey solution, a system that simply does what it is
meant to do. The author argues that chances of
achieving such an environment, particularly within
the Linux ecosystem, is to ensure that the OS and
supporting hardware are truly homogenous. L2Ork
achieves this by essentially loaning out fully
preinstalled and preconfigured systems together with
supporting hardware to students/users who are
expected to treat the ensuing amalgamation of
hardware and software as an integrated instrument.
This is where the affordable design plays a critical
role. With each seat relying on an MSI Wind Intel
Atom-based notebook, the total cost per station at
$750 is typically less than most mainstream mobile
devices and their requisite audio hardware. Given
the convenient name, each station was assigned a
letter of the alphabet, a corresponding wind name
(e.g. Austru, Briza, Cyclone, etc.) and a static IP
address. IP addresses are distributed evenly starting
with 192.168.2.10 for Austru, *.12 for Briza, *.14
for Cyclone, etc. with the remaining odd IP
addresses reserved for projected future growth.

Another advantage of such low-power setup is in
the way it encourages creation of new content for the
ensemble. The severe computational limits of
individual computers in the ensemble literally force
artists to approach new compositions by thinking
about each station as a small piece of a much larger
ecosystem, rather than composing essentially entire
work on a single laptop and then “exploding” parts
to individual machines. Based on the experience
accrued through L2Ork, it is author's belief that the
two approaches yield distinctly different results for
performers and audience alike. Other advantages
related to the choice of the aforesaid netbooks is
reliable open-source driver support. As a result,
L2Ork's setup supports all functions provided by the
hardware, including standby, hibernate, and other
advanced functionality that may be of use during
pre-concert tech setup. For a more detailed
breakdown of L2Ork's hardware infrastructure,
please consult the NIME 2011 publication (I. Bukvic
et al., 2010).

While initially based on modified Ubuntu 9.04
and 9.10 releases, L2Ork currently relies on the
mainstream Ubuntu 10.04 LTS distribution. In the
near term the ensemble is looking to migrate to a
newer hardware with the next target OS choice
likely being Ubuntu 12.04. With every Ubuntu

56

upgrade, the author has identified fewer system
modifications that were necessary to produce
optimal configuration. The most notable alteration to
the current iteration is the real-time kernel that
enables even low-power Atom-based notebooks to
deliver reliable low-latency performance. To further
streamline system use in both rehearsal and
performance scenarios the desktop has been
enhanced with a set of operational and usability
tweaks and customizations. Operational
enhancements deal with use-specific needs that
minimize potentially undesirable degradation in
system's performance. These include real-time
priorities for audio-related tasks, appropriate HD
sleep and swappiness settings that abate potential
xruns caused by HD usage, CPU throttling policy
that automatically detects JACK server running and
transitions in the “performance” mode, disabling
screen savers and screen sleep timers that may
interfere with the display during rehearsals and
performances, associating static local IP address
through the wired ethernet interface, and automatic
reloading of bluetooth driver upon resuming the
notebook to minimize potential problems with
Wiimote pairing. In addition, usability
enhancements include a series of shell script
wrappers that provide turnkey initialization of
various pieces stored in a form of application
shortcuts (we will discuss these further below), as
well as use of compiz (“Compiz Home,” n.d.) for the
purpose of providing a more responsive and user-
friendly desktop environment. A limited number of
desktop shortcuts provides access to the most
common functionality, like Web browsing, as well
as a shortcut for force-quitting potential runaway
processes. For the purpose of minimizing initial
setup overhead, every system by default has auto-
login enabled and the desktop's appearance is
streamlined to promote seamless performer
migration among different stations, should such a
need arise.

3.1 Synchronization
L2Ork's infrastructure supports up to sixteen

performers and despite its homogeneous design,
several challenges arose from the ongoing attempts
to synchronize stations and provide a new way to
affect performance structure by cross-pollinating
control data. A number of works written specifically
for the ensemble rely on this component—for

example in composition Rain one performer's action
audibly percolates through other systems.
Consequently, increased performer activity can
quickly result in a relatively high amount of traffic
to the point where the ensuing aural soundscape is
built from stochastic percolations of short attack-
based sounds propagated through the network. To
achieve the said goal in this and other similar
scenarios we rely primarily upon control data. Given
the ensemble relies on wired, rather than wireless
network, it is also possible to exchange high-
bandwidth audio data among different members of
the ensemble. In such, potentially high-network-
traffic environment, wireless communication has
proved surprisingly unreliable. Even when
experimenting with industrial grade Cisco wireless
router in conjunction with TCP packets over an
isolated local network, we still encountered one or
more machines receiving time-critical cues up to a
second later. Therefore wireless communication has
proven inadequate for any kind of synchronized
music production.

The ensuing local area network is shielded from
the external network traffic and thus limits potential
network packet collisions. For this reason, all
notebooks broadcast control data using UDP
packets, enabling the individual stations to simply
filter streams they wish to monitor and/or interact
with. This has allowed the system to have a high
flexibility requiring minimal configuration (Fig.1).

Figure 1. System synchronization.

Another challenge associated with
synchronization is related to a seemingly trivial

57

matter of connecting concurrently up to 16 co-
located Nintendo Wiimotes. Discovering devices in
such an environment simply isn't an option as there
is no guarantee that the Wiimote will pair with the
right station. For this reason, the system uses
ethernet connectivity with predetermined local IP
address as the foundation for all synchronization
with external devices through the use of a series of
shell scripts. All shell scripts are run as part of
initialization sequence for each of the pieces.
whatismyip script is in charge of detecting local
machine's IP address that may be used for matching
score part with the station/performer.
whatismywiimote uses IP address to pair it with an
appropriate Wiimote MAC address. The reason we
did not rely on computer's MAC address as a means
of identifying individual stations is because, unlike
the hard-wired MAC address, the IP configuration
can be easily altered. Therefore, through a simple
alteration of the IP address, any station can be re-
purposed to take over a role of a different computer
in the ensemble. This has proved critical in
situations where a potential hardware failure has
rendered a particular station inoperable and yet
where a work required first n contiguous machines,
as is the case with the aforesaid Rain composition
that echoes individual aural events through the
ensemble.

Finally, as the ensemble grew, there was a
growing overhead associated with patching and
synchronization of each system, including latest
L2Ork-related software updates, as well as revisions
to compositions and the supporting software. This
has proven a problem of exponential nature often
requiring hours to administer on all 16 machines. It
has also proven prone to human error due to its
repetitive nature. Therefore, the ensemble developed
a series of shell scripts (l2ork-send and l2ork-do)
that akin to GRENDL technology (Beck, Jha,
Ullmer, Branton, & Maddineni, 2010) provides near
real-time synchronization with two notable
differences:

1. The L2Ork synchronization system relies on the
git framework, and

2. L2Ork is a homogeneous environment, which
has made synchronization considerably easier
(Fig.2).

As a result, at the beginning of every rehearsal,
systems are synced from the instructor/developer's
master machine in a matter of seconds. Additional
supporting tools were provided using ssh and sftp
protocols where instructor is capable of uploading
new versions of system software that needs to be
applied locally using administrator permissions.
Such files are accompanied by an installer that
administers all changes with minimal interaction
from users. All these changes have vastly minimized
the amount of time required to administer the
ensemble, as well as provided for a more enjoyable
experience among its users, many of whom have
limited computer literacy and/or knowledge of
music.

Figure 2. System synchronization.

3.2 Pd-L2Ork
For its audio-related digital signal processing and

interfacing with external devices, L2Ork relies
exclusively on the combination of JACK server
(Davis & others, n.d.) and in-house version of Pure-
Data (PD) (Puckette, 1996) titled Pd-L2Ork (Ivica
Bukvic, n.d.). Former is integrated through QjackCtl
JACK front-end that is also responsible for running
a series of start-up scripts to ensure that the OS is
running optimally (e.g. disabling wireless network to
minimize potential confusion from having two active
network connections, and setting CPU into
performance mode).

Pd-L2Ork is an ambitious project in and of itself.
Initially, the project's output was limited to upstream

58

patches. In the fall of 2010, however, mainly due to
increasingly divergent interests and needs between
L2Ork and the upstream PD distribution, the author
decided to create a fork. Since, the project has
significantly altered the PD's core functionality with
more than two hundred bug-fixes and new features.
Based on the 0.42.6 branch of Pd-Extended (“Pd-
extended — PD Community Site,” n.d.), Pd-L2Ork
focuses on two key areas: robust and stable
operation of both the audio engine and GUI, and
usability improvements to the runtime environment
and editor. Unlike early iterations, more recent
versions of Pd-L2Ork have had a crash-free streak
for over a year, including over twenty evening-long
shows and performances. The system's GUI is more
resilient in high-bandwidth scenarios, while a series
of new objects, including a threaded implementation
of Linux-specific Nintendo Wiimote external that
allows bi-directional communication without xruns
have further enhanced its usability. The
disis_wiimote external is of particular importance as
L2Ork makes extensive use of haptic feedback to
allow performers to monitor critical operation, even
sense tempo and beat, without having to look at the
screen, something that has proven particularly useful
in practicing Taiji choreography.

Another notable area of Pd-L2Ork are extensive
improvements to the editor. Some of them include
improved scrolling algorithm, fixing all known GOP
redrawing bugs and instabilities, addressing all
known major bugs, adding infinite undo, ability for
iemgui objects' and canvas' properties to be altered
via GUI handles rather than through a separate
properties window, and the re-skinning the GUI to
give the application a more contemporary feel. Most
of the core editing actions now rely on Tcl toolkit's
“tags,” e.g. displacing a large number of objects.
This change has resulted in a significantly lower
CPU footprint. Based on preliminary tests, moving a
modest graph-on-parent-enabled abstraction now
yields no noticeable CPU overhead on a low-power
Intel i3 processor, while the same action using
continuous redraws (legacy approach) encumbers up
to 15% of the CPU on the same hardware. Objects
can be also easily layered on top of each other and
the magicglass signal monitoring tool has offered a
more efficient approach to debugging. All of these
features have helped streamline the production of
performance interfaces (e.g. input/output monitoring
and visual score engine) within PD's environment.

Pd-L2Ork project is certainly interested in seeing its
contributions adopted upstream. However, given the
lack of control over this process or its pace, it is
author's belief that maintaining a separate version
has allowed the ensemble to dramatically increase
the pace of software's development and as such
remains the preferred choice.

4 Lessons Learned
In the world of computing there is a saying that

the last 20% towards fine-tuning a turnkey system
take 80% of the overall project time. Undoubtedly,
the same holds true for L2Ork as well. Many of the
seemingly trivial bug-fixes to the core Linux system
and more notably pd-l2ork code base have taken
weeks if not months to identify. Now, we are finally
in a position where our integrated system is
observed by a newcomer as something that just
works. L2Ork infrastructure is therefore regarded as
one fully integrated whole and the fact that it relies
on Linux, beyond the obvious potential benefits of
such an approach, are becoming entirely transparent
to the user. It is author's conviction that this is where
Linux's future lies. It is not the advocacy, or that
curious yet often incomplete feature. It is the
transparency coupled with unprecedented flexibility
and power of such a system that make it a truly
powerful platform. It is truly those last 20% that
have consumed countless hours and yet rewarded in
unforeseen ways.

Ironically, as we look forward to L2Ork's next
rehearsal and a tour, the excitement behind the fact
that the infrastructure is robust and stable has all but
worn off. And even though some of us still
remember the countless hours spent on many of pd-
l2ork's novel features, we've finally arrived at the
point where one can simply expect nothing less than
stability, thinking this is simply the way it's
supposed to be.

For additional information on the project, pd-l2ork
and other supporting software, and video
instructables, visit L2Ork at
http://l2ork.music.vt.edu.

5 Acknowledgments
The author would like to hereby thank all L2Ork's

Stakeholders and Sponsors without whose vision
and support this project would've never seen the
light of the day. Stakeholders are (listed in
alphabetic order): Virginia Tech Alumni Relations,

59

the Arts Initiative, College of Architecture and
Urban Studies, Collaborative for Creative
Technologies in the Arts and Design, Center for
Human-Computer Interaction, Center for
Instructional Design and Educational Research,
College of Liberal Arts & Human Sciences, Creative
Technologies Experiential Galleria, Digital
Interactive Sound & Intermedia Studio, Institute for
Creativity, Arts & Technology, Institute for Critical
Technology and Applied Science, Institute for
Distance and Distributed Learning, Institute for
Society, Culture & Environment, Information
Technology, Learning Technologies, Department of
Music, Office of Academic Assessment, Outreach &
International Affairs, School of Education, and the
School of Performing Arts and Cinema. Sponsors
are MSI Computer Inc., Renoise Inc., Roland
Corporation, and Sweetwater Inc.

References
Beck, S. D., Jha, S., Ullmer, B., Branton, C., &

Maddineni, S. (2010). GRENDL: grid
enabled distribution and control for Laptop
Orchestras. ACM SIGGRAPH 2010 Posters
(p. 84).

Bukvic, I., Martin, T., Standley, E., & Matthews, M.
(2010). Introducing L2Ork: Linux Laptop
Orchestra. Interfaces, (Nime), 170–173.

Bukvic, Ivica. (n.d.). Virginia Tech Department of
Music L2Ork - Software - Linux Laptop
Orchestra. Retrieved February 8, 2012, from
http://l2ork.music.vt.edu/main/?page_id=56

Bukvic, Ivica, Martin, T., & Matthews, M. (2011).
Moving Beyond Academia Through Open
Source. Solutions–Introducing L2Ork,
Virginia Tech’s Linux Laptop Orchestra.
Journal SEAMUS.

Compiz Home. (n.d.). Retrieved February 28, 2012,
from http://www.compiz.org/

Davis, P., & others. (n.d.). JACK Audio Connection
Kit (software).

Elliott, J. (2011, September 29). Virginia Tech’s
Linux Laptop Orchestra to perform at
Virginia State Fair | Virginia Tech News |

Virginia Tech. Retrieved February 28, 2012,
from
http://www.vtnews.vt.edu/articles/2011/09/0
92911-clahs-l2orkstatefair.html

International Association of Laptop Orchestras.
(n.d.). Retrieved February 28, 2012, from
http://ialo.org/doku.php/laptop_orchestras/or
chestras

Kapur, A., Darling, M., Wiley, M., Vallis, O.,
Hochenbaum, J., Murphy, J., Diakopolus,
D., et al. (2010). The Machine Orchestra.
Proceedings of the International Computer
Music Conference (pp. 554–558).

Pd-extended — PD Community Site. (n.d.).
Retrieved February 8, 2012, from
http://puredata.info/community/projects/soft
ware/pd-extended/?searchterm=pd-extended

Phillips, D. (2010, May). Introducing L20rk: the
Linux Laptop Orchestra | Linux Journal.
Retrieved February 28, 2012, from
http://www.linuxjournal.com/article/10694

Puckette, M. (1996). Pure Data: another integrated
computer music environment. IN
PROCEEDINGS, INTERNATIONAL
COMPUTER MUSIC CONFERENCE, 37—
41.

Smallwood, S., Cook, P., & Trueman, D. (2009).
Don’t Forget the Laptop: A History of
Hemispherical Speakers at 10. M. Kuo, D.
Poxson, Y. Kim, F. Mont, J. Kim, E.
Schubert, and S. Lin. Proceedings of the
New Instruments for Musical Expression,
Pittsburgh, PA, USA.

Trueman, D., Cook, P., Smallwood, S., & Wang, G.
(2006). PLOrk: Princeton laptop orchestra,
year 1. Proceedings of the International
Computer Music Conference (pp. 443–450).

Wang, G., Bryan, N., Oh, J., & Hamilton, R. (2009).
Stanford laptop orchestra (slork).
Proceedings of the International Computer
Music Conference (Vol. 505, p. 508).

60

Studio report: Linux audio for multi-speaker natural speech
technology

Charles FOX, Heidi CHRISTENSEN and Thomas HAIN
Speech and Hearing

Department of Computer Science
University of Sheffield , UK

charles.fox@sheffield.ac.uk

Abstract

The Natural Speech Technology (NST) project is the
UK’s flagship research programme for speech recogni-
tion research in natural environments. NST is a collab-
oration between Edinburgh, Cambridge and Sheffield
Universities; public sector institutions the BBC, NHS
and GCHQ; and companies including Nuance, EADS,
Cisco and Toshiba. In contrast to assumptions made
by most current commercial speech recognisers, nat-
ural environments include situations such as multi-
participant meetings, where participants may talk over
one another, move around the meeting room, make
non-speech vocalisations, and all in the presence of
noises from office equipment and external sources such
as traffic and people outside the room. To generate
data for such cases, we have set up a meeting room /
recording studio equipped to record 16 channels of au-
dio from real-life meetings, as well as a large computing
cluster for audio analysis. These systems run on free,
Linux-based software and this paper gives details of
their implementation as a case study for other users
considering Linux audio for similar large projects.

Keywords

Studio report, case study, speech recognition, diarisa-
tion, multichannel

1 Introduction

The speech recognition community has evolved
into a niche distinct from general computer au-
dio and Linux audio in particular. It has its own
large collection of tools, some of which have been
developed continually for over 20 years such as
the HTK Hidden Markov Model ToolKit [Young
et al., 2006]1. We believe there could be more
crosstalk between the speech and Linux audio
worlds, and to this end we present a report of

1Currently owned by Microsoft, source available gratis
but not libre. Kaldi is a libre alternative currently under
development, (kaldi.sourceforge.net).

our experiences in setting up a new Linux-based
studio for dedicated natural speech research.

In contrast to assumptions made by current
commercial speech recognisers such as Dragon
Dictate, natural environments include situations
such as multi-participant meetings [Hain et al.,
2009], where participants may talk over one an-
other, move around the meeting room, make non-
sentence utterances, and all in the presence of
noises from office equipment and external sources
such as traffic and people outside the the room.
The UK Natural Speech Technology project aims
to explore these issues, and their applications to
scenarios as diverse as automated TV programme
subtitling; assistive technology for disabled and
elderly health service users; automated business
meeting transcription and retrieval, and home-
land security.

The use of open source software is practically a
prerequisite for exploratory research of this kind,
as it is never known in advance which parts of
existing systems will need to be opened up and
edited in the course of research. The speech
community generally works on offline statistical,
large data-set based research. For example cor-
pora of 1000 hours of audio are not uncommon
and require the use of large compute clusters to
process them. These clusters already run Linux
and HTK, so it is natural to extend the use of
Linux into the audio capture phase of research.
As speech research progresses from clean to nat-
ural speech, and from offline to real-time process-
ing, it is becoming more integrated with general
sound processing [Wolfel and McDonough, 2009],
for example developing tools to detect and clas-
sify sounds as precursors to recognition. The use
of Bayesian techniques in particular emphasises
the advantages of considering the sound process-

61

ing and recognition as tightly coupled problems,
and using tightly integrated computer systems.
For example, it may be useful for Linux cluster
machines running HTK in real-time to use high
level language models to generate Bayesian prior
beliefs for low-level sound processing occurring in
Linux audio.

This paper provides a studio report of our ini-
tial experiences setting up a Linux based studio
for NST research. Our studio is based on a typical
meeting room, where participants give presenta-
tions and hold discussions. We hope that it will
serve as a self-contained tutorial recipe for other
speech researchers who are new to the Linux au-
dio community (and have thus included detailed
explanations of relatively simple Linux audio con-
cepts). It also serves as an example of the audio
requirements of the natural speech research com-
munity; and as a case study of a successful Linux
audio deployment.

2 Research applications

The NST project aims to use a meeting room stu-
dio, networked home installations, and our anal-
ysis cluster to improve recognition rates in natu-
ral environments, with multiple, mobile speakers
and noise sources. We give here some examples
of algorithms relevant to natural speech, and their
requirements for Linux audio.

Beamforming and ICA are microphone-array
based techniques for separating sources of au-
dio signals, such as extracting individual speak-
ers from mixtures of multiple speakers and noise
sources. ICA [Roberts and Everson, 2001] typ-
ically makes weak assumptions about the data,
such as assuming that the sources are non Gaus-
sian in order to find a mixing matrix M which
minimises the Gaussian-ness over time t of the la-
tent sources vector xt, from the microphone array
time series vectors yt, in yt = Mxt.

ICA can be performed with as few microphones
as there are sound sources, but gives improved
results as the number of microphones increases.
Beamforming [Trees, 2002] seeks a similar out-
put, but can include stronger physical assump-
tions - for example known microphone and source
locations. It then uses expected sound wave
propagation and interference patterns to infer the
source waves from the array data. Beamform-
ing is a high-precision activity, requiring sample-

synchronous accuracy between recorded channels,
and often using up to 64 channels of simultaneous
audio in microphone arrays (see for example the
NIST Mark-III arrays [Brayda et al., 2005]).

Reverberation removal has been performed in
various ways, using single and multi-channel data.
In multi-channel settings, sample-synchronous
audio is again used to find temporal correlations
which can be used to separate the original sound
from the echos. In the iPhone4 this is performed
with two microphones but performance may in-
crease with larger arrays [Watts, 2009].

Speaker tracking may use SLAM techniques
from robotics, coupled with acoustic observation
models, to infer positions of moving speakers in
a room (eg. [Fox et al., 2012], [Christensen and
Barker, 2010]). This can be used in conjunction
with beamforming to attempt retrieval of individ-
ual speaker channels from natural meeting envi-
ronments, and again relies on large microphone
arrays and sample-accurate recording.

Part of the NST project called ‘homeService’
aims to provide a natural language interface to
electrical and electronic devices, and digital ser-
vices in people’s homes. Users will mainly be dis-
abled people with conditions affecting their ability
to use more conventional means of access such as
keyboard, computer mouse, remote control and
power switches. The assistive technology (AT)
domain presents many challenges; of particular
consequence for NST research is the fact that
users in need of AT typically have physical dis-
abilities associated with motor control and such
conditions (e.g. cerebral palsy) will also often af-
fect the musculature surrounding the articulatory
system resulting in slurred and less clear speech;
known as dysarthric speech.

3 Meeting room studio setup

Our meeting room studio, shown in fig. 1, is
used to collect natural speech and training data
from real meetings. Is centred on a six-person
table, with additional chairs around the walls for
around a further 10 people. It has a whiteboard at
the head of the table, and a presentation projec-
tor. Typical meetings involve participants speak-
ing from their chairs but also getting up and walk-
ing around to present or to use the whiteboard. A
2×2.5m aluminium frame is suspended from the
ceiling above the table and used for mounting au-

62

Figure 1: Meeting room recording setup. The
boxes on the far wall are active-badge trackers.
The frame on the ceiling and the black cylinder
on the table each contain eight condenser micro-
phones. Participants wear headsets and active
badges.

dio equipment. Currently this consists of eight
AKG C417/III vocal condenser microphones, ar-
ranged in an ellipse around the table perime-
ter. A further eight AKG C417/IIIs are embed-
ded in a 100mm radius cylinder placed in the ta-
ble centre to act similarly to eight-channel multi-
directional tele-conferencing recorder. The table
can also include three 7-channel DevAudio Micro-
cones (www.dev-audio.com), which are commer-
cial products performing a similar function. The
Microcone is a 6-channel microphone array which
comes with propriety drivers and an API. A fur-
ther 7th audio channel contains a mix of the other
6 channels as well as voice activity detection and
sound source localisation information annotation.
Some noise reduction and speech enhancement ca-
pabilities are provided, although details of the ex-
act processing are not made public.

There are four Sennheiser ew100 wireless head-
sets which may be mounted on selected partici-
pants to record their speech directly. The stu-
dio will soon also include a Radvision Scopia
XT1000 videoconferencing system, comprised of
a further source-tracking steered microphone and

two 1.5m HD presentation screens. In the four
upper corners of the meeting room are mounted
Ubisense infrared active badge receivers, which
may be used to track the 3D locations of 15 mo-
bile badges worn by meeting participants. (The
university also has a 24-channel surround sound
diffusion system used in an MA Electroacoustic
music course [Mooney, 2005], which may be use-
ful for generating spatial audio test sets.)

Sixteen of the mics are currently routed
through two MOTU 8Pre interfaces, which take
eight XLR or line inputs each. Both currently
run at 48kHz but can operate up to 96kHz. The
first of these runs in A/D conversion mode and
sends all 8 digitised channels via a single ADAT
Lightpipe fibre optic cable to the second 8Pre.
The second 8Pre receives this input, along with its
own eight audio channels and outputs all 16 chan-
nels to the DAW by Firewire 400 (IEEE 1394, 400
bits/sec). (The two boxes must be configured to
have (a) the same speed, (b) 1x ADAT protocol
and (c) be in be in converter/interface mode re-
spectively.) Further firewire devices will be added
to the bus later to accommodate the rest of the
microphones in the room.

4 Linux audio system review

Fig. 2 outlines the Linux audio system and high-
lights the parts of the many possible Linux audio
stacks that are used for recording in the meet-
ing room studio. The Linux audio architecture
has grown quite complex in recent years, so is re-
viewed here in detail.

OSS (Open Sound System) was developed in
the early 1990s, focused initially on Creative
SoundBlaster cards then extending to others. It
was a locking system allowing only one program
at a time to access the sound card, and lacked
support for features such as surround sound. It
allowed low level access to the card, for exam-
ple by cataudio.wav > /dev/dsp0. ALSA (Ad-
vanced Linux Sound Architecture) was designed
to replace OSS, and is used on most current distri-
butions including our Ubuntu Studio 11.10. Por-
tAudio is an API with backends that abstract
both OSS and ALSA, as well as sound systems of
non-free platforms such as Win32 sound and Mac
CoreAudio, created to allow portable audio pro-
grams to be written. Several software mixer sys-
tems were built to resolve the locking problem for

63

JACK

ALSA OSS Win32 CoreAudio

Pulse ESD aRts

ffado

firewire USB PCI

OSS(padsp) canberra GStreamerALSA

ALSA

Pro apps
eg.

Ardour
HTK tools

Consumer apps
eg.

VLC, Banshee, Firefox

streaming

PortAudio

Figure 2: Audio system for recording.

consumer-audio applications, including PulseAu-
dio, ESD and aRts. Some of these mixers grew to
take advantage of and to control hardware mix-
ing provided by sounds cards, and provided addi-
tional features such as network streaming. They
provided their own APIs as well as emulation lay-
ers for older (or mixer-agnostic) OSS and ALSA
applications. (To complicate matters further, re-
cent versions of OSS4 and ALSA have now be-
gun to provide their own software mixers, as well
as emulation layers for each other.) Many cur-
rent Linux distributions including Ubuntu 11.10
deploy PulseAudio running on ALSA, and also in-
clude an ALSA emulation layer on Pulse to allow
multiple ALSA and Pulse applications to run to-
gether through the mixer. Media libraries such
as GStreamer (which powers consumer-audio ap-
plications such as VLC, Skype and Flash) and
libcanberra (the GNOME desktop sound system)
have been developed closely with PulseAudio, in-
creasing its popularity. However, Pulse is not de-
signed for pro-audio work as such work requires
very low latencies and minimal drop-outs.

The JACK system is an alternative software
mixer for pro-audio work. Like the other soft
mixers, JACK runs on many lower level plat-

forms – usually ALSA on modern Linux machines.
The bulk of pro-audio applications such as Ar-
dour, zynAddSubFx and qSynth run on JACK.
JACK also provides network streaming, and em-
ulations/interfaces for other audio APIs including
ALSA, OSS and PulseAudio. (Pulse-on-JACK
is useful when using pro and consumer applica-
tions at the same time, such as when watching a
YouTube tutorial about how to use a pro appli-
cation. This re-configuration happens automati-
cally when JACK is launched on a modern Pulse
machine such as Ubuntu 11.10.)

5 Software setup

Our DAW is a relatively low-power Intel E8400
(Wolfdale) duo-core, 3GHz, 4Gb Ubuntu Stu-
dio 11.10-64-bit machine. Ubuntu studio was in-
stalled directly from CD – not added as pack-
ages to an existing Ubuntu installation – this
gives a more minimalist installation than the lat-
ter approach. In particular the window manager
defaults to the low-power XFCE, and resource-
intensive programs such as Gnome-Network-
Monitor (which periodically searches for new wifi
networks in the background) are not installed.
Ubuntu was chosen for compatibility and famil-
iarity with our other desktop machines. (Sev-
eral other audio distributions are available includ-
ing PlanetCCRMA(Fedora), 64Studio(Debian),
ArchProAudio(Arch)).

The standard ALSA and OSS provide inter-
faces to USB and PCI devices below, and to
JACK above. However for firewire devices such
as our Pre8, the ffado driver provides a direct
interface to JACK from the hardware, bypassing
ALSA or OSS. (Though the latest/development
version provides an ALSA output layer as well.)
Our DAW uses ffado with JACK2 (Ubuntu pack-
ages: jack2d, jack2d-firewire, libffado,
jackd, laditools. JACK1 is the older but per-
haps more stable single-processor implementation
of the JACK API) and fig. 3 shows our JACK set-
tings, in the qjackctl tool. The firewire backend
driver (ffado) is selected rather than ALSA.

We found it useful to unlock memory for good
JACK performance.2 As well as ticking the un-

2By default, JACK locks all memory of its clients into
RAM, ie. tells the kernel not to swap their pages to virtual
memory on disc, see mlock(2). Unlock memory relaxes this
slightly, allowing just the large GUI components of clients

64

lock memory option, the user must also be allowed
to use it, eg. adduser charles audio. Also the
file /etc/security/limits.d/audio.conf was
edited (followed by a reboot) to include
@audio - rtprio 95
@audio - memlock unlimited
These settings can be checked by
ulimit -r -l.
The JACK sample rate was set to 48kHz,

matching the Pre8s. (This is a good sample rate
for speech research work as it is similar to CD
quality but allows simple sub-sampling to power-
of-two frequencies used in analysis.)

Fig. 4 shows the JACK connections (again in
qjackctl) for our meeting room studio setup.
The eight channels from the converter-mode Pre8
appear as ADAT optical inputs, and the eight
channels from the interface-mode Pre8 appear as
‘Analog’ inputs, all within the firewire device. Ar-
dour was used with two tracks of eight channel
audio to record as shown in fig. 5.

5.1 Results
Using this setup we were able to record simul-
taneously from six overhead microphones, eight
table-centre microphones, and two wireless head-
sets, as illustrated in fig. 5. We experienced
no JACK xruns in a ten minute, 48kHz, 32-bit,
16-channel recording, and the reported JACK la-
tency was 8ms. A one hour meeting recording
with the same settings experienced only 11 xruns.
Total CPU usage was below 25% at all times, with
top listing the following typical total process CPU
usages: jack 11%, ardour 8%, jack.real 3%,
pulseaudio 3%.

However, we were unable to play audio back
through the Pre8s, hearing distorted versions of
the recording. For our speech recognition this
is relatively unimportant, and can be worked
around by streaming the output over the network
with JACK and playing back on a second ma-
chine. The ffado driver’s support for the Pre8
hardware is currently listed as ‘experimental’ so
work is needed here to fix this problem.

The present two Pre8 system is limited to 16
audio channels, we plan to extend it with fur-
ther firewire devices to record from more audio
sources around the meeting room and from tele-

to perform swapping, leaving more RAM free for the audio
parts of clients.

Figure 3: 16 channel recording JACK settings.

Figure 4: 16 channel recording JACK connec-
tions.

conferencing channels in future. We have not
yet needed to make further speed optimisations,
but we note that for future, more-channel sys-
tems, two speedups include disabling PulseAu-
dio (adding pulseaudio -kill and pulseaudio
-start to qjackctl’s startup and shutdown option
is a simple way to do this); and installing the real-
time rt-linux kernel.

65

Figure 5: 16 channel meeting room recording in
Ardour, using two 8-channel tracks.

JACK

ALSA OSS Win32 CoreAudio

Pulse ESD aRts

ffado

firewire USB PCI

OSS(padsp) canberra GStreamerALSA

ALSA

Pro apps
eg.

Ardour
HTK tools

Consumer apps
eg.

VLC, Banshee, Firefox

streaming

PortAudio

Figure 6: Audio system for data analysis.

5.1.1 Audio analysis
Analysis of our audio data is performed on a com-
pute cluster of 20 Linux nodes with 96 proces-
sor cores in total, running the Oracle (formerly
Sun) Grid Engine, the HTK Hidden Markov
Model Tool Kit [Young et al., 2006] and the
Juicer recognition engine [Moore et al., 2006].
During analysis, audio playback on desktop ma-
chines is useful and is done with the setup of

fig. 6. For direct audio connections the HTK
tools make use the OSS sound system, which may
be emulated on PulseAudio on a modern ma-
chine, by installing the padsp tool (Ubuntu pack-
age pulseaudio-utils 0.9.10-1ubuntu1 i386)
then prefixing all audio HTK commands with
padsp. Similarly, Juicer allows the use of an OOS
front, the implementation of a JACK plugin is in
progress.

The cluster may be used both for online and
offline processing. An example of online process-
ing can be found in the description of an online
transcription system for meetings [Garner et al.,
2009]. Such systems distinguish between far and
near-field audio sources and employ beamform-
ing and echo cancellation procedures [Hain et al.,
2009] for which either sample synchronicity or at
least minimal latency between channels is of ut-
most importance. For both offline and online pro-
cessing typically audio at 16kHz/16bit is required,
to be converted into so-called feature streams (for
example Perceptual Linear Predictive (PLP) fea-
tures [Hermansky, 1990]) of much lower bit rate.
Even higher sampling frequencies (up to 96kHz
are commonplace) are often required for cross-
correlation based sound source localisation algo-
rithms to provide sufficient time resolution in or-
der to detect changes in angles down to one de-
gree. In offline mode the recognition of audio typ-
ically operates at 10 times real-time (i.e. 1 hour
of audio in many channels takes 10 hours to pro-
cess). However, the grid framework allows the
latency of processing to drop to close to 1.5 times
real-time using massive parallelisation.

6 Future directions

The ultimate goal of NST is to obtain transcrip-
tions of what was said in natural environments.
Traditionally, the source separation and denoising
techniques of sec. 2 have been treated as a sepa-
rate preprocessing step, before the cleaned audio
is passed to a separate transcriber such as HTK.
However for challenging environments this is sub-
optimal, as it reports only a single estimate of the
denoised signal rather than Bayesian information
about its uncertainty. Future integrated systems
could fuse the predictions from transcription lan-
guage models with inference and reporting of low-
level audio data, for example by passing real-time
probabilistic messages between HTK’s transcrip-

66

tion inference (on a Linux computing cluster) and
low-level audio processing (on desktop or embed-
ded Linux close to the recording hardware.)

For training and testing speaker location track-
ing systems it is useful to build a database of
known speaker position sequences, which need to
be synchronised to the audio. Positions change at
the order of seconds so it is wasteful to use audio
channels to record them – however we note that
JACK is able to record MIDI information along-
side audio, and one possibility would be to encode
position from our Ubisense active badges as MIDI
messages, synchronous with the audio, and record
them together for example in Ardour3. It could
also be useful to – somehow – synchronise video
of meetings to JACK audio.

The homeService system has two major parts,
namely hardware components that are deployed
in people’s homes during trial (Android tablet,
Microcone, and Linux box responsible for audio
capture, network access, infrared and blue tooth
communication), as well as our Linux computing
cluster back at the university running the pro-
cesses with particularly high demands in terms of
processing power and memory usage. The main
audio capturing will take place on a Linux box
in the users’ home, and we plan to develop a
setup which will enable the Microcone and JACK
to work together and provide – if needed – live
streaming of audio over the network.

The main requirements of NST research for
Linux audio are support for sample-synchronous,
many (e.g. 128 or more) channel recording,
and communication with cluster computing and
speech tools such as HTK. As natural speech tech-
nology makes closer contact with signal process-
ing research, we expect to see more speech re-
searchers moving to Linux audio in the near fu-
ture, and we hope that this paper has provided
some guidance for those who wish to make this
move, as well as a guide for the Linux audio com-
munity about what technologies are important to
this field.

Acknowledgements

The research leading to these results was
supported by EPSRC Programme Grant
EP/I031022/1 (Natural Speech Technology).

References

L. Brayda, C. Bertotti, L Cristoforetti, M. ,
Omologo, and P. Svaizer. 2005. Modifications
on NIST MarkIII array to improve coherence
properties among input signals. In Proc. of
118th Audio Engineering Society Conv.

H. Christensen and J. Barker. 2010. Speaker
turn tracking with mobile microphones: com-
bining location and pitch information. In Proc.
of EUSIPCO.

C. Fox, M. Evans, M. Pearson, and T. Prescott.
2012. Tactile SLAM with a biomimetic
whiskered robot. In Proc. ICRA.

P. N. Garner, J. Dines, T. Hain, A. el Hannani,
M. Karafiat, D. Korchagin, Mike L., V. Wan,
and L. Zhang. 2009. Real-Time ASR from
Meetings. In Interspeech’09, pages 2119–2122.

T. Hain, L. Burget, J. Dines, P. N. Garner,
A. el Hannani, M. Huijbregts, M. Karafiat,
M. Lincoln, and V. Wan. 2009. The AMIDA
2009 meeting transcription system. In Proc. In-
terspeech.

H. Hermansky. 1990. Perceptual linear predic-
tive analysis for speech. J. Acoustic Society of
America, pages 1738–1752.

J. Mooney. 2005. Sound Diffusion Systems for
the Live Performance of Electroacoustic Music.
Ph.D. thesis, University of Sheffield.

D. Moore, J. Dines, M. Magimai Doss, J. Vepa,
O. Cheng, and T. Hain. 2006. Juicer: A
weighted finite state transducer speech decoder.
In Machine Learning for Multimodal Interac-
tion, pages 285–296. Springer-Verlag.

S. Roberts and R. Everson, editors. 2001. Inde-
pendent Components Analysis: Principles and
Practice. Cambridge.

H. L. Van Trees. 2002. Optimum array process-
ing. Wiley.

L. Watts. 2009. Reverberation removal. In
United States Patent Number 7,508,948.

M. Wolfel and J. McDonough. 2009. Distant
Speech Recognition. Wiley.

S. Young, G. Evermann, M. Gales, T. Hain,
D. Kershaw, XA Liu, G. Moore, J. Odell, D. Ol-
lason, D. Povey, et al. 2006. The HTK book.

67

68

A framework for dynamic spatial acoustic scene generation with
Ambisonics in low delay realtime

Giso GRIMM
Medical Physics Group
Universität Oldenburg

26111 Oldenburg,
Germany

g.grimm@uni-oldenburg.de

Tobias HERZKE
HörTech gGmbH

Marie-Curie-Str. 2
26129 Oldenburg,

Germany,
t.herzke@hoertech.de

Abstract

A software toolbox developed for a concert in which
acoustic instruments are amplified and spatially pro-
cessed in low-latency is described in this article. The
spatial image is created in Ambisonics format by a set
of dynamic acoustic scene generators which can cre-
ate periodic spatial trajectories. Parameterization of
the trajectories can be selected by a body tracking in-
terface optimized for seated musicians. Application of
this toolbox in the field of hearing research is discussed.

Keywords

Ambisonics, digital processing, concert performance

1 Introduction

Spatially distributed presentation of music can
contribute to an improved perception. In the
16th century, many composers used several choirs
and groups of musicians at distributed places in
church music. However, most conventional con-
cert locations do not provide the capabilities to
have the musicians placed around the audience.
Spatial presentation with loudspeakers offers new
possibilities.

The ensemble ORLANDOviols1 developed and
performed a concert program, in which the audi-
ence is surrounded by the five musicians. Addi-
tionally, the sound is processed by a low-latency
Ambisonics system and presented in dynamic spa-
tial configurations. The instruments virtually
move around the audience. Trajectories matched
to the music potentially provide easier access to
the concepts in music and may add further levels
of interpretation. A central piece in the program
is an “In Nomine” fantasy from the 16th century
by Mr. Picforth, in which each voice is related to
one of the planets known in that time [Grimm,

1http://www.orlandoviols.de/

2012]. For example, during this piece the musi-
cians virtually follow the planet’s trajectories.

Such a concert with simultaneous presentation
of acoustic sources and their spatially processed
images requires careful considerations of psycho-
acoustic effects, specifically the precedence effect.
Appropriate amplification and placement of loud-
speakers and musicians are a prerequisite for a
spatial image which is dominated by the processed
sound and not by the direct sound of the musi-
cians [Grimm et al., 2011]. A set of software com-
ponents is required to make such a concert pos-
sible. The Open Sound Control (OSC) protocol
[Wright, 2002] facilitates communication of these
components across the borders of processes and
hardware machines. The several software compo-
nents and their applications are described in the
following sections.

2 Application in a concert setup

The tools described in this paper have been de-
veloped for a concert performance entitled “Har-
mony of the Spheres”. The ensemble consists of
five musicians playing on viola da gamba (or vi-
ols), a historic bowed string instrument. Viola
da gambas come as a family - the smallest has
the size of a violin, the largest that of the dou-
ble bass. The instrument – except for the largest
one – is held with the legs, which led to its name
(’gamba’ means leg in Italian).

In the concert, five musicians (including one of
the authors) sit on the corners of a large pen-
tagon. Within the pentagon a 10 channel 3rd or-
der horizontal Ambisonics system is placed on a
regular decagon with a radius of approximately
6 meters. Within this decagon sits the audience,
with space for roughly 100 listeners. The instru-
ments are picked up with cardioid microphones

69

at a distance of approximately 40 cm, which is
a compromise between close distance for minimal
feedback problems and a large distance for a bal-
anced sound of the historic acoustic instruments.
The microphone signals are converted to the dig-
ital domain (Behringer ADA8000) and processed
on a Linux PC (Athlon X2 250). The processed
signals are then played back by the powered near
field monitors (KRK RP5). Due to the large
distance between the musicians – up to 15 me-
ters – monitoring is required. The monitor sig-
nals are created on the hardware mixer of the
sound card (RME HDSP9652) and played back to
the musicians through in-ear monitor headphones.
Two hardware controllers (Behringer BCF2000)
are used to control the loudspeaker mix and the
monitor. A separate PC is used for visualization
of levels, monitor mixer settings and the spatial
parameters. A foot switch (Behringer FBC1010)
and a virtual foot switch (Microsoft Kinect con-
nected to a netbook PC) are used for parameter
control by one of the musicians. An additional
netbook PC is used for projection of the trajec-
tories of the virtual sources at the ceiling of the
room.

Figure 1: Concert setup in a church, during re-
hearsal. The diameter of the loudspeaker ring was
13 m, fitting about 100 chairs.

3 Software components

The software components used in the toolbox for
dynamic scene generation can be divided into a
set of third party software, and specifically devel-
oped applications. The third party software in-
cludes the jack audio connection kit (jack) [Letz

and Davis, 2011]. Jack2 is used to allow for paral-
lel processing of independent signal graphs. The
digital audio workstation ’ardour’ [Davis, 2011]
is used for signal routing, mixing, recording and
playback. Convolution reverb is used for distance
coding; the convolution is done by ’jconvolver’
[Adriaensen, 2011]. The Ambisonics signals are
decoded into the speaker layout with ’ambdec’
[Adriaensen, 2011]. The tool ’mididings’ [Sacré,
2010] triggers the execution of shell scripts upon
incoming MIDI events.

3.1 Spatial processing: ’sphere’ panning
application

For the spatial processing a stand-alone jack pan-
ning application with an integrated scene gener-
ator is used. The scene generator is inspired by
the planet movements. It can create Kepler el-
lipses with an additional epicyclic component and
a random phase increment. The parameters are
radius ρ, rotation frequency f , eccentricity ε, ro-
tation of ellipse main axis θ, starting angle ϕ0, and
the epicycle parameters radius ρepi, rotation fre-
quency fepi and starting angle ϕ0,epi. The source
position on a complex plane is

z =
ρ
√

1− ε2
1− ε cos(ϕ− θ)e

iϕ + ρepie
iϕepi . (1)

The azimuth 6 z is the input argument of a 3rd or-
der horizontal ambisonics panner. Distance per-
ception in reverberant environments is dominated
by the amount of reverberation [Sheeline, 1982;
Bosi, 1990]. The distance |z| is here coded by
adding a reverberant copy of the signal. The
reverberant signal is created by a convolution
stereo-reverb. A virtual stereo loudspeaker pair
centered around the target direction given by the
virtual source azimuth is used for playback. The
width of the virtual stereo pair is controlled by the
distance. It is chosen to be maximal at the criti-
cal distance ρcrit, and converging to zero for close
and distant sources. Also the ratio between the
dry signal and the reverberant stereo signal is con-
trolled by the distance. The distance to the origin
normalized by the critical distance is ρ̂ = ρ/ρcrit.
Then the parameters of the distance coding are:

w(ρ) = wmax
ρ̂

ρ̂2 + 1
(2)

Gdry =
1

1 + ρ̂
(3)

70

Gwet = 1−Gdry (4)

The maximal width wmax and the critical distance
ρcrit can be controlled externally. Examples of
trajectories used in the concert are shown in Fig-
ure 2.

The scene generator and panning application,
named ’sphere’, is a jack application with an in-
put port for the dry signal and a stereo input port
pair for the reverberated signal. The parameters
can be controlled via OSC messages. The OSC
receiver can be configured to listen at a multi-
cast address, which allows to control multiple in-
stances in a single OSC message. To achieve a
dynamic behavior independent from the actual
processing block size, the update rate of panning
parameters is independent from the block rate.
Changes of different parameters can be accumu-
lated and applied simultaneously, either immedi-
ately or slowly within a given time.

Other features of the scene generator are send-
ing of the current azimuth to other scene gener-
ator instances via OSC, application of parameter
changes at predefined azimuths, randomization of
the azimuth, and level-dependent azimuth.

The ambisonics panner uses horizontal panning
only. For artistic reasons, a simulation of eleva-
tion is reached by gradually mixing the signal to
the zeroth order component of the ambisonics sig-
nal. By doing so the resulting ambisonics sig-
nal does not correspond to any physical acoustic
sound field anymore, however, the intention is to
have the possibility of creating a virtual sound
source without any distinct direction.

3.2 Matrix mixer
Creating an individual headphone monitor mix
for several musicians and many sources is a de-
manding task, and usually needed in situations
when a quick and efficient solution is required. In
this setup, the RME HDSP9652 sound card was
used, which offers a hardware based matrix mixer.
The existing interfaces on Linux - amixer (con-
sole) and hdspmixer (graphical) - provide full ac-
cess to that mixer. However, the lack of hardware
based remote control option makes these tools in-
efficient in time-critical situations. Therefore, a
set of applications has been developed which at-
tempts to provide a flexible solution: One appli-
cation provides an interface to the audio hard-
ware. A second application reads and stores the

Figure 2: Example trajectories in two of the
pieces: Kepler ellipses in the “In Nomine” by
Mr. Picforth (top), and chaotic movements in
the piece “Five” by John Cage (bottom).

mixer settings from and to XML files. Mixer set-
tings include panning – sin-cos-panning for two-
channel output, vector-based amplitude panning
(VBAP) for multi-channel output – and gains for
a pre-defined set of inputs and outputs. Chan-
nels which are not used in a configuration will
not be accessed. No logical difference is made be-
tween software and hardware inputs. A third ap-
plication allows control via MIDI CC events (here
coming from a Behringer BCF2000). Feedback is
sent to the controller device. A fourth applica-
tion is visualizing the gains. Editing of the gains
is planned, but not implemented yet at time of
writing. A screen-shot of the visualization tool is

71

shown in Fig. 3. The four applications share their
settings via OSC messages. A feedback filter pre-
vents from OSC message feedback.

Figure 3: Screen shot of a matrix mixer example
session.

3.3 Level metering
For the polyphonic character of many of the pieces
played in the above mentioned concert, well bal-
anced levels of the five instruments are of major
importance. Level differences between the instru-
ments of only a few dB can easily destroy the
musical structure in some pieces. Space limita-
tions make it impossible to place the mixing desk
and its operator within the Ambisonics system.
Therefore, a level metering application was de-
veloped. This level meter can measure the root-
mean-square (RMS) level and short time peak val-
ues of multiple inputs. To account for the loud-
ness difference between low instruments (double
bass size) and medium and high instruments, a
band pass filter with a pass band from 300 Hz to
3 kHz is applied before metering. The RMS level
meter operate on 10 s and 125 ms rectangular win-
dows. The 125 ms window is overlapping by 50%.
The peak levels are measured in the same win-
dows as the short time levels. The levels are sent
via OSC messages to a visualization application.
The level meter application was implemented in
the HörTech Master Hearing Aid (MHA) [Grimm
et al., 2006].

To allow for optimal mixing even without hear-
ing the balanced final mix at the sweet spot, an
indicator is used which shows the long term tar-

get level. This level can be changed by the presets
for each piece and also within pieces. Long term
level deviations can then be corrected by the op-
erator. Automatic adaption to the desired levels
bares the risk of causing feedback problems.

3.4 Parameter exchange and preset
selection

All applications exchange parameters and control
data via OSC messages. To allow a flexible inter
process communication across hardware borders,
most applications subscribe themselves to UDP
multicast addresses.

Settings of the scene generators ’sphere’ can be
loaded from setting files. Reading of preset files
and sending them as OSC messages can be trig-
gered either from the console, from the virtual
footswitch controller, from the physical footswitch
or by ardour markers. For the last option, an ap-
plication has been developed which converts ar-
dour markers into OSC messages: The applica-
tion reads an ardour session file, subscribes to
jack, and emits OSC messages whenever an ar-
dour marker position falls into the time interval
of the current jack audio block.

The several preset files can also control the
transport of ardour, to control recording of inputs
and trigger playback of additional sounds.

3.5 Visualization

Simple visualization classes have been imple-
mented for display of the trajectories of the
’sphere’ scene generators, for level monitoring and
for visual control of the monitor mixer. With
these classes applications can be built to contain
any combination of visualization tools. No graph-
ical user interaction is possible.

3.6 Implementation of virtual foot switch

In the concert application, one of the musicians
is responsible for switching scene generation pre-
sets at musically appropriate times while playing.
Since viola da gambas are played while sitting on
a chair, and the instruments are held between
the legs, it is sometimes difficult to use a real
footswitch, especially elevating the heel, without
interrupting the music. To circumvent these prob-
lems, a virtual footswitch is used which can be
controlled by a minor movement of the tip of the
foot, without the need of elevating the heel. Care

72

was taken that this footswitch is sufficiently ro-
bust to avoid false alarms and missed movements.

The virtual foot switch is implemented using
the Prime Sense depth camera of the Microsoft
Kinect game accessory [Kin, 2010]. The depth
camera captures the area of the right foot of the
musician in charge of the switching. The switch
differentiates between 4 states: No foot present
(“free”), and 3 different directions of the foot
(“straight”, “left” and “right”). The switch is
inactive in the states “free” and “straight”, and
triggers actions in the states “left” and “right”.

The depth camera uses an infrared laser diode
to illuminate the room with an infrared dot pat-
tern, which is then picked up by the camera
sensor. From the distortion of the dot pattern,
the camera is able to associate image pixels with
depth information. The computation of depth in-
formation is performed inside the camera device.
Because the infrared laser diode and the camera
sensor are laterally separated, not the complete
scene visible to the camera sensor is illuminated
with the infrared dot pattern. For these shadow
areas, the camera does not provide depth informa-
tion. Also, for small surfaces like fingertips and
reflecting surfaces like glass, the camera will often
not return a valid depth information.

The camera produces depth images of 640x480
pixels at a frame rate of 30 Hz2. The depth in-
formation in each captured depth image consists
of a matrix of 11 bit integer depth values draw.
The highest bit indicates an invalid depth value,
e.g. a shadow. The range of detectable depth is
approximately 0.5m to 5m, with better resolution
(< 1cm) at the start of this range. The depth in
meters is

d = 0.1236m tan
(
draw

2842.5
+ 1.1863

)
(5)

[Magnenat, 2011]. For depth pixel values where
this formula yields a depth d < 0m or d > 5m, we
conclude an invalid depth value.

To capture the foot of the musician, the depth
camera is mounted on a small pedestal next to
the music stand. The camera is tilted downwards
by 16 degrees to capture the floor in the area of
the foot as shown in Figure 4.

2We use the libfreenect library from the OpenKinect
[Blake, 2011] project to receive a stream of depth images.

Figure 4: Kinect depth camera detects depth dif-
ference caused by foot

Our software for the virtual foot switch starts
with a training phase before entering the detec-
tion phase. It first needs to capture the scene
without the foot, then directs the musician to
place the foot pointing naturally straight, or ro-
tated, around the heel, to the left and right, re-
spectively. 10 images are captured for each of
the 4 situations. Mean and standard deviation
for each pixel’s depth is computed. Three differ-
ential depth images are computed by subtracting
the mean depth information of the images con-
taining a foot from the empty scene. Differential
depth for pixels with invalid depth information or
too high standard deviation in either image is set
to 0, effectively excluding these pixels from fur-
ther consideration. The presence of a foot where
previously was only floor in the image will reduce
the depth information captured by the camera as
shown in Figure 4. As we are mainly interested
in the position of the front part of the foot, we
restrict the differential depth image to depth dif-
ferences in the range of 3cm to 9cm. All depth
differences outside this range are also set to zero
and will not be considered for locating the foot.
Figure 5 shows an example of such a differential
depth image for a straight pointing foot. To iden-
tify the foot, the software searches for a cluster of
depth difference pixels from bottom to top. The
first such cluster of at least 100 pixels that is found
is considered to be caused by the foot. The min-
imum rectangle that contains all three (straight,
left, right) foot clusters defines the region of inter-
est (ROI) to be used during the detection phase.
Figure 6 shows the ROI from an example session,
containing three foot clusters.

Also from depth images captured during de-
tection, differential images are computed by sub-
tracting their depth information from the empty
scene training image, and considering only depth

73

Figure 5: Differential depth image for the straight
foot state from training, identified foot cluster
painted black

Figure 6: The region of interest (ROI) for the vir-
tual foot switch containing the three foot clusters
(displayed using additive color)

differences in the range of 3cm to 9cm. During
detection, this processing is restricted to the ROI
determined from the training data.

To be able to classify depth images captured
during detection, an error function to compute
the distance of the current state to each of the
three training states containing a foot is used.
Within the ROI, for each scan line, the horizontal
coordinate xy,i with the maximum depth differ-
ence (within the range of 3cm to 9cm) is located,
where y is one of the scan lines in the ROI, and
i ∈ {current, straight, left, right}. The error func-
tion that we use is

ei =
∑
y

(xy,current − xy,i)2 (6)

For some combinations of y and i, xy,i is not de-

Figure 7: For each foot cluster from Figure 6 and
for each scan line, the horizontal coordinate with
the maximum depth difference between the train-
ing image with the foot and the empty scene is
shown

fined. These combinations do not contribute to
the error summation.

Figure 7 shows these horizontal coordinates for
the example foot clusters of Figure 6.

The training state with the lowest squared error
sum ei is then considered recognized. If, however,
the lowest error is zero, then the empty scene is
recognized.

If the left or right foot state is recognized for
seven consecutive frames (i.e. for a quarter of a
second), then the switch performs the configured
action. The straight foot state and the empty
scene do not trigger actions.

The virtual foot switch is initialized with a list
of actions to perform. When the foot is recog-
nized in the right or left position reliably, then the
software triggers the next or previous action from
this list, respectively. Actions are system com-
mands and executed in a shell. For the concert,
the actions influence the trajectory generator by
sending appropriate OSC messages.

4 Application in hearing research

The scene generation toolbox described in the pre-
vious sections is planned to be used also in hearing
research and hearing aid development, after some
modifications and extensions. Here, the task is to
generate dynamic acoustic scenes which are fully
reproducible and controllable. Dynamic acoustic
scenes can be presented to real listeners, who -
within a certain area - can move freely. Hearing
aid algorithms can directly be evaluated3.

3For the evaluation of hearing aid algorithms in Am-
bisonics systems, the effect of the limitations of Ambisonics

74

In hearing aid research, discrete loudspeaker
setups are commonly used for spatial evaluation
of algorithms. However, discrete setups are in-
able to acoustic scenes with moving sources. Vec-
tor based amplitude panning (VBAP) as a sim-
ple extension of discrete speaker setups have the
disadvantage of creating phantom sources when
the virtual source is between two speakers and
real sources when the virtual source direction is
matched by a speaker. Phantom sources are a
general problem for directional filter algorithms.
Higher order Ambisonics offers the advantage that
moving sources can be created with a steady im-
age. A detailed evaluation of applicability for
hearing aid algorithm testing is content of an on-
going study.

5 Discussion

Low-latency real-time spatial processing of acous-
tic instruments is a field with many gaps. Al-
though much effort has been done to find solu-
tions to most problems, many open questions still
remain. One major flaw is the coding of distances:
While distance coding by changing the amount of
reverberation may work in low-reverberant rooms
like the monitor room used during development,
the effect will break down in more reverberant
rooms, like most performance spaces. A potential
solution might be to simulate the Doppler effect
in order to at least create an image of distance
changes, at the cost of additional delay. Also spec-
tral changes which are observed in large distance
differences may help in the distance perception.

Pseudo-elevation was used in the concert to cre-
ate the image of sources without any distinct di-
rection. Mixing a source to the zeroth order Am-
bisonics channel results in an identical signal from
all loudspeakers. The effect of no distinct direc-
tion, however, can only be perceived right in the
middle of the ring. At any other listening pos-
tion, the precedence effect will cause the nearest
loudspeaker to be perceived as the dominant di-
rection. The main difference to correct panning
is that the perceived direction will differ for all
listeners. A solution might be to use a full 3-
dimensional Ambisonics system with at least first
order in vertical direction, or to find alternative

systems on the respective algorithms (e.g., spatial aliasing,
unmatched wave fronts, high frequency localization) has to
be carefully considered.

panning strategies.

6 Conclusions

A set of software tools for application in a concert
performance with spatial processing of acoustic
instruments has been described in this paper. The
technical components of the performance were
completely build on top of Linux Audio. All ma-
jor parts are implemented as open source appli-
cations.

The authors believe that spatial processing can
substantially contribute to a concert experience
with Early and contemporary music. This be-
lieve was supported by statements of many con-
cert listeners – “the experience of musicians mov-
ing behind your back sends you a shiver down
your spine”, “I felt like being in a huge bell, right
in the heart of the music”. However, this software
toolbox leaves still space for further development,
for improvement of the concert experience and for
application in hearing research.

7 Acknowledgements

Our thanks go to the members of the ensemble
ORLANDOviols, who all shared the enthusiasm
in creating this concert project. Special thanks
also go to Fons Adriaensen for his great linux au-
dio tools and for helpful advice on Ambisonics.
This study was partly funded by the German re-
search funding organization Deutsche Forschungs-
gemeinsschaft (DFG) in the Research Unit 1732
“Individualisierte Hörakustik” and by “klangpol –
Neue Musik im Nordwesten” (Contemporary Mu-
sic in north-west Germany).

References

Fons Adriaensen. 2011. Linux au-
dio projects at kokkini zita. http:
//kokkinizita.linuxaudio.org/.

Joshua Blake. 2011. Openkinect. http://
openkinect.org.

Marina Bosi. 1990. An interactive real-time sys-
tem for the control of sound localization. Com-
puter Music Journal, 14(4):59–64.

Paul Davis. 2011. Ardour. http://ardour.
org/.

Giso Grimm, Tobias Herzke, Daniel Berg, and
Volker Hohmann. 2006. The Master Hearing

75

Aid – a PC-based platform for algorithm de-
velopment and evaluation. Acustica · acta acus-
tica, 92:618–628.

Giso Grimm, Volker Hohmann, and Stephan
Ewert. 2011. Object fusion and localization
dominance in real-time spatial processing of
acoustic sources using higher order ambisonics.
In György Wersény and David Worrall, editors,
Proceedings of the 17th Annual Conference on
Auditory Display (ICAD), Budapest, Hungary.
OPAKFI Egyesület. ISBN 978-963-8241-72-6.

Giso Grimm. 2012. Harmony of the spheres -
cosmology and number aesthetics in 16th and
20th century music. Musica Antiqua, 1(1):18–
22, Jan-Mar.

2010. Kinect. http://microsoft.
com/Presspass/press/2010/mar10/
03-31PrimeSensePR.mspx.

Stephane Letz and Paul Davis. 2011. Jack au-
dio connection kit. http://jackaudio.org/.

Stéphane Magnenat. 2011. http:
//openkinect.org/wiki/Imaging_
Information, version from June 7 2011.
the wiki page attributes this formula to
Stéphane Magnenat.

Dominic Sacré. 2010. Mididings. http://das.
nasophon.de/mididings/.

Christopher W. Sheeline. 1982. An investiga-
tion of the effects of direct and reverberant sig-
nal interactions on auditory distance percep-
tion. Ph.D. thesis, CCRMA Department of Mu-
sic, Stanford University, Stanford, California.

Matthew Wright. 2002. Open sound control
1.0 specification. http://opensoundcontrol.
org/spec-1_0.

76

A Toolkit for the Design of Ambisonic Decoders

Aaron J. HELLER
AI Center, SRI International

Menlo Park, CA, US
heller@ai.sri.com

Eric M. BENJAMIN
Surround Research
Pacifica, CA, US
ebenj@pacbell.net

Richard LEE
Pandit Litoral

Cooktown, QLD, AU
ricardo@justnet.com.au

Abstract
Implementation of Ambisonic reproduction systems is
limited by the number and placement of the loudspeak-
ers. In practice, real-world systems tend to have in-
sufficient loudspeaker coverage above and below the
listening position. Because the localization experi-
enced by the listener is a nonlinear function of the
loudspeaker signals it is difficult to derive suitable de-
coders analytically. As an alternative, it is possible to
derive decoders via a search process in which analytic
estimators of the localization quality are evaluated at
each search position. We discuss the issues involved
and describe a set of tools for generating optimized
decoder solutions for irregular loudspeaker arrays and
demonstrate those tools with practical examples.

Keywords
Ambisonic decoder, HOA, periphonic, nonlinear opti-
mization

1 Introduction
Ambisonics is a versatile surround sound record-
ing and reproduction system. One of the attrac-
tions is that the transmission format is indepen-
dent of the loudspeaker layout. However, this
means that each playback system needs a custom
decoder that is matched to the loudspeaker ar-
ray. The decoder creates the loudspeaker signals
from the transmission signals. Ambisonics theory
provides simple encapsulations of high- and low-
frequency auditory localization that can be used
to design decoders, as well as theorems that ease
the design of decoders for regular polygonal and
polyhedral loudspeaker arrays.

In earlier papers, the present authors have dis-
cussed the design and testing of first-order de-
coders for regular horizontal loudspeaker layouts
[Heller et al., 2008] as well as the use of nonlin-
ear optimization to design decoders for ITU 5.1

arrays [Heller et al., 2010]. In this paper, we ex-
tend that work to full periphonic (3-D) arrays and
higher-order Ambisonics (HOA). The techniques
are implemented as a MATLAB [2011] and GNU
Octave [Gnu, 2011] toolkit that makes use of the
NLOpt library [Johnson, 2011] to perform the op-
timization.

We use the term decoder to mean the configu-
ration for a decoding engine that does the actual
signal processing. Examples are Ambdec [Adri-
aensen, 2011] that operates in real time, as well
as an offline decoder we have implemented as part
of this toolkit.1

In this paper, we use bold roman type to denote
vectors, italic type to denote scalars, and sans serif
type to denote signals. A scalar with the same
name as a vector denotes the magnitude of the
vector. A vector with a circumflex (“hat”) is a
unit vector, so, for example, r̂E = rE/rE .

We start with a discussion of the design process
and the tradeoffs involved, then the specifics of the
optimization process, and finally results of two ar-
rays, a third-order decoder for the 22-loudspeaker
CCRMA array, and a second-order decoder for the
12-loudspeaker 30◦ tri-rectangle array.

2 Designing Ambisonic Decoders
Ambisonics represents a sound field with a group
of signals that are proportional to spherical har-
monics. The original Ambisonic systems were first
order only, but more recently, higher-order sys-

1Another important function of an Ambisonic decoder is
to provide near-field compensation. This compensates for
the curvature of the wavefronts due to the finite distance
to the loudspeaker and is strictly a function of distance
of the speaker from the center of the array and the order
of reproduction. Ambdec and the offline decoder in this
toolkit provide such filters and they will not be discussed
further in this paper.

77

tems have been implemented. In first-order Am-
bisonics the zeroth-order component represents
the sound pressure, and the three first-order com-
ponents represent the acoustic particle velocity.
If these components are reproduced exactly, then
the sound will be correct at the center. How-
ever, it is not possible to get the first-order com-
ponents correct except at a single point and not
practical to get them correct at higher frequen-
cies, where the wavelengths become smaller than
the size of the human head. The task of the de-
coder is to create the best perceptual impression
that the soundfield is being reproduced accurately
given the loudspeaker array being used.

In practical terms, the following are necessary:

• Constant amplitude gain for all source direc-
tions

• Constant energy gain for all source directions

• At low frequencies, correct reproduced wave-
front direction and velocity

• At high frequencies, maximum concentration
of energy in the source direction

• Matching high- and low-frequency perceived
directions

These criteria may, themselves, have different
interpretation or importance depending on the
source material and the intended use. We can
identify three distinct types of program:

• Natural recordings made with a first-order
soundfield microphone.

• Natural recordings made with higher order
microphones. As of this writing, such mi-
crophones are just becoming available com-
mercially, but practical constraints will mean
that these are still first order at lower fre-
quencies.

• Artificial recordings. First order as well as
Higher Order Ambisonic (HOA) program ma-
terial.

The first case is Ambisonic’s greatest strength.
Good first-order Ambisonic reproduction is prob-
ably the closest to recreating a virtual sound envi-
ronment, whether the buzz of a busy Asian mar-
ketplace or the sound of a concert in a good hall
in your living room. It will most likely be used

to create realistic atmosphere even if more precise
methods like HOA are used for special sounds.

To preserve this advantage requires the preser-
vation of a good facsimile of the diffuse field. En-
ergy gain that varies with direction and “bunch-
ing” of directions, particularly in the horizontal
plane, are all detrimental, as is “speaker detent”
where individual loudspeakers draw attention to
themselves.

2.1 Auditory Localization
Due to the range of wavelengths involved, the
human auditory localization mechanism utilizes
different directional cues over different frequency
regimes. At low frequencies, localization depends
on the detection of Interaural Time Differences
(ITDs), but at high frequencies there is an am-
biguity because a human head is multiple wave-
lengths across above about 1 kHz. For this rea-
son, localization switches abruptly, depending on
Interaural Level Differences (ILDs) above that fre-
quency. One way to predict localization would be
to use Head Related Transfer Functions (HRTFs)
to calculate the actual ear signals of a listener, but
this turns out to be computationally difficult and
would vary from listener to listener.

Gerzon developed a series of metrics for pre-
dicting localization that are simpler than using
the HRTFs [Gerzon, 1992]. The simplest of these
metrics are the velocity localization vector, rV,
and the energy localization vector, rE. The direc-
tion of each indicates the direction of the expected
localization perception, while the magnitude indi-
cates the quality of the localization. In natural
hearing from a single source, the magnitude of
each vector should be exactly 1, and the direc-
tion of the vectors is the direction to the source.
It should be noted that, while rV is proportional
to the physical quantity of the acoustic particle
velocity, rE is an abstract construct.2

Following Gerzon [1992], the pressure (ampli-
tude gain), P , and total energy gain, E, are

P =
n∑

i=1

Gi (1)

2Note that these metrics are not specific to Ambisonics;
they can be used to predict the quality of the phantom
images produced by any multispeaker reproduction system,
regardless of the panning laws used, including plain old
two-channel stereo. Gerzon shows this for several well-
known stereo phenomena [Gerzon, 1992].

78

E =
n∑

i=1

(GiGi
∗) (2)

The magnitude and direction of the velocity vec-
tor, rV and r̂V, at the center of an array with n
loudspeakers is

rV r̂V =
1
P

Re
n∑

i=1

Giûi (3)

whereas the magnitude and direction of the energy
vector, rE and r̂E, are computed by

rE r̂E =
1
E

n∑
i=1

(GiGi
∗)ûi (4)

where the Gi are the (possibly complex) gains
from the source to the i-th loudspeaker, ûi is a
unit vector in the direction of the loudspeaker,
and Gi

∗ is the complex conjugate of Gi.
The velocity vector points in the same direction

and is proportional to the acoustic particle veloc-
ity. It has been shown that the velocity vector pre-
dicts the ITDs very accurately [Benjamin et al.,
2010]. The energy vector predicts the ILDs, but
in practice it is not possible to get rE = 1 unless
the sound is coming from just one loudspeaker.
This is representative of a pervasive problem in
multichannel sound reproduction. The maximum
average value of rE that can be obtained for a
given Ambisonic order is shown in Figure 1. The
formulas to compute these are given in Appendix
A.

Because different sets of gains are needed to
satisfy the low- and high-frequency models, many
ambisonic decoders split the audio into two bands,
apply different decoder matrices, and then recom-
bine to produce the loudspeaker signals.3 Daniel
has suggested that a three-band decoder may pro-
vide better reproduction under some listening con-
ditions [Daniel, 2001]. This remains an open ques-
tion at this time.

2.2 Computing the Low-Frequency
Matrix

The low-frequency matrix provides gains from
each channel of the ambisonic program material

3This places certain constraints on the phase response
of the band splitting filters. We discuss the design and
implementation of suitable filters in Appendix B of [Heller
et al., 2008] and note that the filters in Ambdec meet these
requirements.

Figure 1: Maximum average rE depending on or-
der and type. “matching” and “max rE” refer to
the decoder matrices described in Sections 2.2 and
2.3, respectively.

to each loudspeaker that are needed to optimize
localization as predicted by the velocity localiza-
tion vector, rV. Numerous authors have provided
derivations of the low-frequency solution for a
given loudspeaker array, and thus a number of dif-
ferent terms are used to refer to it, including “ve-
locity”, “matching”, “basic”, “exact”, “mode match-
ing”, “re-encoding” and so forth.

In practice, these reduce to projecting (or en-
coding) the loudspeaker directions onto the se-
lected spherical harmonic basis set,4 assembling
these vectors into an array, and computing the
Moore-Penrose pseudoinverse of the array [Weis-
stein, 2008]. Examples of this can be found in
Appendix A of [Heller et al., 2008]. In general,
there are an infinite number of solutions and this
procedure provides the solution with the minimum
L2-norm (i.e., the least-squares fit), which has the
desirable property of requiring the minimum total
radiated power.5

4The toolkit is neutral as to the conventions for com-
ponent ordering and normalization. These conventions are
encapsulated in a single function. The current implemen-
tation supports the Furse-Malham set [Malham, 2003], but
others can be added easily.

5Recently, some authors, drawing upon compressive
sending theory, have suggested that the L1-norm may be
more suitable [Wabnitz et al., 2011; Zotter et al., 2012]. L1-
norm minimizes the sum of absolute errors. Compared to
least-squares, it allows larger maximum errors in exchange
for more zero errors.

79

Except in the case of degenerate configurations,
where all the loudspeakers lie in the null of one or
more of the spherical harmonics, this procedure
will result in a decoder matrix that satisfies the
low-frequency localization criteria exactly; how-
ever, it may utilize a great deal of power to get
them correct in directions where there is a large
angular separation between the loudspeakers in
the array. This will result in low rE values in
those directions. As we shall see, except in the
case of regular polyhedra and polygons, it is im-
possible to fully satisfy all the ambisonic criteria
simultaneously. This implies that while the am-
bisonic transmission format is independent of the
loudspeaker array, not all loudspeaker array ge-
ometries perform equally well.

2.3 Computing the High-Frequency
Matrix

The high-frequency matrix provides gains from
each channel of the ambisonic program material
to each loudspeakers that are needed to optimize
localization as predicted by the energy localization
vector, rE. Gerzon proved two theorems for first-
order reproduction, the polygonal decoder theo-
rem and the diametric decoder theorem. They
state that in an array with a minimum of four
loudspeakers for 2-D and six speakers for 3-D,
where the loudspeakers are spaced in equal angles
or in diametrically opposed pairs, rE is guaran-
teed to point in the same direction as rV. The
polygonal decoder theorem also holds for higher-
order Ambisonic reproduction, provided there is
an adequate number of loudspeakers in the ar-
ray to support the desired order. This simplifies
the task of designing the high-frequency matrix to
that of selecting the gain for each order such that
the overall magnitude of rE is maximized. For
first-order decoders, Gerzon provided the values
of

√
2

2 for horizontal arrays and
√

3
3 for periphonic

arrays. Daniel derived general formulas for these
gains [Daniel, 2001], which are given in Tables 1
and 2. (See Appendix A for programs that com-
pute the values in these tables.)

As we will see in the example in Section 2.5,
once the array deviates from having equal angles,
there is no longer a guarantee that rE and rV

point in the same direction or that there is a single
set of gains that maximize rE in every direction.
Because of this, we must trade off the various cri-

teria and due to the nonlinear nature of the crite-
ria, numerical optimization is needed to compute
the solutions, which will be discussed in Section
3.

2.4 Merging the LF and HF Matrix
The existence of different optimum decoder coef-
ficients for optimum rV and rE would typically
mean having to make a choice or compromise be-
tween the two. In this case, however, both can be
had. The decoder that optimizes rV can be used
at low frequencies and the decoder that maximizes
rE can be used at high frequencies, by the simple
expedient of using filters to cross over between the
two. This is typically done at around 400 Hz.

Because the higher-order components are re-
duced in order to maximize rE, this causes a
reduction in the total signal level of the high-
frequency decoder outputs, and thus a reduction
in the high frequencies heard by the listener. The
gains that maximize rE specify the relationship
among the signals of different order, but not how
that gain should be apportioned between high-
frequency cuts and low-frequency boosts. There
are three possibilities:

1) Preservation of the amplitude. That is, sim-
ply use the gains produced by the optimizer or
those given in Tables 1 and 2.

2) Preservation of the root-mean-square (RMS)
level. This is what Gerzon [1980] suggests
and is what is implemented in older analog de-
coders.

3) Conservation of the total energy. Daniel [2001]
suggests this, and the configuration files in-
cluded with Ambdec follow this recommenda-
tion. This method results in more high fre-
quencies with more speakers.

The calculations involved are given in Appendix
B. In listening tests, we have found that preserva-
tion of the RMS level works well for small arrays.
We have also found that using the conservation
of energy approach on large 3-D arrays results in
overemphasizing high frequencies and near-head
imaging artifacts and nulls. In practice, we the set
the LF/HF balance by ear, comparing the balance
of the two-band decoder to that of a single-band
rE-max decoder. More work is needed to find a
procedure for this that does not involve tuning by
ear.

80

Order Max rE Gains
1 0.707107 1, 0.707107
2 0.866025 1, 0.866025, 0.5
3 0.92388 1, 0.92388, 0.707107, 0.382683
4 0.951057 1, 0.951057, 0.809017, 0.587785, 0.309017
5 0.965926 1, 0.965926, 0.866025, 0.707107, 0.5, 0.258819

Table 1: Per-order gains for max-rE decoding with 2-D regular polygonal arrays.

Order Max rE Gains
1 0.57735 1, 0.57735
2 0.774597 1, 0.774597, 0.4
3 0.861136 1, 0.861136, 0.612334, 0.304747
4 0.90618 1, 0.90618, 0.731743, 0.501031, 0.245735
5 0.93247 1, 0.93247, 0.804249, 0.62825, 0.422005, 0.205712

Table 2: Per-order gains for max-rE decoding with periphonic regular polyhedral arrays.

2.5 Selection of a speaker array

Due to symmetry, regular loudspeaker arrays have
the advantage of uniformity in the localization
predictors rV and rE. As noted above, practi-
cal difficulties usually prevent the attainment of a
completely regular array. There will be a tendency
for rE to be greater in the directions where the an-
gular density of loudspeakers is greater, and less
in the directions where there are few loudspeak-
ers and rE will tend to point in the directions of
concentrations of loudspeakers.

It should be noted at this point that it is im-
possible to get rE to be larger in the direction be-
tween loudspeakers than the value achieved sim-
ply by driving the loudspeakers nearest to the gap
equally. This means that the best that can be
achieved by an Ambisonic decoder is to have a
smooth transition between areas where the perfor-
mance is good (large number of loudspeakers, high
magnitude of rE and rE points in the intended di-
rection) and areas where the performance is less
good (fewer loudspeakers, rE has small magnitude
and points in an incorrect direction). As such, we
must be careful in choosing the decoder parame-
ters so that the performance in the good directions
is good enough, and the performance in the poor
directions is not too bad.

A simple example of a four-speaker array will
illustrate these difficulties. A square horizontal
array has a basic decoder solution of

LF
RF
RR
LR

 =
√

2
4

1 1 1 0
1 1 −1 0
1 −1 −1 0
1 −1 1 0


W

X
Y
Z

 (5)

This gives exact recovery of the pressure and
velocity at the center of the array: |rV| = 1 and
points in the intended direction. But because
the angular separation of the loudspeakers is 90◦,
rE = 2

3 . However, if we investigate what happens
as the ratio of pressure (W) and velocity (X, Y
and Z) is varied, it develops that rE is maximum
for the case where the first-order components are
reduced to

√
2

2 of their original value. This gives
a magnitude of rE of

√
2

2 .
If the square is replaced with a rectangle with

an aspect ratio of
√

3 : 1, the front and rear loud-
speakers now subtend an angle of 60◦ and the side
loudspeakers subtend an angle of 120◦. This re-
duces rE at the sides but increases it in the front,
relative to a square. If the same gain as derived for
the square (

√
2

2 for the first-order components) is
applied, then there is a substantial improvement
in rE to the sides, and a very tiny decrease in rE

in the front. This is shown in Figure 2.
But is this the “optimum”? Figure 3 shows that

if we further vary the ratio of the zero- and first-
order components it develops that rE , evaluated
at the sides, is a maximum at a different ratio.

It is thus possible to maximize rE in front or at

81

Figure 2: Locus of rE for a rectangular array,
matching and “max rE” decoders.

Figure 3: rE and the energy, E, as a function of
the ratio of the first-order to zero-order scaling.

the sides, but not both at once. One might wish
to use a different decoder depending on whether
sound images are expected at the front, or on the
sides, or a decoder that gives a compromise be-
tween the two.

Thus far, only the quality and direction of the
localization have been discussed. There is also an
effect on the loudness of the sound, depending on
direction. If the loudspeaker array is irregular,
then the solution to recover pressure and velocity
results in an increase in energy in the directions
where the angular spacing is greatest. This results
in an increase in reproduced loudness in those di-
rections.

For the previous example of a rectangular array
with a

√
3 : 1 aspect ratio, the ratio of the energy

in the forward direction to the energy at the sides
was calculated and is also plotted in Figure 3. rV

obtains its correct value of 1 in all directions and
the pressure response is also omnidirectional. At
higher frequencies, where the “max-rE” decoder is
in effect, rE is maximized for front and back direc-
tions (where the speakers are closer together). At
these frequencies, sounds from the sides (perceived
as “energy”) are 2.4 dB louder. This is a pervasive
problem for irregular arrays and will be addressed
in greater detail below. The simple

√
3 : 1 rectan-

gle as above is used widely and is known to give
good results. On the other hand, listening tests in-
dicate that the 5.5 dB energy imbalance exhibited
by some first-order decoders for ITU 5.1 arrays
is too large. From this, we propose 3 dB varia-
tion in “energy” with horizontal direction as the
maximum imbalance acceptable.
2.5.1 Discussion of compromises of

speaker arrays
The selection of a loudspeaker array for Ambisonic
reproduction is subject to a number of compro-
mises, notably the space available to house the
array and the budget for purchasing loudspeakers.
It may be that the array already exists, in which
case the decoder design task is one of selecting
a decoder design that provides the best audible
performance. In other situations, however, the
design of the array has not been fixed although
the number of loudspeakers may have been. In
that case, there is substantial latitude to trade off
between high-order performance horizontally and
periphonic performance.

3 Optimizer
As noted in Section 2.5, in an irregular array, sim-
ply scaling the LF and HF matrices does not re-
sult in rV and rE pointing in the same direction;
hence, the design procedure becomes somewhat
more complex.

Because the key psychoacoustic criteria for good
decoder performance are nonlinear functions of
the speaker signals, we utilize numerical optimiza-
tion techniques. To do this, a single objective
function is formulated that takes as input the
decoder matrix and produces a single figure of
merit that decreases as the decoder performance
improves. The nonlinear optimization algorithm

82

will then try different sets of matrix elements, at-
tempting to arrive at the lowest value possible.
Because there are a number of criteria, we use
the weighted sum to provide an overall figure of
merit. A user can adjust the weights to set the
relative importance of the different criteria, say
uniform energy gain (loudness) versus angular ac-
curacy. In addition, each test direction can have
its own set of weights, so that, for example, an-
gular accuracy can be emphasized for the front,
while uniform energy gain is emphasized in other
directions. This might be the preferred configura-
tion for classical music recorded in a reverberant
performance hall. On the other hand, environ-
mental recordings made outdoors have very lit-
tle diffuse content, so overall angular accuracy is
more important. Another application of direction
weightings is in highly asymmetrical arrays, such
as a dome, where few speakers are below the lis-
tener. In this case, we expect poor performance in
those directions, so they are deemphasized when
computing the objective function.

We have employed the NLOpt library for non-
linear optimization [Johnson, 2011]. NLOpt pro-
vides a common application programming inter-
face (API) for a collection of nonlinear optimiza-
tion techniques. In particular, it supports a num-
ber of “derivative free” optimization algorithms,
which are well suited to the current application
where the objective function is the result of a com-
putation, rather than an analytic function.

An earlier version of the optimizer that was lim-
ited to first-order horizontal arrays was written
in C++ [Heller et al., 2010]. To extend that to
higher-order and periphonic arrays required a sig-
nificant rewrite, so an initial prototype was writ-
ten in MATLAB, with plans to recode in C++.
Because the bulk of the computation is matrix
multiplication, which is handled by highly opti-
mized code in MATLAB, it turned out that the
execution speed was almost as fast as the orig-
inal C++ version, so we abandoned plans for
the rewrite. To make the code widely usable,
it was kept compatible with GNU Octave. The
key change is that GNU Octave does not support
nested functions, so a number of variables need to
be declared global to make them accessible to the
objective function.

3.1 Optimization Criteria
For each test direction, the following are com-
puted: amplitude gain, P , energy gain, E, the
velocity localization vector, rV, and the energy
localization vector, rE. From these, we compute
the pairwise angles between the test direction, r̂V,
and r̂E. These are summarized with the following
figures of merit: deviation of amplitude gain from
1 along the x-axis, minimum, maximum, and RMS
values of amplitude gain, energy gain, magnitude
of rV, magnitude of rE, and the pairwise angular
deviations.

It is important that the criteria are “well be-
haved” near zero, so as not to trigger oscillating
behavior in the optimizer. They should be contin-
uous and have first derivatives. In practical terms,
absolute value and thresholds should not be used;
squaring can be used for the former and the expo-
nential function for the latter cases.

Finally, directional weightings are applied to
each criteria and then an overall weighted sum
produces the single figure of merit for that partic-
ular configuration.

3.2 Test Directions
As mentioned in the previous section, each candi-
date set of parameters is evaluated from a number
of directions. For 2-D speaker arrays, 180 or 360
evenly spaced directions are often used [Wiggins
et al., 2003; Moore and Wakefield, 2008]. For 3-D
arrays, the situation is more complex because no
more than 20 points can be distributed uniformly
on a sphere (a dodecahedron).

Lebedev-Laikov quadrature defines sets of
points on the unit sphere and weights with the
property that they provide exact results for inte-
gration of the spherical harmonics [Lebedev and
Laikov, 1999]. The current implementation pro-
vides a function that returns Lebedev grids of
points and corresponding weights for as many as
5810 directions. Our current experiments have
used a grid with 2702 points, which corresponds
roughly to 3◦. The toolkit also has functions pro-
viding 2-D and 3-D grids that are sampled in uni-
form azimuth and elevation increments, which are
useful for visualization of the results.

3.3 Optimization Behavior
As part of the optimization setup, the user sup-
plies a set of stopping criteria. This can be spec-
ified as a threshold on the absolute and relative

83

changes in the parameters and/or the objective
function, as well as a maximum running time and
maximum number of iterations. The default val-
ues in the current implementation are 1×10−7 for
the parameters and objective function.

For small 2-D arrays (say, 12 to 24 parameters),
the optimizer typically converges in less than 1
minute, examining 40,000 to 1,500,000 configura-
tions. For large high-order arrays (say, 200 to
400+ parameters), it typically converges in less
than an hour. These timings were done with Oc-
tave version 3.2.4-atlas on a 2.66 GHz Intel Core i7
with 8 GB of memory. The bulk of the computa-
tion comprises matrix multiplications and is there-
fore suitable for parallel implementations. The
timings in MATLAB were approximately 2x faster
than Octave since it can make use of the multiple
cores in the i7 processor.

With large optimization problems, using a lo-
cal optimization algorithm and providing an ini-
tial solution that is near to the optimum is im-
portant for reliable convergence. The toolkit cur-
rently supports three strategies:

• Using the low-frequency solution modified
with the per-order gains that would provide
the max-rE solution for a uniform array.

• “Musil Design” where additional “virtual”
loudspeakers are inserted into the array to
make the spacing more uniform, and hence
more suited to a pseudo-inverse solution. Af-
ter the optimization is complete, the signals
for the virtual speakers are either ignored or
distributed to the adjacent speakers [Zotter
et al., 2010].

• A hierarchical approach, decomposing the op-
timization by establishing a solution for each
order consecutively, freezing the individual
coefficients for orders below the current one,
but allowing an overall adjustment on the
gain of the lower orders.

4 Examples
The software tools described above were applied
to the derivation of decoders for several real-
world systems. The examples given here are the
CCRMA listening room6 and a tri-rectangle with

6See https://ccrma.stanford.edu/room-guides/
listening-room/

the upper and lower loudspeakers at ±30◦ with
respect to horizontal.

4.1 CCRMA Listening Room
The described software was applied to deriving de-
coders for the Listening Room at CCRMA (Center
for Computer Research in Music and Acoustics)
at Stanford. This facility consists of 22 identical
loudspeakers arranged in five rings. There is a
horizontal ring of eight loudspeakers, two rings of
six loudspeakers, one 50◦ below and one 40◦ above
horizontal, and one loudspeaker directly above
and one directly below the listening position. The
two hexagonal rings are thus not exactly horizon-
tally opposed. A schematic of the array is shown
in Figure 4a.

An initial solution was derived by calculating
the pseudoinverse of the loudspeaker projection
matrix as described above. The decoder was mod-
ified to optimize the magnitude of rE at high fre-
quencies by applying the weighting factors given
in Table 2 to the gains of the signal components of
each order. Given that the theoretical maximum
average value for rE can be no greater than 0.866
at third order, the average value of 0.850 for the
third order decoder given here does not leave a
great deal of margin for improvement. Nonethe-
less, the optimization software was applied to the
problem. Figure 5 shows the performance of the
initial solution and the optimized result. Aver-
age rE was increased slightly, and maximum di-
rectional error reduced by a factor of 5.

An informal listening test comparing this de-
coder to the existing one was conducted using
third-order test signals and studio recordings, as
well as first-order acoustic recordings. The general
impression was that the new decoder did a better
job of keeping horizontal sources in the horizontal
plane, whereas the existing decoder rendered such
sources above the horizontal plane.

4.2 The 30◦ Tri-Rectangle
As discussed elsewhere, a dodecahedron or other
large regular array is difficult to fit into nor-
mally dimensioned spaces. One large array that
does fit into normal spaces is the so-called tri-
rectangle, patterned after a suggestion by Gerzon.
A schematic is shown in Figure 4b. It consists of
three interlocking rectangles of loudspeakers, one
in the horizontal plane, one in the XZ plane, and
one in the YZ plane. The projection of the loud-

84

(a) The 22-loudspeaker array at CCRMA (b) The 12-loudspeaker tri-rectangle.

Figure 4: Schematics of the loudspeaker arrays used in the examples.

(a) The initial solution calculated by pseudoinverse and
max-rE gains.

(b) The optimized solution.

Figure 5: rE in the vertical plane for the CCRMA array before and after optimization. The arrows show
the directional error between the low- and high-frequency matrices. In this case, average rE was increased
slightly, from 0.85 to 0.86 and the maximum directional error reduced by a factor of 5.

speakers into any plane is an octagon, which hints
at its utility for reproducing second-order program
material. However, to enable it to fit into typical
spaces the vertical rectangles must be squashed to
an approximate ±30◦ vertical angle. This gives a
solid angle of 120◦ above and below the listening
position with no loudspeakers. Naturally, this has
a profound effect on the localization for sources
above and below the listening position.

Performance of the initial solution by inversion
is shown in Figure 6. The magnitude of rE is in
red, with both the horizontal and vertical (in the
XZ plane) shown. The horizontal shape is essen-
tially circular, with perfect direction (not shown in
the figure), but the magnitude of rE decreases dra-
matically for sources above or below about ±30◦
of elevation. Furthermore, there is an increasing
error in the direction of rE indicating that high-

85

Figure 6: rE in the horizontal and vertical planes
for the initial second-order decoder.

frequency sounds will be perceived as coming from
near the poles. The extreme errors in the direction
of rE are compounded by the low values, making
localization in the up and down directions vague
in any case.

The large angle subtended by the loudspeaker
placement with respect to the vertical axis makes
it impossible to get precise localization for sources
directly above or below the listening position. It
may, however, be possible to improve the localiza-
tion for sources near horizontal by correcting the
direction of rE .

Running the optimizer with this configuration
as an initial solution resulted in a highly distorted
solution where the sounds are drawn strongly to
the loudspeakers. A 3-D plot of rE for this so-
lution is shown in Figure 7. As can be seen, the
performance is very non-uniform (a sphere would
be ideal) and the maximum angular error is over
30◦.

Next, a Musil design was attempted. Virtual
loudspeakers were inserted into the array directly
above and below the center. This was optimized
and then the signals for the virtual loudspeakers
reassigned to the nearest real loudspeakers. This
resulted in improved rE in the horizontal plane,
as well as elevations as high as ±30◦; however,
it suffers from directional errors as large as 31◦.
Figure 8a shows the optimized solution.

Finally, a hierarchical design was attempted,
where each subsequent order is optimized sepa-

Figure 7: 3-D plot of rE from an unconstrained
optimization of the second-order decoder for the
30◦ tri-rectangle.

rately. This resulted in a slightly lower rE , but
significantly reduced angular error in the vertical
plane. Figure 8b shows the optimized solution.

5 Conclusions
An open source package for the design of am-
bisonic decoders has been presented. The soft-
ware allows the derivation of decoders for arbi-
trary loudspeaker arrays, 2-D or 3-D. The soft-
ware operates under Octave or MATLAB, with
the nonlinear optimization performed by the open
source package NLOPT. Auditory localization at
middle and high frequencies is a nonlinear func-
tion of the loudspeaker signals, which necessitates
the finding of solutions that work well for those
frequencies via an optimization process.

Two example systems were solved. The first
was a third-order decoder for the 22-loudspeaker
CCRMA listening room. That system is nearly
regular, and it was found that a solution obtained
by inversion of the loudspeaker matrix, with per-
order gains, was nearly as good as one obtained by
the nonlinear optimization process. Nonetheless,
the magnitude of rE was improved and the angle
error was reduced.

The second system was a 12-loudspeaker tri-
rectangle, with the upper and lower loudspeakers
at 30◦ above and below the horizontal plane. A
decoder derived for that system via the technique

86

(a) Musil design. (b) Hierarchical design.

Figure 8: rE in the vertical plane for second-order decoders for the 30◦ tri-rectangle.

of inversion followed by per-order gains shows high
magnitudes of rE in the horizontal plane but low
magnitudes in the polar regions and large errors
in the direction of rE.

Two additional methods were tried in a search
for a superior solution. The first was the Musil de-
coder in which the array was filled out with virtual
loudspeakers at the poles and the signals for those
speakers are routed to the nearest real speakers.

The second method was a hierarchical one in
which a solution for each order was established
consecutively, such that a higher-order decoder
is also optimum for lower-order program sources.
This results in a very well behaved decoder, but
with slightly lower values of rE .

6 Acknowledgements
The authors thank Fernando Lopez-Lezcano for
encouraging us to write this paper and for pos-
ing the problem of deriving a third-order decoder
for the CCRMA listening room; Andrew Kim-
pel and Elan Rosenman for stimulating discus-
sion and access to their second-order periphonic
and fifth-order horizontal loudspeaker arrays; and
Isaac Heller for the idea of using the exponential
function to implement soft thresholds.

References
Fons Adriaensen, 2011. AmbDec User Manual,
0.4.3 edition. http://kokkinizita.linuxaudio.
org/ambisonics/. 1

Eric Benjamin, Richard Lee, and Aaron Heller.
2010. Why Ambisonics Does Work. In AES
129th Convention, San Francisco, November. 3

Jerome Daniel. 2001. Représentation de champs
acoustiques, application à la transmission et à la
reproduction de scènes sonores complexes dans
un contexte multimédia. Ph.D. thesis, Univer-
sity of Paris. 3, 4

Michael A. Gerzon. 1980. Practical Periphony:
The Reproduction of Full-Sphere Sound. In
65th Audio Engineering Society Convention
Preprints, number 1571, London, February.
AES E-lib http://www.aes.org/e-lib/browse.
cfm?elib=3794. 4

Michael A. Gerzon. 1992. General Metatheory
of Auditory Localisation. In 92nd Audio Engi-
neering Society Convention Preprints, number
3306, Vienna, March. AES E-lib http://www.
aes.org/e-lib/browse.cfm?elib=6827. 2

2011. Octave. http://www.octave.org/ (ac-
cessed July 1, 2011). 1

Aaron J. Heller, Richard Lee, and Eric M. Ben-
jamin. 2008. Is My Decoder Ambisonic? In
AES 125th Convention, number 7553. 1, 3

Aaron Heller, Eric Benjamin, and Richard Lee.
2010. Design of Ambisonic Decoders for Irregu-
lar Arrays of Loudspeakers by Non-Linear Opti-
mization. In AES 129th Convention, San Fran-
cisco. 1, 7

87

Steven G. Johnson. 2011. The nlopt
nonlinear- optimization package. http://ab-
initio.mit.edu/nlopt. 1, 7

V.I. Lebedev and D.N. Laikov. 1999. A Quadra-
ture Formula for the Sphere of the 131st Alge-
braic Order of Accuracy. Doklady Mathematics,
59(3):477–481. 7

David G Malham. 2003. Space in music - mu-
sic in space: Higher order ambisonic systems.
Master’s thesis, University of York. 3

MATLAB. 2011. version 7.13.0 (R2011b). The
MathWorks Inc., Natick, Massachusetts. 1

David Moore and Jonathan Wakefield. 2008.
The Design of Ambisonic Decoders for the ITU
5.1 Layout with Even Performance Character-
istics. In 124th Audio Engineering Society Con-
vention Preprints, number 7473, Amsterdam,
May. 7

Andrew Wabnitz, Nicolas Epain, A van Schaik,
and C Jin. 2011. Time Domain Reconstruction
of Spatial Sound Fields using Compressed Sens-
ing. In Acoustics, Speech and Signal Process-
ing (ICASSP), 2011 IEEE International Con-
ference on, pages 465–468. IEEE. 3

Eric W. Weisstein. 2008. Moore-Penrose
Matrix Inverse. From MathWorld–A Wolfram
Web Resource. http://mathworld.wolfram.
com/Moore-PenroseMatrixInverse.html. 3

Bruce Wiggins, Iain Paterson-Stephens, Val
Lowndes, and Stuart Berry. 2003. The Design
and Optimisation of Surround Sound Decoders
Using Heuristic Methods. In Proceedings of
UKSim 2003, Conference of the UK Simulation
Society, pages 106–114. UK Simulation Soci-
ety. Availible from http://sparg.derby.ac.uk/
SPARG/PDFs/SPARG_UKSIM_Paper.pdf
(accessed May 15, 2006). 7

Franz Zotter, H. Pomberger, and M. Nois-
ternig. 2010. Ambisonic Decoding with and
without Mode-Matching: A Case Study Using
the Hemisphere. 2nd Ambisonics Symposium,
Paris. 8

Franz Zotter, H. Pomberger, and M. Noisternig.
2012. Energy-Preserving Ambisonic Decoding.
Acta Acustica united with Acustica, 98(1):37–
47, January. 3

A Formulas for maximum average rE

and per-order gains
A.1 Horizontal Arrays
For regular horizontal arrays (Table 1), the maxi-
mum value of rE and the gains for each Ambisonic
order, M , are given by

rE = largest root of TM+1(x) (6)
gm = Tm(rE), m = 0 . . . M (7)

where Tm is the mth Chebyshev polynomial of the
first kind. In Mathematica, this can be written
as7

Table[ChebyshevT[Range[0, M],

x /. FindRoot[ChebyshevT[M+1,x], {x,1}]],

{M, 1, 5}]

A.2 Periphonic Arrays
For regular periphonic arrays (Table 2), the maxi-
mum value of rE and the gains for each Ambisonic
order, M , are given by

rE = largest root of PM+1(x) (8)
gm = Pm(rE), m = 0 . . . M (9)

where Pm is the mth Legendre polynomial. In
Mathematica, this can be written as
Table[LegendreP[Range[0, M],

x /. FindRoot[LegendreP[M+1,x], {x,1}]],

{M, 1, 5}]

B LF/HF Matching
As mentioned in Section 2.4, there are three ap-
proaches to adjusting the gm to match LF/HF
loudness, g′m = g′0 gm. For approach 1, g′0 = 1.
For approaches 2 and 3, g′0 is calculated as

E{gm} =
M∑

m=0

Cm g2
m (10)

g′0 =
√

N/E{gm} (11)

where Cm is the number of signals in the mth order
component. In 3-D, Cm = m2 + 1; in 2-D, C1 = 1
and Cm>1 = 2. For approach 2, N is the total
number of components: in 3-D, (M + 1)2; in 2-
D, 2M + 1. For approach 3, N is the number of
loudspeakers in the array.

7For those without access to Mathematica, these can
also be computed interactively using the Wolfram|Alpha
online service, http://alpha.wolfram.com.

88

JunctionBox for Android: An Interaction Toolkit for Android-based
Mobile Devices

Lawrence FYFE
InnoVis Group

University of Calgary
2500 University Drive NW

Calgary, AB T2N 1N4
Canada

ljfyfe@ucalgary.ca

Adam TINDALE
Alberta College of

Art + Design
1407 14 Avenue NW

Calgary, AB T2N 4R3
Canada

adam.tindale@acad.ca

Sheelagh CARPENDALE
InnoVis Group

University of Calgary
2500 University Drive NW

Calgary, AB T2N 1N4
Canada

sheelagh@ucalgary.ca

Abstract

JunctionBox is an interaction toolkit specifically de-
signed for building multi-touch sound control inter-
faces. The toolkit allows developers to build inter-
faces for Android mobile devices, including phones and
tablets. Those devices can then be used to remotely
control any sound engine via OSC messaging. While
the toolkit makes many aspects of interface develop-
ment easy, the toolkit is designed to offer considerable
power to developers looking to build novel interfaces.

Keywords

Android, OSC, mobile, interaction, toolkit.

1 Introduction

The Android operating system [Google, 2012a],
developed by Google Inc., runs on a wide variety
of mobile devices, including phones and tablets.
With the easy availability of these devices, it be-
comes desirable to develop sound and music ap-
plications for them.

One application scenario involves using inter-
faces to control sound in which the interface is
one computer and the sound generator is another.
The advantage of this scenario is that the quality
of the audio on mobile devices will likely not be as
good as with combinations of audio interface and
speakers in which both are designed to provide the
highest quality audio experience. Another related
advantage is the possibility of multi-channel sce-
narios that go beyond the two channels available
on portable devices.

For example, an Android device would handle
input by a performer, with the option of project-
ing the interface, while another computer handles
all sound processing. This is not a hypothetical
scenario but is the current musical practice of the
first author. With this kind of scenario, certain
aspects of development, like messaging between

computers, can be made easier by a toolkit that
puts commonly used or repetitively coded features
into a single place for reuse.

JunctionBox is an interaction toolkit for build-
ing sound control interfaces that addresses this
scenario. The toolkit is written in Java and is de-
signed as a library for the Processing development
environment [Reas and Fry, 2006]. JunctionBox
bridges the interaction gap between the visual de-
sign possibilities offered by Processing and the
sound control possibilities afforded by the Open
Sound Control (OSC) protocol [Wright, 2005].
Figure 1 shows how JunctionBox relates these two
functions. It does this by handling touch inter-
actions and by making it easy for developers to
map those interactions to OSC messages (via the
JavaOSC library [Ramakrishnan, 2003]). Junc-
tionBox has mapping features that are described
in detail in an earlier paper by the current authors
([Fyfe et al., 2011]).

Figure 1: How JunctionBox serves as a hub for
both sound and visuals.

89

2 Background

Other toolkits exist that have features similar to
that of JunctionBox. The MT4J toolkit [Laufs et
al., 2010] has many features for multi-touch in-
teraction building and is available for use with
Android. However, MT4J, lacks the OSC map-
ping capabilities that make JunctionBox a toolkit
for building sound and music control applications.
TouchOSC [hexler.net, 2012] offers functionality
that is similar to what is offered by JunctionBox
in which widgets can be mapped to custom OSC
messages. Widgets include faders, push buttons
and rotary controls and others that are are skeuo-
morphs of controls for physical hardware devices
like mixers.

Instead of simply offering widgets, JunctionBox
is a full-fledged development toolkit that is meant
to be used by developers who are not necessar-
ily interested in skeuomorphs. The JunctionBox
approach to interaction design can be summed
up as BYOW, for build your own widgets. The
focus of JunctionBox is to provide functionality
like OSC message mapping while offering the full
range of visual design options available via Pro-
cessing. This approach to toolkit design is meant
to encourage greater creativity in the design of
both interactions and interfaces.

3 JunctionBox for Android

The original version of the JunctionBox toolkit
was not developed for Android. However, since it
was written in Java, porting to Android did not
require a complete rewrite of the existing code.
The main difference between the standard Java
version and the Android version of JunctionBox
is that TUIO [Kaltenbrunner et al., 2005] is not
needed on the Android version since Android de-
vices have a separate system for handling touch
interactions. Android-based systems get touch in-
formation via handling the data contained in the
MotionEvent class [Google, 2012b].

Both versions of JunctionBox contain a Dis-
patcher class that is responsible for handling
touch interactions that ultimately get mapped to
OSC messages for controlling audio. Figure 2
shows the relationship of the MotionEvent class
to JunctionBox classes including the Dispatcher.
The mapping process is exactly the same for both
the standard version of JunctionBox and the An-
droid version.

Figure 2: JunctionBox/Android internals with
classes shown as boxes with solid lines.

Differences in using the Dispatcher in code have
been minimized with both versions using the same
code for construction. A new Dispatcher will
take four arguments: the width and height of the
screen/touch interface and a socket destination
for OSC messages. The following code constructs
a new Dispatcher object:
Dispatcher dispatcher = new Dispatcher(

screenWidth ,

screenHeight ,

"192.168.1.1",

7000);

All code written for the standard version of
JunctionBox will work with Android with the
addition of a single method made available in
the Android Dispatcher class. The additional
method, handleMotionEvent(), gets touch infor-
mation from the MotionEvent class. The Dis-
patcher’s handleMotionEvent() method is utilized
by creating a dispatchTouchEvent() method in
the code for the Processing sketch:
boolean dispatchTouchEvent(MotionEvent ev) {

dispatcher.handleMotionEvent(ev);

return true;

}

While only a single additional method is re-
quired for the Android version of JunctionBox, in-
ternally an important difference in touch location
handling is that TUIO touch tracking data is nor-
malized relative to the size of the interface while
for Android devices, touch position is absolute.
This difference is made transparent to the devel-
oper and the same code will work in both systems
with only one minor change, the addition of the
new handleMotionEvent() method. Making dif-
ferences like this transparent is part of the Junc-
tionBox approach of making development easier
without taking away the ability to build highly
customized interfaces.

90

4 Interfaces

The first author of this paper wrote the code for
JunctionBox not only to provide the community
with a toolkit for creating networked instruments
but for his own performance practice. That prac-
tice currently consists of the building of touch in-
terfaces for Android devices that run the interface
to handle touch input. That interface then com-
municates with another computer running audio
via OSC. The audio computer used to develop the
following interfaces runs Ubuntu Linux, JACK
and Pd.

4.1 Orrerator

The Orrerator interface has widget-like controls
but with a much more stylized appearance. It is
designed both as a general instrument that could
be used for a variety of pieces but also specifically
for the composition by the first author entitled
Sol Aur.

The metaphor for the Orrerator is the Orrery
or a model of the solar system, as shown in Figure
3. The sound engine controlled by the Orrerator
is written in Pd and features four FM oscillators.
The interface has four planet buttons that light up
when toggled by simply touching the particular
planet. Each planet button turns a single FM
oscillator on or off.

In addition to on or off controls, each planet
button can be rotated around its orbit by touch-
ing the orbit area and rotating it around the cen-
ter. Orbit areas look increasingly lighter towards
the inner planet. This change of rotation will de-
tune that particular FM oscillator from its base
frequency by a factor of between one and two with
the starting vertical position being one and a full
rotation back to that same position being two.
Orbital rotations are limited to 360 degrees from
the starting position.

On the left and right edges of the interface are
two sliders: the left slider changes the index of
modulation and the modulation frequency and
the right slider changes the gain of all four os-
cillators.

4.2 Distance2

The Distance2 interface is designed specifically
for a composition entitled Distance 2 (Toshi
Ichiyanagi) by the first author. It features ten
tiles numbered 1-5 with half of the tiles being

Figure 3: The Orrerator interface with the first
and third planets active and playing.

white and half black. The black tiles feature re-
versed numbers 1-5. Each of the tiles can be
moved anywhere in the interface with a single
touch. When the tiles are moved into the tar-
get in the center of the interface and the touch
is released, a sound file corresponding to that tile
number is played. Reversed tiles play the same
sound reversed. Figure 4 shows the tiles and the
target. Sound files play until either they have
reached the end of the file or if a touch is ap-
plied while playing. This allows the sounds to be
paused and moved across the target.

Figure 4: The Distance 2 interface with tile 2 in
the center set to play at normal rate.

Tiles placed in the very center of the target are
played back at normal playback rate. Tiles in the
next circle out play at half that rate. The next
circle plays at one-third rate and the outermost
circle plays at one-quarter rate. If a tile is paused
by touch and moved from one target circle to an-

91

other, the sound will pause and resume at the new
playback rate.

Tiles placed in the circle but on the left of the
vertical dividing line play in the left channel while
tiles on the right side play in the right channel.
Tiles placed in the center (normal rate) play in
the center of the stereo field.

The sound engine for this piece is written in Pd
with a custom file playback control mechanism de-
signed by the first author. The 5 sound files are all
various recorded clips from an interview with ex-
perimental composer Toshi Ichiyanagi. Distance
2, the piece, is based on a piece by Ichiyanagi
called Distance [Ichiyanagi, 1961] in which the
performer must be at least three meters away
from his or her instrument while playing. In a
time of computer music in which wireless net-
working makes this kind of setup trivial, the no-
tion of distance can be explored in other ways. In
the context of the piece, distance from the center
of the target represents the recognizbility of the
recorded clips with the clips getting further away
from the original as the tiles get further away from
the center.

5 Summary

Bringing the JunctionBox toolkit to the Android
operating system allows developers to build sound
and music control interfaces on an increasing ar-
ray of touch devices. With a focus on inter-
face coding rather than providing pre-built wid-
gets, JunctionBox provides developers with an op-
portunity to create new touch-based interactions
with highly customized visuals. Two example in-
terfaces, the Orrerator and Distance2, show some
of the creative interfaces that can be built using
the toolkit.

6 Acknowledgements

We would like to thank the Alberta College of Art
+ Design, the Canada Council for the Arts, the
Natural Science and Engineering Research Coun-
cil of Canada, SMART Technologies, the Cana-
dian Foundation for Innovation, and the Alberta
Association of Colleges and Technical Institutes
for research support. We would also like to thank
the members of the Interactions Lab at the Uni-
versity of Calgary for feedback and support during
the development of this project.

References

Lawrence Fyfe, Adam Tindale, and Sheelagh
Carpendale. 2011. Junctionbox: A toolkit for
creating multi-touch sound control interfaces.
In Proceedings of the Conference on New Inter-
faces for Musical Expression, pages 276–279.

Google. 2012a. Android. http://developer.
android.com/index.html.

Google. 2012b. Motionevent. http:
//developer.android.com/reference/
android/view/MotionEvent.html.

hexler.net. 2012. Touchosc. http://hexler.
net/software/touchosc.

Toshi Ichiyanagi. 1961. Distance.

Martin Kaltenbrunner, Till Bovermann, Ross
Bencina, and Enrico Costanza. 2005. Tuio - a
protocol for table-top tangible user interfaces.
In Proceedings of the 6th International Work-
shop on Gesture in Human-Computer Interac-
tion and Simulation.

Uwe Laufs, Christopher Ruff, and Jan
Zibuschka. 2010. Mt4j - a cross-platform multi-
touch development. In Proceedings of the 2nd
ACM SIGCHI symposium on Engineering in-
teractive computing systems, EICS ’10, New
York, NY, USA. ACM.

Chandrasekhar Ramakrishnan. 2003. Javaosc.
http://www.illposed.com/software/
javaoscdoc/.

Casey Reas and Ben Fry. 2006. Processing: pro-
gramming for the media arts. AI & Society,
20(4):526–538.

Matthew Wright. 2005. Open sound control:
an enabling technology for musical networking.
Organised Sound, 10(3):193–200.

92

An Introduction to the Synth-A-Modeler Compiler:
Modular and Open-Source Sound Synthesis using Physical Models

Edgar BERDAHL
Audio Communication Group, TU Berlin

Einsteinufer 17c
10587 Berlin

Germany
eberdahl@mail.tu-berlin.de

Julius O. SMITH III
CCRMA, Stanford University

Stanford, CA
94305
USA

jos@ccrma.stanford.edu

Abstract

The tool is not a synthesizer—it is a Synth-A-Modeler!
This paper introduces the Synth-A-Modeler compiler,
which enables artists to synthesize binary DSP mod-
ules according to mechanical analog model specifica-
tions. This open-source tool promotes modular design
and ease of use. By leveraging the Faust DSP pro-
gramming environment, an output Pd, Max/MSP, Su-
perCollider, VST, LADSPA, or other external module
is created, allowing the artist to hear the sound of the
physical model in real time using an audio host appli-
cation. To show how the compiler works, the example
model “touch a resonator” is presented.

Keywords

physical modeling, virtual acoustics, Faust DSP, hap-
tic force-feedback, open source

1 Introduction

Simulating the equations of motion of acoustic
musical instruments, also known as physical mod-
eling, has been employed for decades to synthe-
size sound digitally [Smith, 2010; Smith III, 1982;
Cadoz et al., 1981]. It is an intriguing paradigm
for synthesizing sound in new media applications
because it enables sound synthesis for fictional
acoustic-like instruments that would be imprac-
tical or very labor-intensive to construct in real
life.

Physical modeling DSP algorithms incorporate
internal feedback loops, which means that an er-
ror or inaccuracy in the modeling algorithm can
cause the algorithm to become unstable. This re-
sults in a loud sound, which can be very unpleas-
ant for an artist working with a physical model.

Several tools have been packaged for imple-
menting modular physical modeling with algo-
rithms that are designed to be stable. The basic
concept is that the artist specifies an intercon-

nection of passive mechanical, acoustical, and/or
electrical elements, rather than programming any
equations. This makes it much easier for artists
to employ physical modeling to make new sounds
without needing to understand all of the details
under the hood.

However, most of these tools have not been im-
mediately available to artists, partly due to the
cost of purchasing the tools. For example, the
Modalys modal synthesis environment requires
both the purchase of Max/MSP and the IRCAM
Forum Recherche [Ellis et al., 2005]. GENESIS
is a complete modeling package and can be pur-
chased from the Association pour la Création et la
Recherche sur les Outils d’Expression [Castagne
and Cadoz, 2002]. GENESIS includes a graphi-
cal user interface, which makes it easier for artists
to specify the interconnection of the mechanical
elements.

In contrast, the BlockCompiler by Matti Kar-
jalainen is open-source; however, it is a complex
package that has been rewritten at least three
times and requires the artist to write Lisp code
to create models [Karjalainen, 2003]. Stefan Bil-
bao has written a modular environment for syn-
thesizing percussion sounds, but it runs in MAT-
LAB and so is not immediately applicable to real-
time synthesis [Bilbao, 2009]. Finally, the Syn-
thesis ToolKit (STK) has become popular due
to its MIDI capability and ability to run within
Max/MSP, Pd, and other sound synthesis envi-
ronments [Cook and Scavone, 1999].1 However,
new models can only be created in the STK by
artists who can manually write stable difference
equations in C++ for physical modeling.

For the above reasons, we decided to create a
new, free and open-source tool for modular sound

1See http://ccrma.stanford.edu/software/stk

93

synthesis using physical models.

2 Synth-A-Modeler

2.1 Requirements
The following requirements of the Synth-A-
Modeler project have guided the design. The
Synth-A-Modeler compiler should

• enable efficient real-time physical modeling
sound synthesis for new media applications,

• be free and open-source,

• be as modular as possible,

• be easy to extend and modify,

• serve as a platform for pedagogical explo-
ration of the physics of mechanically vibrat-
ing systems,

• be accessible to artists who may have little or
no experience in programming, digital signal
processing (DSP), or physics,

• be accessible from as many sound synthesis
host environments as possible,

• enable the development of MIDI-based syn-
thesizers, and

• be compatible with programming haptic
force-feedback systems.

2.2 Faust
To enable efficient real-time synthesis while tar-
geting as many host environments as possible,
we decided to use the Functional AUdio STream-
ing (Faust) programming language [Orlarey et al.,
2009; Barkati et al., 2011; Orlarey et al., 2002]. In
fact, some physical models had already been writ-
ten directly in Faust code [Michon and Smith III,
2011]; however, most artists would not be ready
to put in the detailed effort required to program
physical models in Faust. Hence, we planned to
extend Faust with the development of Synth-A-
Modeler.

2.3 Dataflow
Consequently, we adopted the dataflow shown
in Figure 1. The Synth-A-Modeler compiler
receives a netlist-like model specification in an
MDL file and compiles it into Faust DSP code
[Vladimirescu, 1994]. Then the Faust compiler
together with g++ can transform the code into a

VST plug−in

specification

Model

file
.MDL

Faust

.DSP

file

Pd external

Max/MSP external

SuperCollider external
Synth−A−Model

compiler

Faust
compiler Custom host

Figure 1: Dataflow for synthesizing a model with
Synth-A-Modeler

target binary format as suitable for Pd, Super-
Collider, Max/MSP, CSound, LADSPA plug-in,
VST plug-in, a generic audio application, generic
C++ code, or other host target as desired by the
artist.

2.4 Specifying MDL Files

For synthesizing sound with traditional signal
flow-based approaches such as Pure Data (pd),
Max/MSP, Simulink, or others, a user specifies
a directed graph of sound sources, processing el-
ements, and sound outputs. The signal flow is
considered to be unidirectional: from the sources
to the sinks.

However, in the case of physical modeling,
the signal flow is bidirectional among the ele-
ments. One reason for this is Newton’s third
law: “For every action, there is an equal and
opposite reaction.” Hence, in physical model-
ing, a graph with bidirectional edges describes
the signal flow. An engineer must be keenly
aware of the bidirectional signal flow between each
pair of elements; however, an artist designing a
physical model using a modular approach needs
only to understand which elements are connected
to which. For this reason, the artist can sim-
ply specify an undirected graph of virtual phys-
ical elements [Castagne and Cadoz, 2002]. For
the Synth-A-Modeler compiler, the artist speci-
fies the model in an MDL file by specifying con-
nections between elements, such as digital wave-
guides, masses, springs, dampers, ports, etc., us-
ing a netlist-like format with some extensions. Of
course the artist may also specify the physical pa-
rameters for each element.

3 Modeling Paradigm

3.1 Example Model

Consider the model shown in Figure 2, which im-
plements a very simple synthesizer with only a

94

single resonance frequency. The model describes
a series of mechanical elements that connect to a
user’s finger, allowing the user to “touch” a vir-
tual mechanical resonator. This model features
objects as in GENESIS and CORDIS-ANIMA,
except that the units are SI units and En-
glish names are employed [Castagne and Cadoz,
2002][Cadoz et al., 1993][Kontogeorgakopoulos
and Cadoz, 2007]. The following text specifies
the same model using an MDL model specifica-
tion file:

link(4200.0,0.001),ll,m1,g,();
touch(1000.0,0.03,0.0),tt,m1,dev1,();

mass(0.001),m1,();
ground(0.0),g,();
port(),dev1,();

audioout,a1,m1,1000.0;

The external port named dev1 is connected by
a touch link tt to a mass m1 of 0.001 kg. The
mass resonates because the linear link ll con-
nects it to mechanical ground g, which always
remains at the position 0 m. The linear link
ll consists of the parallel combination of a spring
with stiffness 4200 N/m and damper with param-
eter 0.001 N/(m/s). The touch link tt (analogous
to the BUT element in GENESIS and CORDIS-
ANIMA) is similar to a linear link, except it only
results in a force when one of the objects is push-
ing “inside” the other one [Kontogeorgakopoulos
and Cadoz, 2007].

3.2 Inputs And Outputs
A port models a mechanical connection from
within a model to the outside. By default each
port brings an external position signal into the
model and sends a collocated force signal outside
the model. This is why a port can easily be used
to control a haptic force-feedback device [Berdahl,
2009].

In addition, the audioout object in Synth-A-
Modeler provides a simple audio output. When
applied to a mass-like object, it outputs position
(see Figure 2, right), and when applied to a link-
like object, it outputs force.

3.3 Resonator Abstraction
The generic resonator object (related to CEL in
GENESIS) could have been employed instead of

tt

ll
audiooutdev1

m1

g

Figure 2: Model for “touch a resonator”

the content within the dash-dotted box in Fig-
ure 2. Our resonator implementation in Synth-
A-Modeler allows for the frequency and damping
time of the resonator to be adjusted in real-time
while minimizing transients. Modalys might op-
erate in a similar fashion as it also allows inter-
polation of resonance frequencies in real time. In
Synth-A-Modeler, we use a state-space implemen-
tation employing a well-conditioned rotation ma-
trix [Mathews and Smith III, 2003]. Max Math-
ews employed banks of this style of resonator in
his piece Angel Phasered, which was performed
at the CCRMA Transitions Concert on Sept. 16,
2010.

4 The Synth-A-Modeler Compiler

4.1 Strategy

Although it is possible to represent any explic-
itly computable linear block diagram in Faust [Or-
larey et al., 2002], Faust’s block diagram algebra
is oriented toward signals that flow from the left to
the right. To obtain a signal flowing back from the
right to the left, it is necessary to employ Faust’s
recursive composition operator, which automat-
ically incorporates a single sample of delay. In
physical modeling, signals are bidirectional, which
means that roughly half of the signals must flow
from the right to the left. However, it is chal-
lenging to organize Faust networks in this fashion
without inserting a plethora of single-sample de-
lays, which can detract from the stability of the
models.

For example, consider the Faust code for a mass
of m [kg] with zero initial conditions and a linear
link but with stiffness k [N/m], damping factor
R [N/(m/s)], and spring centering position offset
o [m], as given in Figure 3. These equations are
similar to those in CORDIS-ANIMA and GENE-

95

mass(m) = (/(m*fs*fs) : ((_,_ : +) ~ _) : ((_,_ : +) ~ _));

link(k,R,o) = _ : (_-o) <: (_,_) : (*(k), (_<:(_,_):(_,mem):-:*(R*fs))) : (_,_):+:_;

Figure 3: Faust code for a mass and a linear link from physicalmodeling.lib

bigBlock

link(4200,0.001,0)

touch(500,0.003,0)

mass(0.001)

ground(0)
!

−1

−1

−1

−1

dev1 force

audioout a1

link−like objects mass−like objects

dev1 position

Figure 4: Representation of Faust DSP code for “touch a resonator”

SIS, except that the units are SI units.
Neither the mass nor the link incorporates a

single sample of delay; however, in order to wrap
these specific elements in feedback about one an-
other, it is necessary to insert samples of delay to
make the network explicitly computable. In the
CORDIS-ANIMA equations, the delay is included
in the masses [Kontogeorgakopoulos and Cadoz,
2007], so we follow suit by having Faust’s right to
left signals emanate from the masses.

For example, Figure 4 shows the representation
of the Faust DSP code for the model depicted in
Figure 2. The mass-like objects are placed on
the right, and the link-like objects are placed fur-
ther to the left. The signals representing displace-
ments are shown in magenta, and the signals rep-
resenting net forces are shown dashed in cyan (see
Figure 4—for color see the online version of this
paper). Linear combinations are formed in or-
der to properly interconnect the mass-like objects
and link-like objects. Finally, the single-sample of
delay per feedback loop is represented on the far
right using the small red boxes as in the Faust dia-
gram notation. According to this interconnection
strategy, there is no sample of delay associated
with the link-like objects.

The single port in the model (ref. “dev1” in
Figure 2) is responsible for the position signal in-

put (see Figure 4, bottom left dash-dot-dotted in
magenta) and the force signal output (see Fig-
ure 4, bottom dashed in cyan) could be connected
to an impedance controlled haptic force-feedback
device in order to control the sound synthesis.
Alternatively, using a more conventional kind of
new media controller, the position input could be
used independently of any force output to control
the sound synthesis. Finally, the additional au-
dio output a1, which corresponds to the position
of the virtual mass, is also provided (see Figure
4, right dash-dot-dotted in magenta) as a more
sensible audio output.

4.2 Compiled Code

Applying the Synth-A-Modeler compiler to the
model specification MDL file given in Section 3.1
results in the Faust code presented in Figure 5.
The code begins by first importing the physical
modeling library, which contains Faust code de-
scribing how each of the elements works. Then
bigBlock is defined about which the feedback
paths will be wrapped. In this case, m1 is fed
back, which represents the position of mass m1,
and the ground position g is also fed back. The
letter “p” is appended to each variable fed back,
denoting previous, since the variable is delayed by
a single sample (see the small red squares on the

96

import("physicalmodeling.lib");

bigBlock(m1p,gp,dev1p) = (m1,g,dev1,a1) with {
// Link-like objects:
ll = (m1p - gp) : link(4200.0,0.001,0.0);
tt = (m1p - dev1p) : touch(1000.0,0.03,0.0);

// Mass-like objects:
m1 = (0.0-ll-tt) : mass(0.001);
g = (0.0+ll) : ground(0.0);
dev1 = (0.0+tt);

// Additional audio output
a1 = 0.0+m1*(1000.0);

};

process = (bigBlock)~(_,_):(!,!,_,_);

Figure 5: Compiled Faust DSP code for implementing “touch a resonator”

right-hand side of Figure 4).
The identifier for each element (e.g. ll, tt, m1,

g, dev1, and a1) is then employed as an output
variable from the element, which can only be ac-
cessed from within bigBlock. The inputs to the
elements are formed as linear combinations of the
other variables (see Figure 5).

4.3 Example Pure Data Patch
Next the Faust compiler together with g++ can
compile the Faust code into a target format as
suitable for an audio host application. We briefly
present an example of compiling our example
into a Pure Data (pd) external object called
touch a resonator~. The pd patch in Figure 6
shows how the external object can be employed
for real-time sound synthesis without requiring a
haptic force-feedback user input device. The left-
most inlet and outlet are automatically generated
by the faust2pd script,2 and we do not use them
in this example. The remaining audio inlets and
outlets (see Figure 6) are ordered in correspon-
dence with the input and outputs in Figure 4 and
in the third line of Figure 5.

The rightmost inlet corresponds to the input
position dev1. A horizontal slider GUI object
from pd is employed as a user interface. The
slider’s output is converted into an “audio” signal,

2More information is available on this inlet and outlet
[Graef, 2007].

smoothed, and fed into the dev1 position input.
The force outlet from the dev1 output (see Fig-

ure 6) is not needed in this case since there is no
mechanism to provide force feedback. The au-
dio output comes from the additional a1 audio
output that was specified in the model. Despite
having only a single resonance frequency, we find
that the quality of the user interaction with the
model is intriguing, due to our process of phys-
ically modeling as many elements as possible in
the interaction loop being simulated.

5 Conclusion

Due to its modular character, the Synth-A-
Modeler compiler enables the creation of com-
plex models for artistic applications using simple
building blocks. In some sense, it is an extension

Figure 6: Example pd patch for “touch a res-
onator”

97

of our own prior work, rewritten to employ Faust
for efficient DSP and to target multiple host ap-
plications [Berdahl et al., 2010].

We are currently working to add support for
digital-waveguide objects to the Synth-A-Modeler
compiler. We look forward to an open-source
platform for prototyping, developing, and releas-
ing physical modeling binaries that incorporate
the popular modeling techniques of mass and link
(i.e. mass-interaction) modeling, modal synthesis,
and digital waveguide synthesis. The implemen-
tation is simple enough that we hope other devel-
opers can easily add support for further modeling
formalisms.

Due to the open-format licensing of Synth-A-
Modeler via the GPL version 2, we believe that
Synth-A-Modeler could be especially attractive
for commercial applications for compiling opti-
mized and fine-tuned models into portable binary
modules. We hope that this way we can create a
large user base including industrial, artistic, and
scientific users.

6 Acknowledgments

We graciously thank Alexandros Kontogeor-
gakopoulos, Claude Cadoz, Stefan Weinzierl, An-
nie Luciani, Andre Bartetzki, Chris Chafe, and
the Alexander von Humboldt foundation.

References

K. Barkati, D. Fober, S. Letz, and Y. Orlarey.
2011. Two recent extensions to the FAUST
compiler. In Proc. of the Linux Audio Confer-
ence, Maynooth, Ireland.

Edgar Berdahl, Alexandros Kontogeorgakopou-
los, and Dan Overholt. 2010. HSP v2: Hap-
tic signal processing with extensions for physi-
cal modeling. In Proceedings of the Haptic Au-
dio Interaction Design Conference, pages 61–
62, Copenhagen, Denmark.

Edgar Berdahl. 2009. Applications of Feed-
back Control to Musical Instrument Design.
Ph.D. thesis, Stanford University, Stanford,
CA, USA, December.

Stefan Bilbao. 2009. A modular percussion syn-
thesis environment. In Proc. 12th Int. Con-
ference on Digital Audio Effects (DAFx-09),
Como, Italy.

Claude Cadoz, Annie Luciani, and Jean-Loup
Florens. 1981. Synthèse musicale par simu-
lation des mécanismes instrumentaux. Revue
d’acouqistique, 59:279–292.

Claude Cadoz, Annie Luciani, and Jean-Loup
Florens. 1993. CORDIS-ANIMA: A modeling
and simulation system for sound and image
synthesis—The general formalism. Computer
Music Journal, 17(1):19–29.

Nicolas Castagne and Claude Cadoz. 2002. Cre-
ating music by means of ‘physical thinking’:
The musician oriented Genesis environment. In
Proc. 5th Internat’l Conference on Digital Au-
dio Effects, pages 169–174, Hamburg, Germany.

Perry Cook and Gary Scavone. 1999. The syn-
thesis toolkit (STK), version 2.1. In Proc. In-
ternat’l Computer Music Conf., Beijing, China.

Nicholas Ellis, Joël Bensoam, and René Caussé.
2005. Modalys demonstration. In Proc. Int.
Comp. Music Conf. (ICMC’05), pages 101–102,
Barcelona, Spain.

Albert Graef. 2007. Interfacing Pure Data with
Faust. In Proc. of the Linux Audio Confer-
ence, Technical University of Berlin, Berlin,
Germany.

Matti Karjalainen. 2003. BlockCompiler: Effi-
cient simulation of acoustic and audio systems.
In Proc. 114th Convention of the Audio Engi-
neering Society, Preprint #5756, Amsterdam,
The Netherlands.

Alexandros Kontogeorgakopoulos and Claude
Cadoz. 2007. Cordis Anima physical model-
ing and simulation system analysis. In Proc.
4th Sound and Music Computing Conference,
pages 275–282, Lefkada, Greece.

Max Mathews and Julius O. Smith III. 2003.
Methods for synthesizing very high Q para-
metrically well behaved two pole filters. In
Proc. Stockholm Musical Acoustic Conference
(SMAC), Stockholm, Sweden.

Romain Michon and Julius O. Smith III. 2011.
Faust-STK: A set of linear and nonlinear phys-
ical models for the Faust programming lan-
guage. In Proc. 14th Int. Conference on Digital
Audio Effects (DAFx-11), Paris, France.

98

Yann Orlarey, Dominique Fober, and Stéphane
Letz. 2002. An algebra for block diagram lan-
guages. In Proceedings of International Com-
puter Music Conference, Göteborg, Sweden.

Yann Orlarey, Dominique Fober, and Stéphane
Letz. 2009. Faust: an Efficient Functional Ap-
proach to DSP Programming. Edition Delatour,
France.

J.O. Smith III. 1982. Synthesis of bowed
strings. In Proceedings of the International
Computer Music Conference, Venice, Italy.

Julius O. Smith. 2010. Physical Audio Signal
Processing: For Virtual Musical Instruments
and Audio Effects. W3K Publishing, http:
//ccrma.stanford.edu/~jos/pasp/, Decem-
ber, ISBN 978-0-9745607-2-4.

Andrei Vladimirescu. 1994. The SPICE Book.
Wiley, Hoboken, NJ.

99

100

pd-faust: An integrated environment for
running Faust objects in Pd

Albert Gräf
Dept. of Computer Music, Institute of Musicology

Johannes Gutenberg University
55099 Mainz, Germany
Dr.Graef@t-online.de

Abstract
This paper introduces pd-faust, a library for running
signal processing modules written in Grame’s func-
tional dsp programming language Faust in Miller
Puckette’s graphical computer music environment
Pure Data a.k.a. Pd. pd-faust is based on the author’s
faust2pd script which generates Pd GUIs from Faust
programs and also provides the necessary infrastruc-
ture for running Faust dsps in Pd. pd-faust combines
this functionality with its own Faust plugin loader
which makes it possible to reload Faust dsps while
a patch is running. It also adds automatic configura-
tion of MIDI and OSC controller assignments, as well
as OSC-based automation features.

Keywords
Faust, Pd, Pure, functional signal processing.

1 Introduction
We assume that the reader is familiar (or has at
least heard of) Grame’s popular Faust program-
ming language [5], which greatly facilitates the
programming of custom audio processing plu-
gins. Faust programs can be compiled to na-
tive code for an abundance of different signal
processing environments and plugin standards.
In particular, Faust has had support for Miller
Puckette’s Pd [6] for some time now through
its puredata.cpp architecture. Pd users in the
Faust community have also been using the au-
thor’s faust2pd script to create Pd GUIs (graph-
ical user interfaces) for Faust externals which
seem to work quite well for operating Faust dsps
inside Pd [1].

One of faust2pd’s shortcomings is that it gen-
erates the Pd GUIs outside of Pd. Thus the gener-
ated GUI is static, and changing the Faust source
of a dsp generally requires regeneration of the
GUI and reloading of the hosting Pd patch to

make the changes take effect. Another obstacle is
that the necessary infrastructure for processing
MIDI note input and control changes is imple-
mented entirely in Pd, which may involve a lot
of Pd objects and become a cpu hog for complex
Faust programs.

pd-faust was designed to overcome these lim-
itations. Most notably, it loads Faust dsps dy-
namically and allows them to be reloaded at any
time, in which case the Pd GUI is regenerated au-
tomatically and instantly. Thus you can now just
edit and recompile the Faust source and have pd-
faust pick up the changes on the fly, while the Pd
patch keeps running.

pd-faust is implemented as a library of Pd ob-
jects written in the author’s Pure programming
language [2], which is compiled to native code,
so that Faust dsps involving a lot of different con-
trols are handled in an efficient manner. Another
advantage of using Pure is that at present it is the
only programming language with a built-in Faust
interface based on the LLVM toolkit (which Pure
itself uses as its code generation backend). This
enables pd-faust to directly load compiled Faust
programs in LLVM bitcode format [3] if you’re
running a suitable version of the Faust compiler
[4].

pd-faust offers a number of other enhance-
ments facilitating the use of Faust dsps in Pd.
While it is based on the GUI generation code
of the faust2pd script and thus supports all of
faust2pd’s global GUI layout options, it also pro-
vides various options to adjust the layout of in-
dividual control items. In addition, pd-faust rec-
ognizes the midi and osc controller attributes in
the Faust source and automatically provides cor-
responding MIDI and OSC controller mappings.
OSC-based controller automation is also avail-

101

Figure 1: An overview of the pd-faust system.

able. These additional features are all described
in some detail in this paper.

Section 2 starts out with a brief overview of pd-
faust. In Sections 3 and 4 we then take a more in-
depth look at the pd-faust objects and describe
how pd-faust constructs the Pd GUI at runtime.
Section 5 briefly discusses how to operate the re-
sulting Pd patches. Sections 6 and 7 show how
pd-faust uses metadata in Faust programs to de-
fine controller mappings and adjust the GUI lay-
out. Section 8 briefly touches on the auxiliary
facilities provided to ease livecoding with Faust
dsps. Section 9 concludes with pointers to addi-
tional information and examples, and discusses
possible directions for further work.

The paper assumes some working knowledge
of Faust and Pd; please consult [5] and [6] if nec-
essary.

2 Overview
Before we go into the technical details, let us first
give a brief overview of pd-faust and the various
software components which are involved in the
system (cf. Fig. 1).

pd-faust is implemented as an object library
for Pd. Since the pd-faust objects are written in
Pure, you’ll also need the pd-pure plugin loader
[2] which provides the necessary infrastructure
to run Pure objects in Pd. Both libraries are avail-
able in the form of shared modules which are
loaded by Pd on startup, using either Pd’s -lib
option or a corresponding entry in Pd’s startup
preferences.

The main ingredients of pd-faust are the fdsp~
and fsynth~ objects which are used to load and
run different kinds of Faust dsps inside Pd (the
differences between these will be explained in

the following section). The basic functionality
to do this is actually provided by another Pure
module, pure-faust, which can load Faust mod-
ules in one of two formats:

• Native modules are shared modules in the
format supported by the host operating sys-
tem (.so on ELF systems, .dll on Win-
dows, etc.). These are created from Faust
source programs by invoking the Faust com-
piler with the pure.cpp architecture file
(faust -a pure.cpp) and compiling the re-
sulting C++ source to a shared module.

• Bitcode modules are modules in LLVM bit-
code format which can be created directly
by Faust (faust -lang llvm). You’ll need
Faust2, the development version of Faust,
to make this work [4]. The Pure interpreter
has a built-in LLVM bitcode linker which en-
ables it to load these modules [3]; the exe-
cutable code of the module is then generated
on the fly when the module is loaded.

The internal workings of pd-faust are illus-
trated in Fig. 2. The fdsp~ and fsynth~ objects
use the operations provided by the Faust module
to instantiate a Faust dsp and extract the needed
information from the dsp in order to construct its
Pd GUI. The GUI is then inserted into the host-
ing Pd patch by means of Pd’s “FUDI” protocol.1
All this happens automatically whenever the Pd
patch is loaded or a Faust module gets reloaded
by sending it a corresponding control message.

While the patch is running, an fdsp~ or
fsynth~ object receives incoming control mes-
sages and audio data through its inlets and in-
vokes the operations of the dsp to change the
control values and compute blocks of audio data
as they are requested by Pd’s audio loop. The
generated data is then output through the ob-
ject’s audio and control outlets.

3 The fdsp and fsynth objects
Working with pd-faust basically involves adding
a bunch of fsynth~ and fdsp~ objects to a Pd
patch along with the corresponding GUI sub-
patches, and wiring up the Faust units in some

1See http://wiki.puredata.info/en/FUDI. This proto-
col is also used internally by Pd to represent the contents of
patches and communicate with its GUI process.

102

Figure 2: Internals of the pd-faust system.

variation of a synth-effects chain which typically
takes input from Pd’s MIDI interface (notein,
ctlin, etc.) and outputs the signals produced by
the Faust units to Pd’s audio interface (dac~).

For convenience, pd-faust also includes the
midiseq and oscseq objects as well as a corre-
sponding midiosc abstraction which can be used
to handle MIDI input and playback as well as
OSC controller automation. These objects are de-
scribed in more detail in Section 5.

The fdsp~ object is invoked as follows:

fdsp~ dspname instname channel

• dspname denotes the name of the Faust dsp
(usually this is just the name of the .dsp file
with the extension stripped off). Please note
that, as already mentioned, the Faust dsp
must be provided in a form which can be
loaded in Pure (not Pd!), so the pure.cpp ar-
chitecture included in recent Faust versions
must be used to compile the dsp to a shared
library. (If you’re already running Faust2,
you can also compile to an LLVM bitcode file
instead; Pure has built-in support for load-
ing these.) The Makefiles included in the pd-
faust distribution show how to do this.

• instname denotes the name of the instance
of the Faust unit. Multiple instances of
the same Faust dsp can be used in a Pd
patch, which must all have different in-
stance names. In addition, the instance
name is also used to identify the GUI sub-
patch of the unit (see below) and to generate
unique OSC addresses for the unit’s control
elements.

• channel is the number of the MIDI channel
the unit responds to. This can be 1..16, or 0
to specify “omni” operation (listen to MIDI
messages on all channels).

The fdsp~ object requires a Faust dsp which
can work as an effect unit, processing audio in-
put and producing audio output.

The fsynth~ object works in a similar fashion,
but has an additional creation argument specify-
ing the desired number of voices:

fsynth~ dspname instname channel nvoices

The fsynth~ object requires a Faust dsp which
can work as a monophonic synthesizer (hav-
ing zero audio inputs and a nonzero number
of audio outputs). To these ends, pd-faust as-
sumes that the Faust unit provides three so-
called “voice controls” which indicate which
note to play:

• freq is the fundamental frequency of the
note in Hz.

• gain is the velocity of the note, as a normal-
ized value between 0 and 1. This usually
controls the volume of the output signal.

• gate indicates whether a note is currently
playing. This value is either 0 (no note to
play) or 1 (play a note), and usually triggers
the envelop function (ADSR or similar).

pd-faust doesn’t care at which path inside the
Faust dsp these controls are located, but for the
synthesizer to function properly they must all be
there, and the basenames of the controls must be
unique throughout the entire dsp.

Like faust2pd, pd-faust implements the neces-
sary logic to drive the given number of voices of
an fsynth~ object. That is, it will actually cre-
ate a separate instance of the Faust dsp for each
voice and handle polyphony by allocating voices
from this pool in a round-robin fashion, perform-
ing the usual voice stealing if the number of si-
multaneous notes to play exceeds the number of
voices.

The fdsp~ and fsynth~ objects respond to the
following messages:

• bang outputs the current control settings on
the control outlet in (symbolic) OSC format.2

2pd-faust represents OSC messages as ordinary Pd mes-
sages with the OSC address in the selector symbol of the
message. Input and output of binary OSC messages is as-
sumed to be handled by a separate OSC library which is not

103

• write outputs the current control settings to
external MIDI and/or OSC devices. This
message can also be invoked with a numeric
argument to toggle the “write mode” of the
unit; please see Section 6 for details.

• reload reloads the Faust unit. This also
reloads the shared library or bitcode file if
the unit was recompiled since the object was
last loaded.

• addr value changes the control indicated by
the OSC address addr. This is also used in-
ternally for communication with the Pd GUI
and for controller automation.

In addition, the fdsp~ and fsynth~ objects
respond to MIDI controller messages of the
form ctl val num chan, and the fsynth~ ob-
ject also understands note-related messages of
the form note num vel chan (note on/off) and
bend val chan (pitch bend). In either case, pd-
faust provides the necessary logic to map con-
troller and note-related messages to the corre-
sponding control changes in the Faust unit.

4 GUI subpatches
For each fdsp~ and fsynth~ object, the Pd patch
should also contain an (initially empty) “one-off”
graph-on-parent subpatch with the same name
as the instance name of the Faust unit:

pd instname

You shouldn’t insert anything into this sub-
patch, its contents (a bunch of Pd GUI ele-
ments corresponding to the control elements of
the Faust unit) will be generated automatically
by pd-faust when the corresponding fdsp~ or
fsynth~ object is created, and whenever the unit
gets reloaded at runtime. See Fig. 3 for an exam-
ple.

As with faust2pd, the GUI layout follows the
hierarchical structure of the controls in the Faust
program which places controls in different con-
trol groups, please check the Faust documentation
for details. The default appearance of the GUI
can also be adjusted in various ways; see Section
7 for details.

part of pd-faust. E.g., one might use Martin Peach’s collec-
tion of OSC objects for that purpose, see http://puredata.
info/Members/martinrp/OSCobjects.

Figure 3: Sample pd-faust patch.

The relative order in which you insert an fdsp~
or fsynth~ object and its GUI subpatch into the
main patch matters. Normally, the GUI subpatch
should be inserted first, so that it will be updated
automatically when its associated Faust unit is
first created, and also when the main patch is
saved and then reloaded later.

However, in some situations it may be prefer-
able to insert the GUI subpatch after its associ-
ated Faust unit. If you do this, the GUI will not
be updated automatically when the main patch is
loaded, so you’ll have to reload the dsp manually
(sending it a reload message) to force an update
of the GUI subpatch. This is useful, in particular,
if you’d like to edit the GUI patch manually after
it has been generated.

In some cases it may even be desirable to com-
pletely “lock down” the GUI subpatch. This can
be done by simply renaming the GUI subpatch
after it has been generated. When Pd saves the
main patch, it saves the current status of the
GUI subpatches along with it, so that the re-
named subpatch will remain static and will never
be updated, even if its associated Faust unit gets
reloaded. This generally makes sense only if the

104

Figure 4: Close-up view of the midiosc abstrac-
tion.

control interface of the Faust unit isn’t changed
after locking down its GUI patch. To “unlock” a
GUI subpatch, you just rename it back to its orig-
inal name.

5 Operating the patches

The generated Pd GUI elements for the Faust
dsps are pretty much the same as with faust2pd.
See Fig. 3, which shows the midiosc abstraction
and the actual Faust objects on the left, and the
corresponding GUI subpatches on the right. The
only obvious change is the addition of a “record”
button (the gray toggle on the left of the but-
ton row located in the upper right corner of each
GUI) which enables recording of OSC automa-
tion data (described below).

The midiosc abstraction (cf. Fig. 4) shown in
the examples serves as a little sequencer ap-
plet that enables you to control MIDI playback
and OSC recording. The creation arguments of
midiosc are the names of the MIDI and OSC files.
If the second argument is omitted, it defaults to
the name of the MIDI file with new extension
.osc. You can also omit both arguments if neither
MIDI file playback nor saving recorded OSC data
is required.

The abstraction has a single control outlet
through which it feeds the generated MIDI data
and other messages to the connected fsynth~
and fdsp~ objects. Live MIDI input is also ac-
cepted and forwarded to the control outlet, af-
ter being translated to the format understood
by fsynth~ and fdsp~ objects. Moreover, you
can also control midiosc with an external se-
quencer program, employing MIDI Machine
Control (MMC) for synchronization.

At the bottom of the abstraction there is a lit-
tle progress bar along with a time display which
indicates the current song position. If playback

is stopped, you can also use these to change the
start position for playback and recording.

Here is a brief rundown of the available con-
trols:

• The gray “record” toggle in the upper right
corner of the abstraction enables record-
ing of OSC controller automation data.
Note that this toggle merely arms the OSC
recorder; you still have to actually start the
recording with the start button. However,
you can also first start playback with start
and then switch recording on and off as
needed at any point in the sequence. Push-
ing the stop button then stores the recorded
sequence for later playback. Also note that
before you can start recording any OSC data,
you first have to arm the Faust units that
you want to record. This is done with the
“record” toggle in the Pd GUI of each unit.

• The “bang” control next to the “record” tog-
gle lets you record a snapshot of the current
controller settings. This is also done auto-
matically when you start recording a new
sequence.

• The start, stop and cont controls in the first
row of control elements start, stop and con-
tinue MIDI and OSC playback, respectively.
The echo toggle in this row causes played
MIDI events to be printed in the Pd main
window.

• There are some additional controls related
to OSC recording in the second row: save
saves the currently recorded data in an OSC
file for later use; abort is like stop in that
it stops recording and playback, but also
throws away the data recorded in this take
(rather than keeping it for later playback);
clear purges the entire recorded OSC se-
quence so that you can start a new one; and
the echo toggle, if enabled, prints the OSC
messages as they are played back.

• The controls in the third row provide some
additional ways to configure the playback
process. The loop button can be used to en-
able looping, which repeats the playback of
the MIDI (and OSC) sequence ad infinitum.
The thru button, when switched on, routes
the MIDI data during playback through Pd’s

105

MIDI output so that it can be used to drive
an external MIDI device in addition to the
Faust instruments. The write button does
the same with MIDI and OSC controller data
generated either through automation data
or by manually operating the control ele-
ments in the Pd GUI, see Section 6 for de-
tails. The send button recalls the recorded
OSC parameter settings at a given point in
the sequence, and updates the GUI controls
accordingly.

Once some automation data has been
recorded, it will be played back along with
the MIDI file. You can then just listen to it, or go
on to record more automation data as needed.
If you save the automation data with the save
button, it will be reloaded from its OSC file next
time the patch is opened.

OSC sequences are saved in a simple ASCII
format which should be self-explanatory and can
be edited with any text editor. For instance:

written by oscseq Sun Dec 11 19:39:45 2011

delta /oscaddr value
0 /synth:Nonlinear-Filter/typeMod 0
0 /synth:Nonlinearity 0
0 /synth:Reverb/reverbGain 0.137
0 /synth:Reverb/roomSize 0.72

The OSC addresses are generated automati-
cally from the hierarchical structure of the con-
trols in the Faust program, using the instance
name as well as the labels of control groups and
elements to assign a unique pathname to each
control of each Faust unit in the patch.

Note that midiosc is merely an example which
should cover most common uses and can be cus-
tomized for the target application as needed. You
may even do without it and have your patches
feed control messages directly into fdsp~ and
fsynth~ objects instead. Internally, midiosc uses
two utility objects midiseq and oscseq written
in Pure and contained in the pd-faust object li-
brary. Together these implement most of the
MIDI playback and OSC recording functional-
ity; midiosc basically just adds the necessary
wiring with Pd’s MIDI I/O and a few control el-
ements. The midiseq and oscseq objects can also
be used directly in your patch if you prefer to

forego midiosc, or you may replace them alto-
gether with your own sequencer objects.

6 External MIDI and OSC controllers
The fsynth~ object has built-in (and hard-wired)
support for MIDI notes, pitch bend and MIDI
controller 123 (all notes off).

Other controller data received from external
MIDI and OSC devices is interpreted according
to the controller mappings defined in the Faust
source (this is explained below), by updating
the corresponding GUI elements and the control
variables of the Faust dsp. For obvious reasons,
this only works with active Faust controls.3

An fdsp~ or fsynth~ object can also be put
in write mode by feeding a message of the form
write 1 into its control inlet (the write 0 mes-
sage disables write mode again). For conve-
nience, the write toggle in the midiosc abstrac-
tion allows you to do this simultaneously for all
Faust units connected to midiosc’s control outlet.

When an object is in write mode, it also out-
puts MIDI and OSC controller data in response
to both automation data and the manual oper-
ation of the Pd GUI elements according to the
controller mappings defined in the Faust source,
so that it can drive an external device such as a
MIDI fader box or a multitouch OSC controller.
Note that this works with both active and passive
Faust controls.

To configure MIDI controller assignments, the
labels of the Faust control elements have to be
marked up with the special midi attribute in the
Faust source. For instance, a pan control (MIDI
controller 10) may be implemented in the Faust
source as follows:

pan = hslider(
"pan[midi:ctrl 10]",0,-1,1,0.01);

pd-faust will then provide the necessary logic
to handle MIDI input from controller 10 by
changing the pan control in the Faust unit ac-
cordingly, mapping the controller values 0..127
to the range and step size given in the Faust
source. Moreover, in write mode corresponding
MIDI controller data will be generated and sent

3Faust distinguishes between active controls which take
input from the user and passive controls displaying con-
trol data computed in the Faust program, such as RMS en-
velopes.

106

to Pd’s MIDI output, on the MIDI channel spec-
ified in the creation arguments of the Faust unit
(0 meaning “omni”, i.e., output on all MIDI chan-
nels).

The same functionality is also available for ex-
ternal OSC devices, employing explicit OSC con-
troller assignments in the Faust source by means
of the osc attribute. E.g., the following enables
input and output of OSC messages for the OSC
/pan address:

pan = hslider("pan[osc:/pan]",0,-1,1,0.01);

Note that in contrast to some architectures in-
cluded in the Faust distribution, pd-faust only al-
lows literal OSC addresses here. That is, glob-
style OSC patterns are not supported as values
for the osc attribute. Also note that pd-faust cur-
rently does not include any facilities for actual
OSC input/output, but it’s easy to add this to
midiosc if needed.4

7 Tweaking the GUI layout
As already mentioned, pd-faust provides the
same global GUI layout options as faust2pd.
There are a few minor changes in the meaning
of some of the options, though. Here is a brief
rundown of the available options, as they are im-
plemented in pd-faust:

• width=wd, height=ht: Specify the maximum
horizontal and/or vertical dimensions of the
layout area. If one or both of these values are
nonzero, pd-faust will try to make the GUI
fit within this area.

• font-size=sz: Specify the font size (default
is 10).

• fake-buttons: Render button controls as
Pd toggles rather than bangs.

• radio-sliders=max: Render sliders with up
to max different values as Pd radio controls
rather than Pd sliders. Note that in pd-faust
this option not only applies to sliders, but
also to numeric entries, i.e., nentry in the
Faust source. However, as with faust2pd’s

4“Vanilla” Pd doesn’t provide any objects for OSC I/O,
but various suitable externals are readily available, such as
Martin Peach’s OSC objects already mentioned above. The
pd-faust distribution includes a variation of the midiosc ab-
straction which implements this.

radio-sliders option, the option is only ap-
plicable if the control is zero-based and has
a stepsize of 1.

• slider-nums: Add a number box to each
slider control. Note that in pd-faust this is
actually the default, which can be disabled
with the no-slider-nums option.

• exclude=pat,...: Exclude the controls
whose labels match the given glob patterns
from the Pd GUI.

In pd-faust there is no way to specify the above
options on the command line, so you’ll have to
put them as pd attributes on the main group of
your Faust program, as described in the faust2pd
documentation. For instance:
process = vgroup(

"[pd:no-slider-nums][pd:font-size=12]",
...);

In addition, the following options can be used
to change the appearance of individual control
items. If present, these options override the cor-
responding defaults. (Each option can also be
prefixed with “no-” to negate the option value.
Thus, e.g., no-hidden makes items visible which
would otherwise, by means of the global exclude
option, be removed from the GUI.)

• hidden: Hides the corresponding control in
the Pd GUI. This is the only option which
can also be used for control groups, in which
case all controls in the group will become in-
visible in the Pd GUI.

• fake-button, radio-slider, slider-num:
These have the same meaning as the corre-
sponding global options, but apply to indi-
vidual control items.

These options are specified with the pd at-
tribute in the label of the corresponding Faust
control or control group. For instance, the fol-
lowing Faust code hides the controls in the aux
group, removes the number entry from the pan
control, and renders the preset item as a Pd ra-
dio control:
aux = vgroup("aux[pd:hidden]", aux_part);
pan = hslider(

"pan[pd:no-slider-num]",0,-1,1,0.01);
preset = nentry(

"preset[pd:radio-slider]",0,0,7,1);

107

8 Remote control
Also included in the sources is a helper ab-
straction faust-remote.pd and an accompanying
elisp program faust-remote.el. These work pretty
much like pure-remote.pd and pure-remote.el in
the pd-pure distribution, but are tailored for the
remote control of Faust dsps in a Pd patch. In
particular, they enable you to quickly reload the
Faust dsps in Pd using a simple keyboard com-
mand (C-C C-X by default) from Emacs. The
faust-remote.el program was designed to be used
with Juan Romero’s Emacs Faust mode.5

9 Conclusion
We hopefully convinced the reader that pd-faust
is an interesting solution for developing, testing,
deploying and running Faust dsps in the graph-
ical Pd environment. It provides Pd and Faust
users with a fairly complete integrated develop-
ment environment for Faust, and supports a free-
wheeling interactive and experimental develop-
ment style which should appeal to both develop-
ers and artists.

The software described in this paper is avail-
able freely under the LGPL6 from the Pure web-
site.7 As already mentioned, pd-faust is written
in Pure; thus, to build and run the software you’ll
also need an installation of the Pure interpreter
and a couple of Pure addon packages including
the latest release of pd-pure [2] which is needed
to run Pure externals in Pd; please check the pd-
faust documentation for details.

The package also contains a few example
patches and accompanying files which illustrate
how this all works. Here are some of the exam-
ples that you might want to take a look at:

• test.pd: very basic example running a single
Faust instrument

• synth.pd: slightly more elaborate patch fea-
turing a synth-effects chain

• bouree.pd: full-featured example running
various instruments

pd-faust development continues, so you might
want to check out the latest development sources

5https://github.com/rukano/emacs-faust-mode
6http://www.gnu.org/copyleft/lgpl.html
7http://pure-lang.googlecode.com

in the Pure source code repository. There are
some technical issues and limitations in the cur-
rent pd-faust version which will hopefully be
ironed out in the future. Most notably:

• In the present implementation, pure-faust
supports Faust modules either in native or
in LLVM bitcode form, but not both at the
same time. Therefore there are two corre-
sponding versions of the pd-faust object li-
brary, and you’ll have to decide in advance
whether you’d like to work with native or
bitcode modules.

• The names of the fsynth~ voice controls
(freq, gain, gate) are currently hardcoded,
and there must be exactly one instance of
each of these controls in the dsp, otherwise
fsynth~ may not function as advertized.

• Passive Faust controls are only supported in
fdsp~ objects right now.

• The OSC recording capabilities are some-
what limited in the current version. In par-
ticular, it should be possible to erase and
edit already recorded controller data while
recording. At present you can only change
existing automation data by purging the en-
tire sequence and starting over, or by edit-
ing the OSC file. This is sufficient for testing
purposes but not adequate for real musical
work.

Further research
Faust’s abstract GUI model seems perfectly ap-
propriate for the type of control processing appli-
cations that are typically written using pd-pure.
pd-faust is just one of the many possible pd-pure
applications which might benefit from this ap-
proach. Therefore an interesting question for fur-
ther research is how to integrate the correspond-
ing pd-faust functionality into pd-pure and make
it available to all pd-pure applications.

Also, it might be useful to port pd-faust to
other realtime environments, such as SuperCol-
lider, and suitable plugin environments, such as
LV2 and VST. In principle it’s also conceivable to
run a suitably modified version of pd-faust di-
rectly as a Jack client, without the extra Pd layer.
Of course, the details of integrating Faust dsps
with these host environments differ considerably

108

from the current implementation running inside
Pd, so porting the interface will be a substantial
amount of work.

Acknowledgements
Special thanks are due to Julius O. Smith from
CCRMA for following this project from its in-
ception, taking the time to test early alpha ver-
sions and suggesting improvements. I’d also like
to thank Johannes Zmölnig from the IEM Graz
for pointing me to Pd’s internal FUDI protocol
which made this project feasible in the first place.

References
[1] A. Gräf. Interfacing Pure Data with Faust. In

Proceedings of the 5th International Linux Au-
dio Conference, pages 24–32, Berlin, 2007. TU
Berlin.

[2] A. Gräf. Signal processing in the Pure pro-
gramming language. In Proceedings of the 7th
International Linux Audio Conference, Parma,
2009. Casa della Musica.

[3] A. Gräf. An LLVM bitcode interface between
Pure and Faust. In Proceedings of the 9th In-
ternational Linux Audio Conference, Maynooth,
2011. NUI Maynooth, Dept. of Music.

[4] S. Letz. LLVM backend for Faust. http:
//www.grame.fr/~letz/faust_llvm.html,
2012.

[5] Y. Orlarey, D. Fober, and S. Letz. FAUST :
an efficient functional approach to DSP pro-
gramming. In G. Assayag and A. Gerzso, ed-
itors, New Computational Paradigms for Com-
puter Music. Editions Delatour France, 2009.

[6] M. Puckette. The Theory and Techniques of Elec-
tronic Music. World Scientific Publishing Co.,
2007.

109

110

The Faust Online Compiler: a Web-Based IDE for the Faust
Programming Language

Romain MICHON and Yann ORLAREY
GRAME, Centre national de création musicale

9 rue du Garet
69202 Lyon,

France,
rmnichon@gmail.com and orlarey@grame.fr

Abstract
The Faust Online Compiler is a PHP/JavaScript
based web application that provides a cross-platform
and cross-processor programming environment for the
Faust language. It allows to use most of Faust fea-
tures directly in a web browser and it integrates an
editable catalog of examples making it a platform to
easily share and use Faust objects.

Keywords
Faust, Web Application, Digital Signal Processing.

1 Introduction

Faust [Orlarey et al., 2002] is a functional pro-
gramming language specifically designed for real-
time signal processing and synthesis. Thanks to
specific architecture files, a single FAUST pro-
gram can be used to produce code for a variety
of platforms and plug-in formats. These architec-
ture files act as wrappers and describe the inter-
actions with the host audio and GUI system.

The Faust Online Compiler is a PHP/-
JavaScript based web application that provides a
cross-platform and cross-processor programming
environment for the Faust language. It makes it
possible to use most of Faust features directly in
a web browser. In many ways, we think it is solv-
ing one of Faust’s weakness: the great number
of dependencies that using its architecture files in-
volved. Indeed, even though Faust doesn’t need
any specific library to be installed on a system to
use it, some architecture files prove to be quite
complicated to use because of their dependencies.
It is also solving the system architecture issues
that some Windows users, as an example, might
have encountered in the past.

The Faust Online Compiler integrates an
editable catalog of examples making it a platform
to easily share and use Faust objects. We also

think it is a pedagogical tool where it is possible
to see in the most interactive way a digital sig-
nal processing statement, its C++ equivalent, its
diagram representation, its documentation and fi-
nally its results.

It has been implemented in the frame of the
development of the new Faust website1 and it
can be easily embedded in any HTML web page
or installed on an Apache server.

2 Interface

The Faust Online Compiler is a web applica-
tion made of one fixed size block. Its size has been
defined to fit in the new Faust website but it can
be easily embedded and scaled to be adapted to
any div of an HTML page using the iframe mech-
anism (see 4). A full page mode is also available
to provide a more comfortable workspace.

The navigation between the states of the Faust
object is made through different tabs that can be
selected in a navigation bar (see frame 1 in figure
1).

2.1 Editing the code
The Faust code in the Faust Online Compiler
can be edited using two different ways. The most
obvious one is by using the code editor that can
be found in the Faust Code tab. The code editor
CodeMirror2 is used to carry out this task. It
has been chosen because its compatibility with
a great number of web browsers (Firefox, Safari,
Opera, IE, Google Chrome, etc.). It uses a syntax
highlighting specific to the Faust programming
language.

Thanks to an AJAX script the Faust Online
Compiler also allows to drop any .dsp file con-

1http://faust.grame.fr/
2http://codemirror.net/

111

1

2

3

Figure 1: Overview of the compiler zone of the Faust Online Compiler. Frame 1 contains the
navigation bar, frame 2 the compilation options and frame 3 the Faust code editor or the different kind
of results of the compilation.

taining a Faust program in the file drop area that
is located just above the code editor (see figure
1). This drop area is present in every tabs. This
allows to compile a Faust code into many differ-
ent elements in a very interactive way and very
quickly.

2.2 Compilation
2.2.1 Compilation Options
The compilation options menu can be found just
under the navigation bar (see frame 2 in figure 1).
It allows to set the kind of executable file that will
be generated during the C++ compilation. Most of
the Faust architectures can be used and the OSC
support option [Fober et al., 2011] can be selected
if it is allowed by the architecture. Further op-
tions can be given to the Faust compiler by filling
the Opts text area.

The 64 bits Linux server (Ubuntu) that hosts
the Faust Online Compiler at GRAME makes
it possible to compile the C++ code generated by
the Faust compiler in 32 or 64 bits for the fol-
lowing platforms (in function of the selected ar-

chitecture):

• Linux

• Windows using the MinGW3 cross compiler

• OSX 10.6 using the distant command execu-
tion system of SSH4

If any of these options is changed in the C++
code or the Exec File tabs, the result will be
automatically updated.

2.2.2 Compilation
In order to carry out the compilation, a tempo-
rary folder containing the Faust file and a Make-
file generated in function of the options given by
the user and the architecture he selected is cre-
ated on the server. It will be used by the Faust
Online Compiler to generate the C++ code, the
SVG diagram, the documentation, the executable
file and the different downloadable packages.

3http://www.mingw.org/
4http://www.openssh.com/

112

Faust2PD

Pure

LLVM GCC

QT

Faust

Make

QT

XCodeMinGW

LAMP

Javascript

CodeMirror

Joomla!

Web Interface

Ubuntu 11.04 Server

Linux & Windows Targets

OSX Targets

MacPro Server

SSH

Windows
cross-compiler

Figure 2: Diagram of the server components.

2.3 Getting the C++ Code

If the C++ tab is selected, the Faust compiler is
called on the server by the Makefile that will also
use Highlight5 to color the generated C++ code.

If the Faust code given by the user contains
some errors, the message returned by the Faust
compiler will be displayed instead of the C++ code.
The Faust Online Compiler will react the
same way in the case of the tabs SVG diagram
and Automatic Doc.

2.4 Displaying the SVG diagram of the
Faust Code

When the SVG Diagram button is clicked, in the
same way than for the C++ code, the Makefile cre-
ated on the server call the Faust compiler to gen-
erate a SVG block diagram of the Faust code. The
result is then displayed just under the file drop-
ping area (see figure 3) and can be browsed by
clicking on the different boxes.

2.5 Displaying the Mathematical
Documentation of the Faust Object

Some recent developments made at GRAME in
the frame of the ASTREE project (see Acknowl-
edgments) on the Faust compiler make it possible
to generate automatically an all-comprehensive
mathematical documentation of a Faust program
under the form of a complete set of LATEX formu-

5http://www.andre-simon.de/doku/highlight/en/
highlight.html

Figure 3: Screenshot of the SVG Diagram tab.

las and diagrams [Barkati et al., 2011]. The goals
of such a self mathematical documentation are:

1. Preservation, i.e. to preserve signal proces-
sors, independently from any computer lan-
guage but only under a mathematical form;

2. Validation, i.e. to bring some help for de-
bugging tasks, by showing the formulas as
they are really computed after the compila-
tion stage;

3. Teaching, i.e. to give a new teaching support,
as a bridge between code and formulas for
signal processing;

4. Publishing, i.e. to output publishing mate-
rial, by preparing LATEX formulas and SVG
block diagrams easy to include in a paper.

The Faust Online Compiler is compatible
with this function and can display the resulting
pdf file using Google Document Viewer6. The
Makefile described in 2.3 is also used here to carry
out the compilation process.

A screen shot of the Automatic Doc tab can be
seen in figure 4.

6https://docs.google.com/viewer/

113

Figure 4: Screenshot of the Automatic Doc tab.

2.6 Executable File
When the Exec File button is clicked in the nav-
igation bar, the C++ compilation is carried out in
function of the platform and the processor archi-
tecture selected. If this task is successful, a down-
load button appear. Otherwise the error message
returned by the C++ compiler is displayed. The
downloadable file will be either an executable file
either a package containing several files, in func-
tion of the Faust architecture.

3 Catalog of Examples

The Faust Online Compiler has been up-
graded with an interactive platform to easily share
and use pieces of Faust code: the catalog of ex-
amples. It is made of two elements: the catalog
itself and the example saver.

3.1 The Catalog
The catalog has the form of a file browser where
each Faust code is sorted into different categories
(see figure 6):

• Effects

• Faust-STK [Michon and Smith, 2011]

• Synthesizers

• Tools

A set of “user” categories editable by the users
were also created.

Figure 6: The catalog of examples of the Faust
Online Compiler.

When a Faust object is selected, a short de-
scription and a screenshot of it are displayed in
the Description column. The object can then
be used in the online compiler either by double-
clicking on it either by pushing the Choose it!
button.

The catalog of examples can be displayed in
every tabs of the Faust Online Compiler. So,
as an example, someone can choose just to see the
block diagram of an object or its automatically
generated documentation.

3.2 The Example Saver

As said before, the catalog of examples of the
Faust Online Compiler is intended to be a
platform to share Faust objects between users.
This is made possible by the example saver (see
figure 7) that allows someone to save the Faust
code he edited or he dropped within the catalog.
No identification is required to carry out this task:
anyone can freely upload his work in the catalog.
When creating a new example, users can also add
a quick description to their object as well as a
screenshot.

If an existing example is modified by a user dif-
ferent than the one who created it, every users
that contributed to this example will be notified
by e-mail of the changes made in their Faust
code. Finally, any user can freely delete exam-
ples from the catalog. As in the case mentioned
before, editors will be notified of this modification
with an e-mail.

In order to keep a good order in the catalog and
to avoid duplicates or SPAMs, a voting system has
been implemented. This can also help to promote
the best user examples from the catalog.

114

MakeFile

Diagrams Documentation

Faust

C++Code

HighLightGoogleDoc

Result is displayed

Architecture
GCC

MinGW

Linux Executable

Windows Executable

OSX Executable

SSH

GCC

Processor architecture

Download

Linux Server

OSX system

Temporary folder

Temporary folder

Client

Figure 5: Faust Online Compiler overview.

Figure 7: The example saver of the Faust On-
line Compiler.

4 Exporting and embedding the Faust
Online Compiler

The Faust Online Compiler can be very easily
embedded in any website using an iframe:

<iframe src="http :// faust.grame.fr/
compiler" style="border:none"
height="1200px" width="722px"></
iframe >

It can also be installed on an Apache server7
just by copying the source code available on the
Faust repository8 on it.

5 Current and Future Works

Recent improvements on the Faust compiler al-
low it to generate JAVA and LLVM code instead of
C++ from a Faust code. This obviously brings to
the idea of implementing a Faust architecture to

7http://www.apache.org/
8http://sourceforge.net/projects/faudiostream/

generate JAVA applets directly usable from a web
browser. Thus, the Faust Online Compiler
should soon be upgraded with a new tab running
a web app generated in function of a Faust code
edited in the Faust Code section. Our hope is
that the JAVA applet will be updated almost in
real time without having to restart it every time
a change would be made. Therefore, this feature
could offer some sort of live codding possibilities.

As the Faust Online Compiler prove to be
a good solution to the platform and dependen-
cies issues related to the use of architecture files
in Faust, it can be interesting to establish some
links between it and the FaustWorks9 program.
In that special case, FaustWorks would be used
to edit the Faust code and see its resulting dia-
gram, C++ code, etc. but the compilation would
be carried out on the server allowing it to generate
Faust applications for any platforms, processors
and architectures.

6 Conclusion

The Faust Online Compiler makes the Faust
experience easier than ever by offering a program-
ming environment ready to use and free from any
installation and compatibility issues.

It is certain that web technologies are having
an increasingly important role in the domain of
music technology. The arrival of new standards

9FaustWorks is an IDE for Faust implemented with Qt.

115

like HTML5 or of new web-audio APIs is opening
the way to new paths of exploration such as “Web
Digital Signal Processing”.

7 Acknowledgements

This work has been carried out in the frame of
the ASTREE project10 (ANR-08-CORD-003) on
the preservation of real-time musical pieces.

References

Karim Barkati, Dominique Fober, Stéphane
Letz, and Yann Orlarey. 2011. Two recent ex-
tensions to the faust compiler. In Proceedings of
the Linux Audio Conference (LAC-2011), pages
1–8, National University of Ireland, Maynooth,
Ireland.

Dominique Fober, Yann Orlarey, and Stéphane
Letz. 2011. Faust architecture design and osc
support. In Proceedings of the Conference on
Digital Audio Effects (DAFx-11), pages 213–
216, IRCAM, Paris, France.

Romain Michon and Julius Smith. 2011. Faust-
stk: a set of linear and nonlinear physical mod-
els for the faust programming language. In
Proceedings of the Conference on Digital Au-
dio Effects (DAFx-11), pages 199–204, IRCAM,
Paris, France.

Yann Orlarey, Dominique Fober, and Stéphane
Letz. 2002. An algebra for block diagram
languages. In Proceedings of the International
Computer Music Conference (ICMA), pages
542–547, Gothenburg, Sweden.

10http://www.ircam.fr/

116

FaustPad : A free open-source mobile app
for multi-touch interaction

with Faust generated modules

Hyung-Suk Kim
Dept. of Electrical Engineering,

Stanford University
Palo Alto, CA 94305, USA

hskim08@stanford.edu

Julius O. Smith
Center for Computer Research in Music and

Acoustics.
(CCRMA) Stanford University

Palo Alto, CA 94305, USA
jos@ccrma.stanford.edu

Abstract

In this paper we introduce a novel interface for
mobile devices enabling multi-touch interaction with
sound modules generated with Faust1 (Functional
Audio Stream) and run in SuperCollider. The
interface allows a streamlined experience for
experimentation and exploration of sound design.

Keywords

Faust, mobile music, SuperCollider, music app.

1 Introduction

Faust (Functional Audio Stream)[1] is a functional
domain-specific language for real-time signal
processing and synthesis. Programs written in Faust
are translated in to highly efficient C++ code which
can then be compiled into modules for various
architectures and synthesis environments including
SuperCollider, PureData and Chuck. Faust separates
the specification from the underlying implementation
and the UI, allowing the programmer to focus on the
design of signal processing or synthesis modules.

 Quick testing of a module is possible by
compiling the program as a standalone program.
However integrating a UI for a synthesis
environment such as SuperCollider or PureData is
not that trivial. In either case, the user interaction is
limited to mouse-pointer interaction.

Mobile devices introduce a tangible, interactive
experience compared to that of the traditional
desktop. Recent mobile devices, i.e. smart phones,
enable multi-touch interaction as well as other
features, e.g. accelerometer, GPS, gyroscope, which
allow novel methods of interacting with sound.

1http://faust.grame.fr/

Mobile devices have become computationally
powerful enough for audio synthesis directly on the
device. The MoMu toolkit [2] used by the Stanford
Mobile Phone Orchestra (MoPho) is a toolkit for
music synthesis on iOS devices. Unfortunately most
audio SDKs for mobile devices are OS dependent,
requiring separate learning for each new mobile OS.
The computation power of mobile devices is still
limited compared to desktop systems.
Computationally complex modules are hard to run
on mobile devices.

Mobile devices can be used as a music controller
via OSC. TouchOSC, Control OSC2 are examples.
Such apps are general purpose OSC controllers that
are highly customizable. The price of customizability
is that it takes time to set up a module. This can
become very cumbersome if the sound module has a
lot of controls. Physical modeling synthesis
programs can easily have over 20 parameters which
can be very time consuming to setup.

In this paper we present an OSC music controller
app, FaustPad,3 that automatically creates the
interface and necessary OSC settings based on the
compiled results from Faust. This approach reduces
the complicated setup process, allowing a
streamlined experience for experimenting with the
generated sound module.

2 Overview

Setting up a module for interaction requires the
following steps: 1) compiling the program with
Faust, 2) setting up the synthesis environment, and 3)
setting up the mobile device.

2http://charlie-roberts.com/Control/
3Code and documentation for FaustPad, can be found at

https://github.com/hskim08/FaustPad

117

In this paper we cover setting up a Faust synthesis
module with SuperCollider. In the last section we
look at an example of installing all the modules in
Faust-STK[3], the Synthesis Toolkit port for Faust.

We use Faust to create a SuperCollider extension
which is loaded into scsynth, the SuperCollider
server. FaustPad is used as an alternative scsynth
client, replacing sclang, the SuperCollider
interpreter.

3 Compiling with Faust

Recent Faust releases include scripts to compile
programs into various environments. For
SuperCollider extensions, we used
faust2supercollider to create a
SuperCollider class file (.sc) and a SuperCollider
extension (.scx).

The Faust compiler can create an abstract “user
interface” definition in XML format with the --xml
option. This XML-file is used to create the UI for the
mobile app.

For an in-depth description see “Audio Signal
Processing in FAUST”4.

4 SuperCollider

SuperCollider consists of two parts, the client,
sclang, and the server, scsynth. The two parts
communicate via OSC. FaustPad acts as an
alternative client to sclang.

4https://ccrma.stanford.edu/~jos/spf/Using_FAUST_Su
perCollider.html

SynthDef.new("sitar", {
arg freq = 440.0, gain = 1.0, gate =

0.0, resonance = 0.7, damp = 0.72,
roomsize = 0.54, wet = 0.141, pan_angle =
0.6, spatial_width = 0.5;

Out.ar(0, FaustSitar.ar(freq, gain,
gate, resonance, damp, roomsize, wet,
pan_angle, spatial_width));
}).load(s);

Figure 2: Output example of FaustScParser.

It is easy to import custom synthesis modules into
SuperCollider as “extensions” by copying the .sc
and .scx files into the SuperCollider extension
folder.

Synth definition (SynthDef) files need to be
defined and loaded to create instances of the synth
modules. Control parameter names are also defined
in the SynthDef files. The parameter names of the
SynthDef files must match those of the app. This can
be achieved by parsing the UI definition XML-file
from Faust to create the SynthDef file. The Java
project in the FaustPad github repository creates an
executable jar-file, FaustScParser.jar, that does this.

In sclang, a SynthDef is compiled into byte
code which is then sent to scsynth as an OSC
message. As of the time of writing the SynthDef
needs to be loaded once manually by the script
created by the FaustScParser. Once loaded the
SynthDef is saved on the server and will be loaded
each time scsynth boots. We plan to port
SynthDef compiling into FaustPad to further reduce
the setup process.

5 FaustPad

FaustPad is an OSC controller app with auto
generated UIs tailored to Faust created modules.
Ease of setup comes at the price of customizability.
The app will only work for Faust generated modules.
Given the expandability of Faust, it is a tradeoff
worth making.

One advantage of using a mobile device is multi-
touch. Multiple sliders and buttons can be modified
simultaneously. FaustPad currently supports iOS
devices only. An iPhone or iPod Touch can handle up
to 5 touches and an iPad can handle up to 11 touches
at once.

5.1 Building the UI

A typical Faust user interface definition has two
parts, 1) the definition of widgets, i.e. the control
parameters both passive and active, and 2) the layout

Figure 1: Overview flowchart of FaustPad setup. The
file in parentheses may change depending on the
environment used. Here we show the case for a
SuperCollider Extension.

118

definition. The separation of components and layout
frees the UI builder from a static layout.

In the current implementation of FaustPad, the app
maintains the given layout, creating foldable “group
views”. The automated building of the UI has two
phases accordingly, 1) the creation of widgets and 2)
the creation of groups which form the layout.

5.2 Layout principles

Faust generated modules may have many control
parameters. This is especially true for physical
modeling synthesis modules such as many of the
modules in Faust-STK. For many parameters, once a
value is set there may be little need to change it
during a performance. In FaustPad, unused groups
can be folded so that the user can focus on the
parameters of interest.

FaustPad also allows multiple modules to be
created. Each module is created in a separate tab.
Tabs are always visible in the tab bar at the bottom
of the UI, allowing quick change of synth module.

5.3 OSC messaging

Each UI component holds its own data, e.g. label,
min/max values, from the UI description file. When
there is a user interaction event, it sends an event to
the OSC messaging object which parses the event
and sends a properly formatted OSC message to the
server. This separation of UI component and OSC
messaging allows configurations for various OSC
messaging protocols for different synthesis

environments. The OSC messaging object also
listens for incoming OSC messages that can be used
for automation and feedback from the server.

6 Example: Faust-STK

We have tested FaustPad with Faust-STK, included
in the Faust release. The example files come with a
Makefile for each environment including
SuperCollider. Creating the UI description files is
less trivial, because the Makefile removes the
files at the end of the compilation. This can be
avoided by modifying faust2supercollider
and Makefile.sccompile. After setting up the
aforementioned scripts then loading all SynthDefs,
we could use all 21 Faust-STK modules in FaustPad
by simply copying the files to the FaustPad
documents directory.

7 Extending FaustPad

The FaustPad user interface only adheres to the
user interface description file and makes no
assumption of the underlying structure until the
moment a OSC message is sent in the OSC
messaging object. Thus it is possible to extend the
FaustPad to other OSC enabled synthesis
environment such as PureData or Chuck. As of the
time of writing, we are in the process of adding
support for PureData via pd-faust5.

5http://docs.pure-lang.googlecode.com/hg/pd-faust.html

Figure 3: Screenshots of FaustPad for iPad and iPod Touch. The FaustPad UI works for any orientation. In the
iPod Touch screenshot, groups are folded to show only controls of interest.

119

8 Conclusion

With FaustPad we have explored methods for
enabling a streamlined experience for interacting
with Faust generated synthesis modules.

The separation of specification, device
implementation and UI description of Faust enables
support for multiple synthesis environments with
multiple UIs. With FaustPad we explored the
possibilities of using an alternative UI on a mobile
device.

We have tested the experience by compiling Faust-
STK synthesis modules for SuperCollider. Though
there were some non-trivial modifications to code
that were needed to obtain the UI description files,
once made, it was easy to run and install the
synthesis modules.

FaustPad is still in its early stages and there are
more issues to be addressed. Such issues include
extension of the interface to other environments such
as PureData or Chuck, easy discovery and
connection of server and device via technologies
such as Bonjour/Zeroconf networking.

Connecting to PureData via pd-faust is of
particular interest due to the expandability of
PureData itself. With pd-faust it is possible to
synchronize the interface to a MIDI-OSC transport
for automation allowing live performance and audio
recording use of FaustPad.

Finally, we acknowledge the fact that even though
FaustPad is a free open-source project under a BSD-
like license, it may not be open for anyone to
develop due to the limitations of the iOS SDK.
Porting to other mobile OS, many of which have
become open-source, is another important future
work to be done.

References

[1] Orlarey, Yann; Fober, Dominique; Letz,
Stéphane. 2009. "Faust: an Effcient Functional
Approach to DSP Programming". New
Computanionals Paradigms for Computer Music.
Edition Delatour. ISBN 978-2-7521-0054-2.

[2] Bryan, N. J., Herrera, J., Oh, J., and Wang, G.
2010. “MoMu: A Mobile Music Toolkit.” In
Proceedings of the International Conference on
New Interfaces for Musical Expression. Sydney
2010.

[3] Michon, Romain Smith, Julius O. III. 2011.
"Faust-STK: a Set of Linear and Nonlinear
Physical Models for the Faust Programming
Language". Proceedings of the 11th Int.
Conference on Digital Audio Effects (DAFx-11):
199–204

120

The Why and How of With-Height Surround Sound

Jörn NETTINGSMEIER
Freelance audio engineer

Lortzingstr. 11
Essen, Germany, 45128

nettings@stackingdwarves.net

Abstract

With-height reproduction is a hot marketing item in
surround sound. This paper examines the (sometimes
non-obvious) motivations behind it and discusses the
advantages and shortcomings of different methods
as to the perceptional mechanisms of height
localisation.

Keywords

With-height surround sound, Ambisonics,
Psychoacoustics

1 A brief history of height reproduction

With-height surround has featured in many
experimental one-off installations such as
Stockhausen's “Kugelauditorium” at the 1970
World's Fair, or Bayle's “Acousmonium”. They have
usually employed custom-tailored, ad-hoc driving
techniques with little or no regard for portability.
The speaker system is considered an integral part of
the artwork or performance rather than an
interchangeable tool.

Therefore, they are only of historical interest
today, although a number of sophisticated systems in
the acousmatic tradition still exist and continue to be
developed. On the other hand, there have been
numerous proposals to bring with-height surround to
a wider market in a systematic and portable way.

As early as 1973, Ambisonics pioneer Michael
Gerzon suggested a practical approach to what he
called periphonic sound using only four channels,
also known as B-format [1]. In 1992, he proposed
the technology as a candidate for the then-upcoming
HDTV standard [2].

In 1999, Tomlinson Holman demonstrated “10.2”,
the first commercial cinema sound proposal to
intclude height channels, if only at the left and right
front [3].

Around the same time, German tonmeister Werner
Dabringhaus entered the budding DVD audio market
with his 2+2+2 system [4], which trades the center
and LFE channels of a 5.1-capable medium for left
and right frontal height.1

Belgian sound engineer Wilfried van Baelen
experimented with 2+2+2 in 2005, and extended the
concept into what he calls Auro-3D [5]. In its
simplest form, it adds four height speakers on top of
the standard 5.1 layout.

Likewise in 2005, a team of NHK researchers led
by Kimio Hamasaki introduced 22.2 to accompany a
future ultra-high-definition TV standard. It features a
complete upper ring of eight channels plus one
zenith speaker, ten on the equator, and an additional
three bottom channels in the front [6].

2 Classification of existing methods

With the exception of Ambisonics, the approaches
mentioned so far all build upon (or drag along,
depending on your point of view) previous
technology. They are channel-based, which means
that the mix has to be made specifically for the
reproduction speaker layout at hand, and they

1Omitting the center channel might seem strange today,
but in 2000, dedicated LCR microphone techniques were
not in common use, and classical Tonmeisters in particular
were mostly unaware of their potential. Stereo main
microphone techniques on the other hand were well
understood and mastered, and those who just tried to add a
center without changing their L/R miking as well found
only increased coloration and loss of imaging clarity.

121

employ stereophonic localisation techniques to
create phantom sources between speakers.

Among manufacturers of Wave Field Synthesis
systems, the term “3D” has been (ab)used in
marketing for a long time even in the absence of
height capability. More recently however, WFS
manufacturer IOSONO has introduced elevated
speakers, thus earning the 3D moniker, while at the
same time increasing the tweeter spacing of their
systems considerably.2 [7]

Such proprietary "hybrid WFS" systems use
undisclosed panning techniques to include height,
very likely a combination of delay panning and
VBAP. The latter, short for Vector-base Amplitude
Panning, is a conceptually very simple and elegant
method introduced by Pulkki in 1997 [8]. It extends
the idea of level panning to triplets of speakers,
allowing the positioning of a sound source anywhere
on a speaker mesh surface. VBAP can be applied to
arbitrary speaker layouts, but it produces timbre
shifts and highly variable perceived source width
depending on source location.3 The worst-case
source width is equivalent to Ambisonics (which
delivers perfectly constant panning). [9]

This effect is even more pronounced with sparse
arrays, making it a less-than-ideal approach for
layouts such as Auro-3D, and it does not work at all
if a given channel is reproduced over multiple
speakers, as is common in cinema installations.

WFS, VBAP and similar techniques are object-
based, which means that individual (usually
monophonic) audio files are stored with separate
positional metadata, allowing them to be modified
and re-positioned easily. Another advantage is that
the mix is decoupled from the layout of the speaker
system used for reproduction. On the downside, it is
quite cumbersome to describe natural ambient
recordings (which describe a spatial continuum

2 This implies that textbook WFS only happens at very
low frequencies, and other localisation mechanisms must
be employed for the remainder of the spectrum.

3 In its basic form, VBAP will employ one speaker if
the source is directly on a speaker position, two if it is on
the line between two speakers, and three anywhere else.

rather than individual “spatial samples”) as
monophonic objects.

Furthermore, object-based systems require an
elaborate and CPU-intensive rendering process for
listening, with a complexity growing linearly with
the number of objects (O(N)).

Finally, Ambisonics is soundfield-based: the B-
format carries an arbitrarily precise description of
the resulting physical soundfield, where precision is
determined by the order. It is not easily possible to
separate single objects, but spatially continuous
ambience recordings can be included perfectly. The
B-format is again decoupled from the speaker layout
by means of a decoder, which contains the
information about the speaker positions. The
decoding step is trivial compared to WFS rendering,
and its complexity is constant (O(1)).

Crosstalk-cancelled binaural (or ear-signal-based)
systems are theoretically able to deliver height cues
as well. In a virtual environment at RWTH Aachen,
striking effects have been demonstrated [10], but
without head-tracking and individual HRTFs and in
the absence of visual cues, the results will be mixed
at best. In any case, the coloration is severe, and
systems can accommodate at most one or two
listeners.

Headphone binaural systems can deliver perfectly
convincing height with excellent fidelity, but the
required 3-axis head tracking systems are not yet
widely available, and perfect results require
individual HRTF measurements for each listener.
Catering to more than one listener implies that the
rendering and head tracking has to happen in the
headphones, which is not feasible with current
embeddable computing platforms, or that an
individually pre-rendered signal is presented to each
headphone, which puts a great strain on wireless
bandwidth.

3 Elevation perception and stereophony

There are two totally distinct motivations for the
inclusion of height speakers.

The most obvious one is the desire to position or
reproduce sounds along the vertical or z-axis, not
just on the horizontal plane around the listener. The

122

channel-based systems mentioned above perform
poorly in this respect, because they rely on
stereophonic localisation. Its mainstay is the clever
delivery of artificial interaural level and time
difference cues (ILD and ITD).

However, ILD and ITD remain constant as a
source moves upwards on the median plane, which
explains the comparatively poor vertical
discrimination of the human hearing apparatus. The
only height cue available to us is a rather subtle
coloration of the sound caused by reflection,
refraction, and absorption effects on pinnae, head,
and torso. This cue is purely monaural.

Height perception is most acute when the subject
has a clear mental reference of the natural (i.e. non-
elevated) timbre of a sound source and will degrade
with synthetic or otherwise unfamiliar sounds
(compare [11]).

Blauert has demonstrated that height perception
correlates with the spectral distribution of the sound
event, provided it is sufficiently broad-band. [12]

With narrow-band signals, the location of the
auditory event on the median plane depends only on
the frequency, not the actual sound source location.
[13]

Hence, height illusion can be created by applying
equalisation which exploits these effects.

Even though sound engineers or electro-acoustic
composers may sometimes employ such EQ ad-hoc,
none of the with-height stereophonic methods
include it as part of their standard in any systematic
way.

The only remaining tool for positioning a source
along the z-axis is simple amplitude panning.
However, such a vertical “phantom source” will not
result in any ILD or ITD information. Even worse,
the coloration cue will very likely be meaningless,
too, because the sum of a horizontal and an elevated
pinna-colored sound is not necessarily similar to the
pinna effect on a physical source in between.

Consequently, stereophonic systems exhibit a very
steep localisation curve along the z-axis. They will
usually produce auditory events either on the
equatorial or the elevated speaker level. While
vertical motion can be suggested, stationary sources
between the two extremes are not stable. [14]

Producing stable auditory events above the
elevated speakers is likewise impossible.

The only techniques which can deliver good
localisation at arbitrary locations outside the
equatorial plane are hybrid "WFS", VBAP, and
higher-order Ambisonics, if and only if the speaker
density is sufficient in the region of the desired
auditory event.

Microphone arrays for stereophonic with-height
systems will usually aim at complete decorrelation
between the corresponding horizontal and elevated
channels by using vertically widely spaced
omnidirectional microphones, or they may try to
minimize crosstalk by using highly directional ones.
Both approaches clearly do not aim for a continuum
of localisation along the z-axis.

Which leads to the second, dominant motivation
for height speakers: timbre. Proponents of 2+2+2
and Auro-3D in particular claim that, in addition to a
more convincing feeling of envelopment, the
perceived tone color will be more natural in the
presence of appropriate height signals. Furthermore,
the listening area is believed to be larger than that of
a comparable horizontal-only system.

In the author's listening experience, this is
generally true, not only for Auro-3D but also for the
"hybrid WFS" systems mentioned before, as well as
for Ambisonics. Informal A/B tests (performed by
comparing the full rig with the equatorial speakers
only), suggest three advantages of with-height
systems:

They appear to be more robust in the presence of
room problems, perhaps because more room modes
are being excited but at lower level, which might
even out coloration effects.

Furthermore, they provide a more realistic and
more stable sense of envelopment, which facilitates
suspension-of-disbelief.

Finally, the height speakers seem to smooth the
Ambisonic phasing artefacts and timbre shifts across
the listening area.

4 Height reproduction in Ambisonics

In Ambisonic systems of sufficiently high order, a
coherent sound field is being reconstituted in the
sweet spot. While a listener may still have trouble

123

discerning or localizing sounds along the z-axis due
to the limited resolution of the human hearing
apparatus on the median plane, s/he will be able to
resolve these ambiguities by moving the head.

Small subconscious movements can provide subtle
differential directional cues, and intentional tilting of
the head can be used to train the more acute lateral
hearing mechanism on the source and gather
additional information [15]. This helps the brain to
fuse very stable auditory events at height, but it
requires a natural soundfield, without any
psychoacoustic tricks optimized to deliver artificial
cues.

It appears that the source localisation remains
stable even after the head is back in the rest position,
as if the brain memorises the reference and uses it to
align subsequent ambiguous cues.

Interestingly, despite the typical checkerboard
interference pattern of Ambisonic systems, head
movements seem to remain beneficial even for
listeners well outside the sweet spot, an observation
that needs to be validated by further study.

High-fidelity soundfield reproduction without
assumptions as to listener orientation and temporal
or spectral trickery will let listeners explore the
spatial structure of a sound scene individually. They
will find that they can rely employ their entire
auditory sensorium to perceive and analyse
selectively whatever sparks their interest. It is safe to
assume that this helps to increase enjoyment and
depth of understanding.

In contrast, height illusions created by naive pinna
coloration simulation or non-tracked crosstalk
cancelled binaural will fall apart the moment the
head tilts away from the assumed frontal direction,
failing the listener just at the time s/he displays
particular interest.

5 Benefits of periphonic sound reproduction

The perceptory advantage of soundfield-
reproducing techniques4 opens up new applications
which would be very hard or impossible to achieve
with stereophonic with-height systems. Consider the

4In theory, this includes WFS. However, "classical"
WFS systems do not deal with height and "hybrid"
systems are not wave field synthesis in the strict sense.

recording and reproduction of works whose spatial
organisation demands exact vertical localisation
(think "spatial fidelity") rather than a vague notion
of spaciousness, or of multi-layered compositions
which are sonically so complex as to be downright
indigestible unless the individual components are
very precisely discriminated in space.

Periphonic soundfield reproduction in higher-
order Ambisonics requires a substantial additional
investment in both equipment and effort over
conventional stereo, and it should be obvious that
the justification of this investment depends on the
program material.

A novice to baroque music may benefit from a
little spatial separation when learning to appreciate a
three-part invention or a five-part fugue from the
Well-tempered clavier, but this is more a teaching
aid than an artistic requirement. The musical
structure itself is so resilient to spatial and timbral
modifications (as aptly demonstrated by Wendy
Carlos [16] and many others) that it will fare
surprisingly well even as a phone ringtone.

A Gabrieli double choir from the same epoch
however might become too dense if reproduced in
stereo, and a historically informed reproduction
would mandate at least horizontal surround.

Recordings of complex organ works can be more
approachable if the original vertical separation of the
divisions is retained.

Ambient nature recordings are an obvious case in
point for full periphony.

Even if all direct sound emerges from a limited set
of directions, full periphony is required to render the
room acoustics correctly, if desired.

On the other end of the spectrum, a low-down
blues song is adequately conveyed by a minimalist
reproduction system; the impact of a distinctly low-
fi bootleg might actually be harmed by uncalled-for
technological “sophistication”. Buyer beware.5

5In all things of technical hack value, this author
considers « because we can » a perfectly adequate
justification. Yet in the arts (or any other form of inter-
individual communication), the very same approach can
be disastrous.

124

6 Conclusion

With-height systems in general have the potential
to be more robust than horizontal-only setups. Even
if height localisation is not strictly necessary for the
job at hand, the improved envelopment and timbral
benefits are arguments in favour of full periphony.
Stereophonic methods are of limited use for vertical
localisation. Of the different approaches, those that
attempt some degree of soundfield reconstruction
should be more robust than ad-hoc, channel-based
approaches.

125

[1] Michael A. Gerzon, 1973: "Periphony: With-Height Sound Reproduction", in: Journal of the Audio Engineering Society,
vol. 21, pp. 2-10

[2] Michael A. Gerzon, 1992: “Hierarchical System of Surround Sound Transmission for HDTV”, in: Proceedings of the
92nd AES Convention, Vienna

[3] Barry Willis, 1999: “Holman Conducts First Public Demo of '10.2' Surround Sound”, in: Stereophile website,
http://www.stereophile.com/news/10489/

[4] Dieter Steppuhn, 2001: “Begegnung anderer Art. Neue Audio-DVDs '2+2+2' bei MDG”, in: Neue Musikzeitung 02/01,
http://www.nmz.de/artikel/begegnung-anderer-art

[5] Auro-3D product website, history section, http://www.auro-3d.com/about-history
[6] Kimio Hamasaki et al., 2007, “22.2 Multichannel Sound System for Ultra High-Definition TV ”, in: SMPTE Motion

Imaging Journal vol. 117(3), pp 40-49.
http://www.nhk.or.jp/digital/en/technical/pdf/IBC2007_08040907.pdf

[7] Frank Melchior, 2011: “IOSONO: 3D audio solutions ”, Workshop held at the International Conference on Spatial
Audio, Detmold, Germany

[8] Ville Pulkki, 1997: “Virtual sound source positioning using vector base amplitude panning.”, in: JAES vol. 45(6), pp.
456-466.

[9] Franz Zotter et al., 2010: “Techniques and Considerations on Sound Field Recording and Reproduction Using Spherical
Harmonics”, p.19.
http://iaem.at/Members/zotter/publications/IEM_SHTechniques_Zotter.pdf/view

[10]Tobias Lentz, 2006: “Dynamic Crosstalk Cancellation for Binaural Synthesis in Virtual Reality Environments”, in:
JAES, vol. 54(4) pp. 283-294

[11]G. Plenge, und G.Brunschen, 1971: “Signalkenntnis und Richtungsbestimmung in der Medianebene bei Sprache”, in:
Proceedings of the 7th International Congress on Acoustics, Budapest, 19 H 10, according to [12].

[12]Jens Blauert, 1997, 1983: “Spatial Hearing. The Psychophysics of Human Sound Localization”,
MIT Press, Cambridge, Mass., p. 109

[13]Jens Blauert, l.c., p. 45
[14]Günther Theile, and Helmut Wittek, 2011: “Principles in Surround Recording With Height”, in: Proceedings of the

130th AES Convention, London
[15] Jens Blauert, l.c., p. 181
[16]Wendy (then Walter) Carlos, 1968: “Switched-on Bach”, Columbia Records

126

Field Report II ­ A contemporary music recording in Higher­order Ambisonics
Capturing Chroma XII by Rebecca Saunders

Jörn NETTINGSMEIER
Freelance audio engineer

Lortzingstr. 11
Essen, Germany, 45128

nettings@stackingdwarves.net

Abstract

In 2010, the author had the privilege to capture a
performance of Rebecca Saunders' intricately spatial
composition Chroma XII in fully periphonic third­
order Ambisonics. The production grew to
considerable complexity and provides an excellent
showcase for a large­scale Ambisonic production
using free software. This paper discusses the artistic
motivation (or even necessity) of using a with­height
recording method for the work at hand.
After a short description of the composition, its
instrumentation and the performance space, the
microphone and mixing techniques are being
discussed in detail, including hardware and software
toolchains, post­production workflow, and lessons
learned from subsequent replays on various systems.
This paper is a follow­up to a workshop paper
presented at LAC 2010 in Utrecht [1].

Keywords

Ambisonics, live production, with­height surround,
free software.

1 Introduction

In previous higher­order Ambisonic productions,
the author had gained some experience in blending
first­order Soundfield recordings with higher­order
spot microphones in a pop context [1], and in
creating entirely artificial renderings with discrete
microphones only, in a church acoustic [2]. In order
to hone these methods some more, and to test their
limits, the author had been putting out feelers for a
spatially demanding production of instrumental
music.

To be suitable as a periphonic recording showcase,
a piece should do away with the traditional concept
of a frontal stage, with no excuse for anything but a
fully isotropic recording system. It should be
interesting and powerful even when recorded
documentary­style, that is, naturalistic and without
much interpretation during the recording process. It
should include elevated sources, and it should take
place in an acoustically interesting space, to tax the
diffuse­field reproduction capabilities of the
recording system. Lastly, it should allow the timbral
quality to be judged against well­known references,
which rules out electro­acoustic music in favour of
instrumental or vocal works.

In the absence of any budget whatsoever, it was
clear that the project would have to be piggy­backed
on a live concert production.

1.1 The composition

Enter Rebecca Saunders, a highly esteemed
British composer of instrumental contemporary
music with a keen sense of sound texture and space.
Chroma is one of her most successful works.
Originally conceived in 2003, it has been in high
demand ever since, with seventeen successful
stagings in various surroundings as of March 2011,
despite the considerable resources it requires.

For lack of a better category, Chroma is spatial
chamber (or turbine hall, or castle, or museum, or
philharmonic, or, in our case, baroque­gallery­with­
anterooms and French garden) music. Its sounds
originate from two pianos, two percussion sets, two
violins, a cello, two double basses, an electric guitar,
two trumpets, two clarinets, an (electric) organ, a

127

large number of wind­up music boxes and a portable
record player. In the composer's words:

Chroma explores three different key issues: the
architecture of the space, the density of the collage
in the given acoustic, and the nearness or distance
to the different music being performed. So firstly,
it’s about entering into a dialogue with an
architectural space, exploring and emphasising the
particular characteristics of the space. [3]

For each staging, Chroma is adapted to its new
environment by the composer, and may grow a new
musical module or two. The audience is invited to
move freely around the place during the
performance. Conditions permitting, the piece is
performed twice in close succession, so that the
listeners can explore two different paths through the
soundscape. [4]

The musical language of Chroma consists of
gestures, not melody or harmony in the traditional
sense, and employs advanced non­standard playing
techniques. Explosive, almost violent eruptions
alternate with very soft and fragile but highly
expressive sections.

The work is organized in modules, played by
soloists, duos, or trios. These modules are scored
individually, and within each module the voices are
synchronized to a common time or rubato feel. Parts
of Chroma can be (and are) performed individually
as chamber pieces.

Each module is played in a specific place inside
the larger venue, determined in advance or during
rehearsals. The players of a module need not be
close together ­ in the Hannover staging, some
groups were spread out over 10 metres or more.

Sometimes, a single soloist or group will play
exclusively, but usually, different modules are
overlapping. There is an implied global tempo and a
carefully laid out flow chart, but usually no precise
rhythmic interlocking between modules1. Hence, the
overall result is not strictly determined in time
except when the composer desires a specific unison
effect or close interaction. In this case, special cues
will be agreed on and rehearsed as required.

The overall dramatic structure, while precisely
adhered to once it has been determined, is not set in

1The players all carry stopwatches, which are started
together a few minutes before the performace.

Illustration 1: The flow chart of Chroma XII used by the composer.

128

stone ­ it exists only in the composer's working
chart, which is adapted to each new location,
iteratively, during rehearsals (see illustration 1).

When a module is finished, the musicians will
quietly pick up their instruments and proceed to the
next location. Together with the tip­toeing audience,
this imparts a constant extra­musical sense of motion
to the scene.

In addition to the instrumentalists, Chroma
incorporates some objets trouvés which are added to
the sound collage at predetermined times: a large
collection of wind­up music boxes spread out on the
floor and later on music stands, and one or more
portable record players with folk music recordings.
In our case, the local bird life added a rather
aleatoric but strikingly beautiful layer of its own.

1.2 The performers

Based in Köln, Germany, the Ensemble
musikFabrik [5] is an internationally acclaimed
specialist ensemble for contemporary music, with an
extensive track record of Saunders performances and
a history of close collaboration with the composer.
One trumpet and one double bass module in Chroma

were written specifically for members of the
Ensemble musikFabrik.

The ensemble is self­governed ­ all repertoire
decisions are made by the musicians.

The familiarity with and dedication to the material
was very beneficial to the recording. Musicians,
stage management and composer worked very
efficiently, and there was much room for
experimentation despite the time pressure.

1.3 The venue

Chroma XII2 had been commissioned by
Kunstfestspiele Herrenhausen to take place in the
baroque gallery building of the Herrenhäuser Gärten
in Hannover and the adjacent garden. The gallery's
main hall is 67.45 m by 11.40 m, with a height of 8.0
m. Most of the modules in the first half happened
here. Some musicians were seated in two adjoining
hallways, and up on the main hall's two balconies.
Additionally, two clarinets and a trumpet were

2The Roman numeral indicates the 12th staging and
uniquely identifies the Hannover event. Since the
premiere at Tate Modern in London, the basic score has
constantly been changed, augmented and adapted to each
new location.

Illustration 2: The main hall of the Gallery building at Herrenhäuser Gärten, Hannover, looking west.

129

placed on a lighting structure near the center of the
main hall, directly above one another.

The building is a baroque masterpiece with floor­
to­ceiling fresco paintings and one of the largest
stucco ceilings in Europe.

At some point, the windows and door to the
garden were to be opened, and musicians would
gradually move outside and resume playing in the
outdoors. The sound difference between the highly
reverberant hall and the semi­anechoic garden was
quite intriguing, particularly at the open windows
where sounds from the inside and outside were
allowed to mix. The piece concluded in the garden,
gradually diminishing al niente, which in this case
means it ducked under the natural ambience of
crickets, birds and faraway chatter, and is probably
still there.

The garden paths are covered in gravel, which
produced clearly audible crunching footsteps in the
recording. We feared this might be a problem, even
though it was justified by the composer's directive
that the audience move around. In the end the sound
turned out to be so charming that it even received a
gentle emphasis in post­production.

1.4 Recording approach

Periphonic reproduction fulfils three important
roles in Chroma. It helps to separate in space those
musical gestures which overlap in time, it provides a
more complete reproduction of the room acoustics
and its interaction with the music, and it has to
substitute the freedom of the live audience to move
around.

The author spent two days at the rehearsal studios
of the musikfabrik in Köln, to listen in on as many
module rehearsals as possible and to get acquainted
with the musical language. A score was available for
study, but while it is easy to look intellectual when
sight­reading contemporary music, little insight can
be gained unless one is intimately familiar with the
notation, instruments and playing techniques at
hand.

A preliminary microphone and cabling concept
was developed after a visit to the location. The
historic gallery building added its own share of
complications: there is no way to suspend
microphones anywhere, so stands it had to be.

In the absence of a practical higher­order
microphone3, we relied on a previously tested hybrid
approach [1]: traditional soundfield microphones at
the desired listening positions were combined with
spot mikes for each individual instrument or group
of instruments. These were panned in higher order
for the purpose of augmenting and sharpening the
image. In order to convey different perspectives and
some sense of motion, we used two alternating main
microphone positions.

At the rehearsals, we found that the most magic
moment was the listener's passage from the hall into
the garden ­ one of the many aspects of the work
which could not be anticipated from score analysis.
In the absence of an elaborate dolly system, the
second main microphone was carefully picked up
and carried outside. We made sure the cable run was
neat and tried to decouple the microphone from
handling noise as much as possible, but some
remaining rumble had to be filtered aggressively.
The operator's footsteps however were left in,
because they would have been part of the live
experience as well.

To increase the sense of motion during the
passage, the active spot microphones were
dynamically panned along.

During setup, it became clear that our gear was
visually too intrusive to remain during the evening
concert, so we switched from “as neat as possible” to
“as easy to tear down as possible” and had to make
do with a recording of the two run­throughs of the
general rehearsal. It also became clear that we would
not be able to spot every single instrument in the
garden. In the end, the localisation performance of
the first­order main mike alone was perfectly
adequate, partly because the outdoor part was more
sparse, and partly because there are no confusing
reflections in the semi­anechoic free field. The two
omnis next to the second grand piano in the garden
did not contribute much spatial information, but they
filled in the bottom end nicely (particularly because
the main had to be rolled off due to wind noise).

3At the time of the recording, the commercially
available Eigenmike was not yet usable as a B­format
microphone. All available spherical arrays suffered from
coloration, noise, and bandwidth issues.

130

After the general rehearsal, we recorded clicks at
each instrument position into all microphones, to
ensure proper time­alignment in post­production.

1.5 The hardware

Our original plan had allotted 22 channels,
including two first­order main microphones.

Since it was clear that considerable distances had
to be covered, we decided on a MADI ring
infrastructure, to avoid the hum problems and
interference of a large analog system powered by a
strung­out, old, and possibly dodgy power grid. The
interior MADI line alone was over 250 m long, with
several remote­controlled microphone preamps
distributed evenly throughout the venue, so as to
keep the analog lines short.

A research team of Technicolor Hannover were
bringing their Eigenmike, which was to be recorded
on a separate system, synchronized to the main
MADI clock.

In the “control room” (a broom cabinet), we used
a splitter to distribute the stream to two independent
Linux machines equipped with MADI cards, each
runninng redundant disk arrays for storage.

Our modest miking plans were quickly
steamrollered by the composer's restless creativity:
after countless position changes and additions, we
ended up with 40 channels altogether, at which point
we were running 7 preamps. When the last pair of
microphones was connected (and gaffer­taped to a
tree because we had depleted our hardware stash),
our spare cable box was down to three short XLRs,
and we prayed for no more sparks of genius.

1.6 The software

For recording and post­production, we relied
exclusively on free software based on Linux systems
and the JACK audio server [6].

On the main recording machine, an Ardour2
instance [7] took care of writing the data and
provided simple two­channel monitoring. We
documented the microphone setup with Ardour's
track comments feature and used track markers to
take notes during the recording.

Ardour was configured to use 60 seconds of
recording buffer per track, which increases data loss
in the case of a crash or power outage (a situation
that would have ruined the take anyways), but

helped reduce the disk load, particularly as the
session kept growing.

One of the tetrahedral microphones was matrixed
and equalised using TetraProc [8], the other
produced B­format directly. Both were converted to
UHJ with jconvolver [9] and monitored in stereo.

The fallback recording machine ran jack_capture
[10]. This software writes a multichannel interleaved
file, which uses the disk bandwidth very efficiently.
An additional load­in step is required before the
audio data can be edited and mixed, but for a backup
system, the issue only arises if the primary machine
fails.

The preamps were remote­controlled with the
custom midiremote software [11], which turned out
to be invaluable, as the farthest preamp was easily a
hundred­metre walk from the control room.

2 Post­production

2.1 Microphone bleed

In hybrid HOA recording, directional and very
close spot microphones are desirable to minimize
crosstalk from other instruments. In this particular
case, the problem was even more pronounced
because of the huge size of the venue: for
sufficiently far­away spots, the time delay of the
bleed signals exceeded the echo threshold of human
hearing, and the resulting artificial echoes were very
audible.

Sometimes, echoes could be attacked with heavy
automation, muting or dipping unused microphones
whenever possible. But sometimes, the problematic
spot carried important content of its own and could
not be turned off. There is no perfect solution, and a
compromise between score fidelity and echo
suppression must be found. In this recording, we
were lucky to have many natural room echoes
already, so the remaining artificial ones did not stand
out too much.

Intensive spot miking can result in small and
narrow­sounding sources which do not combine
well, particularly if the spots are used at high levels.
It gets worse the higher the order of the panners and
reproduction systen is ­ in this sense, too much
resolution can be harmful.

131

To keep the mix from falling apart, each spot must
be very carefully time­aligned with the main
microphone to ensure proper blending, and it is
advisable to use stereo pairs of spots whenever the
sound source is large or consists of more than one
instrument.

These stereo pairs should either be coincidental
(X/Y or M/S) or very widely spaced, if at all
possible.

Whenever strongly correlated but non­coincident
signals are being used in an Ambisonic system, one
must be aware that they are combined internally (i.e.
with mathematical precision), which results in very
pronounced comb­filtering artefacts. This sounds

just as bad as a conventional A/B stereo pair panned
towards the center.

While crosstalk can be low enough at higher
orders to yield usable results for small A/B or
ORTF­like configurations if they are panned far
enough apart, the price is a strong dependency on
playback order and decoder design (with severe
coloration and imaging artefacts if the playback
order is too low). Hence, it could be argued that the
resulting signal is not proper B­format any more.

Very widely spaced pairs are sufficiently
decorrelated at mid and high frequencies to be
usable, but at low frequencies, combing can still
occur. The main reason to choose wide pairs is that
they work well with omnis, which are well regarded

Illustration 3: Post­production at the IEM Cube in Graz, on a 24­speaker hemisphere of Tannoy 1200s. The console on
the left controls the CUBEMixer. The MIDI controllers are attached to the machine on the right, which runs the Ardour
session. The grand piano was extremely handy while working with the score. The two red buttons on the tables are
emergency­mute switches for the speaker system.

132

for their extended LF response. Since this advantage
will be lost in an Ambisonic context due to LF
combing, there is really no point in using spaced
omnis at all.

Furthermore, omnis will confuse Ambisonic
localisation rather than improve it, by adding
artificial run­time cues which should not exist in an
Ambisonic system.

Coincident pairs on the other hand are inherently
free of comb­filtering problems, and give you
maximum control over the source width in post­
production without unwanted side effects.

Despite their disadvantages, a few omnidirectional
microphones did creep into the Chroma recording,
partly for their superiour LF response, and partly for
the mundane reason that we had run out of cardioids.

For each gran cassa, we used boundary
microphones on the floor below. The corresponding
overhead microphones of the percussion sets were
high­pass filtered to mitigate LF combing.

The grand piano was covered with two cardioids
spaced about 1.5 m apart, one above the tuning pegs
(to accommodate non­standard playing techniques),
the other at the rear end. Likewise, the upper
microphone had its bass rolled off slightly.

Two small A/B setups were tried: one on a double
bass duo, and the other in the garden. The bass pair
was severely affected by the issues mentioned
above, but a usable signal could be salvaged by
switching off one of the microphones. The garden
pair worked quite well, but only after it was delayed
enough for the main microphone to dominate the
directional perception. In the end, it was just used
for some LF fill­up and a dash of “spaciousness”,
not for proper localisation.

It should be obvious that omnis are a lot more
prone to pick up unwanted echoes. We only got
away with them because either the covered
instrument was extremely loud compared to
everything else (the gran cassa), the particular
module was effectively a solo (the double bass), or
because some directional confusion was found to be
tolerable (in the garden).

2.2 Post­production stages

Since full 3D mixing rooms are rare and in high
demand, the workflow was split so that each stage
could be completed with minimal equipment.

Individual tracks were cleaned up (and equalised if
necessary) on a standard stereo monitoring system.
The time spent on the quite tedious cleanup runs was
used to get familiar with the score, and to take notes
about necessary mixing interventions.

Gradually, ideas for a “spatial interpretation” of
the music began to form, to create a path through the
music similar to what a moving listener would
experience.

In the next step, the Ardour session was extended
to third­order by adding a 16­channel master bus and
the appropriate panning plugins [12], with group
busses inserted as required. A basic panning scene
was created blind, using a floor plan drawn by the
composer and some photographs taken during the
recording. All tracks were then time­aligned
according to the clicks recorded earlier.

Now the production was ready to move to the
author's hexagonal system, which is capable of
second­order horizontal surround. With the sources
roughly in place, a preliminary balance was created,
and microphones were automated away when not
needed.

When most of the basic homework was done, the
session was taken to the IEM Cube in Graz, Austria,
for a final ten­day mixing run. The Cube offers a
hemispherical 24­channel monitoring system of co­
axial Tannoy 1200s, in 12­8­4 configuration, using a
prototype decoder by Franz Zotter et al. [13]

Slowly, the final interpretation was taking shape,
and once the acoustic perspectives had been decided,
all spot mikes were carefully aligned with the image
of the corresponding main microphone. Finding the
right balance was the most labour­intensive task.
The absence of a global score did not help, as the
mess in illustration 3 indicates.

In order to avoid mistakes with the automation,
three MIDI controllers with 8 motor faders each
were connected to Ardour to provide visual
feedback, and for easy access to solo and mute
functions. Panners were mapped to a set of rotary
controllers with LED indicators for a quick overview
of source positions.

Both run­throughs of the general rehearsal were
mixed, but only the second one was selected for
public playback, because it includes a number of
last­minute changes made by the composer during
intermission.

133

3 Playback

So far, the production has been played back on
four periphonic and six horizontal­only systems, and
it has stood up pretty well.

Some excerpts were performed during the dafx10
conference at the MUMUTH in Graz. The array was
an elongated hemisphere of 29 Kling & Freitag CA
1001 arranged in layers of 12, 10, 6 and 1, driven by
a max­rE decoder designed by Thomas Musil and
Peter Plessas. The rather long reverberation time
disturbed the effect of the outdoor part of the
recording, but otherwise the rendering was quite
convincing.

During the 2010 Huddersfield Festival, where
Rebecca Saunders was artist­in­residence, the author
had the chance to hold a workshop at CeReNeM and
to demonstrate the mix to the composer in a private
session, using the SPIRAL facility [14]. The system
had to be converted to Ambisonics rendering for the
occasion, using a dual­band third­order decoder
designed by Fons Adriaensen. It consists of 25
Genelec 8240A in three rings of eight plus a zenith
speaker, and four 7270B subwoofers. With a reverb time of only 0.3s down to 150 Hz, the room was the

most effective in transporting the free­field acoustics
of the garden. It was surprisingly free of phasing
artefacts, probably due to its ring structure.

The most recent replay took place at ICSA 2011
[15], on a rig of 40 Neumann KH120 monitors and
four KH810 subwoofers designed by the author,
again using a third­order decoder by Fons
Adriaensen. This rig was vastly over­specified for
third order, and even though the decoder used only a
subset of speakers, the first trial run sounded phasy
and irritating. It became clear that the native
Soundfield signals in Chroma had to be kept
separate from the HOA spots and needed a dedicated
first­order decoder that used even fewer speakers.
With this treatment, the result was as good or better
than the previous renderings. The lesson is clear:
mixed order content must not be lumped together
into a single higher­order bus.

All these replays have sounded different, which is
to be expected given the extreme variance in room
acoustics, layout and speaker design. On more than
one occasion, the author found himself longing for a

Illustration 4: ICSA playback setup, 40 Neumann KH­
120 plus four KH 810.

Illustration 5: Setting up Chroma in the SPIRAL at
CeReNeM, University of Huddersfield.

134

mastering step and clearly defined “industry best
practices” for listening room acoustics. But even if
the portability of Ambisonic mixes is not perfect, a
fully satisfactory rendition could be achieved in each
case, with only minor adjustments.

4 Conclusion and future work

Chroma is a perfect example for the artistically
and aesthetically justified application of periphonic
audio. The composer has been extremely happy with
the listening experience and expressed her surprise
at the precision and sound quality with which the
live experience was reconstructed. She suggested
some minor changes in balance where the mix
strayed from her personal “favourite path” through
the work, but was otherwise fully convinced of the
technology and the execution. Workshop
participants throughout were likewise convinced of
the feasibility of the method, and found the music
adequately represented.

To address the mixed­order problem, sharpening
techniques such as the HARPEX decoder [16] could
be evaluated to “upmix” the soundfield signals to
third order.

Direct comparison of the hybrid HOA recordings
with the IOSONO renderer and material created with
the SPAT toolkit from IRCAM at the recent ICSA
conference revealed other limitations. The virtual
sources of Chroma never seemed to move more than
a few meters away from the speakers, whereas the
IOSONO system had no trouble vanishing the walls
of the listening room altogether and suggesting a
room that was vastly larger. The IRCAM SPAT
workshop demonstrated the necessity of going for
higher orders: it drove the rig at its maximal
resolution, which resulted in greatly reduced
phasing, and emphasized the need for a flexible
room synthesis algorithm in the HOA recording tool
chest.

Further study is necessary to determine the role of
the floor reflection picked up by the spot mike,
which might dominate distance perception and might
account for the observed lack of depth (see Rumsey
[17]). It could be eliminated by absorbers on the
floor, or by designing a suitable inverse filter.

After clearing out all the equipment, we enjoyed a
gorgeous live rendition of Chroma, free from
technical anxieties, as part of the festival crowd. And
when the moon rose over the double bass player
while the nightingales were singing and the summer
scents of the garden drifted by, it became all too
obvious that even the most sophisticated recording
techniques can be ridiculously inadequate.

I like to point out that we did get the nightingales,
though.

Acknowledgements

Chroma XII was composed and directed by
Rebecca Saunders, commissioned by Kunst­
festspiele Herrenhausen 2010 and performed by
musikFabrik Landesensemble NRW e.V.

Live recording by Jörn Nettingsmeier and Florian
Faber, mixed by Jörn Nettingsmeier.

Thanks to:

• Florian Faber, without whom the project would have been dead in
the water

• Stephan Flock and Claudio Becker­Foss for generous hardware
support

• Rebecca Saunders and Mark J. Baden for their friendly cooperation
despite the tight rehearsal schedule

• Lukas Hellermann, Michael Bölter, Martin Schmitz and all the
musicians of musikFabrik for their curiousity and open­mindedness

• Lilly Marie Weber at Kunstfestspiele Herrenhausen for the
permission to record

• Florian Trötschel and crew at Galerie Herrenhausen for competent
and friendly local tech support

• Technicolor Hannover for helping hands, interesting research and
useful gear

• Winfried Ritsch, Matthias Franz and Thomas Musil at IEM for the
invitation to work there, and for their patience and support

• Peter Plessas for a very well­tuned concert P.A. system at dafx10

• Pierre­Alexandre Tremblay and Prof. Michael Clarke at
Huddersfield University for the invitation to work at the SPIRAL

• Fons Adriaensen for a huge body of excellent free Ambisonic
software, lovingly hand­crafted decoding matrices, and for answers
to countless questions.

Recorded and mixed with free software, thanks to all authors and
project contributors.

Financial support by musikFabrik, Technicolor Hannover, and IEM
Graz.

135

[1] Jörn Nettingsmeier, 2010: “Field Report: A pop production in Ambisonics”, in: Proceedings of the Linux Audio
Conference 2010, Hogeschool voor de Kunsten, Utrecht
http://stackingdwarves.net/public_stuff/linux_audio/lac2010/Field%20Report­A_Pop_production_in_Ambisonics.pdf

[2] Jörn Nettingsmeier, 2009: “Shake, Rattle, and Roll: An attempt to create a "spatially correct" Ambisonic mixdown of a
multimiked organ concert ”, in: Proceedings of the Linux Audio Conference 2009, Casa della Musica, Parma
http://stackingdwarves.net/public_stuff/linux_audio/ambisonic_organ_remix/joern_nettingsmeier­
shake_rattle_and_roll.pdf

[3] from an interview on the website of Huddersfield Contemporary Music Festival 2010,
http://www.hcmf.co.uk/Pulling­threads­of­sound­Rebecca­Saunders­interviewed

[4] previous three paragraphs taken verbatim from:
Jörn Nettingsmeier, 2010: “Reconstructing Chroma XII by Rebecca Saunders – a recording experiment”, program note
for a concert replay at dafx 2010 in Graz, Austria.
http://dafx10.iem.at/concert/rebecca­saunders­and­joern­nettingsmeier.html

[5] http://musikfabrik.eu
[6] Paul Davis, Stephane Letz, et al.: the JACK audio connection kit, http://jackaudio.org
[7] Paul Davis et al.:Ardour digital audio workstation, http://ardour.org
[8] Fons Adriaensen: TetraProc, http://kokkinizita.linuxaudio.org
[9] Fons Adriaensen: jconvolver convolution engine, http://kokkinizita.linuxaudio.org
[10]Kjetil S. Matheussen: jack_capture, http://archive.notam02.no/arkiv/src/?C=N;O=A
[11]Florian Faber: midiremote remote control application for RME Micstasy and ADI­8, available from the author on

request
[12]Fons Adriaensen, AMB plugins, http://kokkinizita.linuxaudio.org, third­order extension contributed by the author
[13]Franz Zotter, Hannes Pomberger, and Markus Noisternig, 2010: “Ambisonic Decoding with and without Mode­

Matching: A Case Study Using the Hemisphere”, in: Proceedings of the 2nd International Symposium on Ambisonics
and Spherical Acoustics, Paris.
http://ambisonics10.ircam.fr/drupal/files/proceedings/keynotes/K3.pdf

[14]Paul Mac, 2009: “A Multi­channel Experiment at Huddersfield University”, Audio Media Magazine, June 2009.
http://www.genelec.com/news/132/358/A­Multi­Channel­Experiment­at­Huddersfield­University/

[15]International Conference on Spatial Audio 2011, Detmold, Germany. http://icsa2011.org
[16]Svein Berge and Natasha Barrett, 2010: “High angular resolution planewave expansion”, in: Proceedings of the 2nd

International Symposium on Ambisonics and Spherical Acoustics, Paris.
[17]Francis Rumsey, 2001: “Spatial Audio”, Focal Press, p.35

136

From Jack to UDP packets to sound, and back

Fernando Lopez-Lezcano
CCRMA, Stanford University

Stanford, CA, USA
nando@ccrma.stanford.edu

Abstract

The Mamba Digital Snakes are commercial products
created by Network Sound, that are used in pairs to
replace costly analog cable snakes by a single
Ethernet cable. A pair of boxes can send and receive
up to 64 channels at 48KHz sampling rate packed
with 24 bit samples. This paper describes the
evolution of jack-mamba, a small jack client that can
send and receive UDP packets to/from the box
through a network interface and transforms it into a
high channel count soundcard.

Keywords

Jack, UDP, Networking, Soundcard, USB

1 Introduction

The jack-mamba program is the offshoot of a
project that is still in progress, with the goal of
creating a small trial Wave Field Synthesis system at
CCRMA (a 32 channel system for experimentation
and possible future expansion).

The conventional solution in most current WFS
systems is to use high channel count PCI or PCIe
sound cards, usually from the RME MADI family.
The MADI output of the soundcard (64 channels) is
then split into 8 ADAT 8 channel ports with a MADI
to ADAT bridge, and each ADAT lightpipe is fed
into 8 channel ADAT D/A converters that drive the
speakers. This solution is proven and reliable, easy to
synchronize across multiple hosts using a word clock
signal, but expensive. For a base 32 channel system
the price hovered around $180 per channel (64
channel systems would have a lower cost per
channel, of course).

We though it was worthwhile to explore other non-
conventional solutions that might lower the cost of
the system.

2 A network sound card

Another possibility would be to eliminate the
sound card entirely and explore delivery of audio
through network packets to custom built boxes that
would include a network port and D/A converters.
There are already many systems that deliver high
quality audio over Ethernet, but most of them use
proprietary protocols (a Wikipedia article includes
pointers to most[1]). Of course there is also the very
complete and complex IEEE 1722 protocol[2]. This
topic (an Ethernet “soundcard”) has also surfaced on
the LAD, LAU and Jack mailing lists several times
on recent years (see, for example, a long thread in
2009[3] started by Will Godfrey - Folderol, another
one in mid-2011[4] by Dan Swain). As far as I'm
aware this has not yet crystallized into working
hardware.

3 The Mamba digital snake

A local Silicon Valley company (Network Sound)
has created a family of products that replace high
cost analog cable snakes with A/D and D/A boxes
connected through a single CAT5 Ethernet cable (the
Mamba Digital Snake [5][7]). A pair of boxes can
interconnect two locations with up to 64 channels of
48KHz low latency 24 bit audio through a dedicated
Ethernet link. Their solution is dedicated and point to
point, and thus does not implement resource
discovery, overall sampling rate synchronization and
hence the communication protocol is very simple.

We thought it would be interesting to explore the

137

possibility of using one half of a 32 channel digital
snake as a "soundcard". A rough cost estimate for
that solution seemed to be about 1/3 of the traditional
soundcard solution (this ignores for now the problem
of synchronizing multiple units driven by different
computers so that all the analog outputs are sample
synchronous, a requirement of a WFS system).

The box is controlled by an FPGA, has 32 A/D
and D/A converters and analog I/O ports, and an
Ethernet connector. It is meant to be driven by an
identical system, and when running as a slave it
recovers its audio clock from the timing of the
received UDP packets. The formatting of the UDP
packets is very simple and there are no protocols to
implement. We just need to send UDP packets with
the proper timing and contents to get 32 analog
outputs. Network Sound was kind enough to provide
us with the packet format specification they receive
and transmit.

3.1 The software

We started looking around for open source free
software we could use as a starting point. The first
candidate was Jacktrip, a system designed at
CCRMA to do multichannel high quality long
distance audio collaboration[6]. A we started reading
the source we found that it was a complex system,
difficult to tweak for our purposes, and mostly
written using Qt classes, with which the author was
not familiar (the original goal was to write a simple
command line jack client using plain C).

In the meanwhile LAC 2011 took place and Jörn
Netingsmeier pointed out the existence of jack.tools
by Rohan Drape[7], a set of GPL jack command line
tools. One of them is jack.udp and it seemed to be an
almost perfect fit for the task at hand:

"jack.udp is a UDP audio transport mechanism
for JACK. The send mode reads signals from a set of
JACK input ports and sends UDP packets to the
indicated port at the indicated host at a rate
determined by the local JACK daemon. The "recv"
mode reads incoming packets at the indicated port
and writes the incoming data to a set of JACK output
ports at a rate that is determined by the local JACK
daemon. "

After looking at the source (simple C, very
readable) it seemed that it would be relatively simple
to modify the send and receive functions and adapt
them to the packet and sample formats needed by the
Mamba box, replacing the sending side of the digital
snake with a general purpose Linux computer.

3.2 Initial tests

The Mamba box uses a simple packet format, in
the case of the 32 channel version each UDP packet
holds 8 32 channel 24 bit audio frames. Our jack
client program would have to send packets at the rate
of one packet every 166.67 uSecs.

The jack.udp program has (as a sender) a separate
thread for sending UDP packets, which is fed
samples from the Jack callback function by a lock-
free ring buffer. The Jack callback pushes its samples
into the lock-free ring buffer and wakes the UDP
send thread through a write to a pipe. The UPD
thread, which was waiting on the pipe, reads the
samples in packet-sized chunks from the ring buffer
and sends them out to the proper IP address and port,
where normally a second instance of jack.udp in
receive mode does the opposite.

It was easy to replace the packet assembly and
disassembly functions with versions that packed 24
bit samples into 8 channel frames with the proper
header information. We were able to test sending and
receiving audio between two computers as with the
original program, except that in this case the
formatting of the packets corresponded to the
Mamba specifications.

In May 2011 we visited Network Solutions for a
first test. We used the Ethernet port of a laptop
configured as a statically addressed interface to send
the packets.

The first try were less than successful as the UDP
packets seemed to go nowhere. Tcpdump made it
was easy to see why, as nobody was answering ARP
requests. The Network Sound engineers burned a
different version of the FPGA code that included
ARP generation, and we were able to send packets to
the box. For these initial tests sending on the box was

138

disabled (it only received UDP packets), and internal
buffering was maximized to make it as robust as
possible to latency problems in the jack client
program.

After that, we managed to send a sine wave to the
Mamba box and got a clean output, albeit with quite
frequent dropouts. But we knew that the packets
were getting to the box, and that the formatting of the
packets and the samples was correct.

3.3 Clock jitter issues

There was a mismatch between the modified
jack.udp and the internals of the Mamba box. All
UDP packets packed with samples from a Jack
callback were sent together at the beginning of the
callback as in the original jack.udp code. As the
Mamba box recovers its audio clock from the timing
of the received UDP packets the uneven timing
creates jitter in the recovered audio clock.

To see if the problem could be minimized we
added delays between packets to space them more
evenly within a jack cycle. The timing on the
receiving end was definitely better after that change.

The fact that the modified jack.udp is a normal
Jack client was also going to have extra second order
jitter effects. The absolute starting point of the Jack
callback in time could move from period to period as
Jack clients enter or leave the graph, or when
connections are changed so that the order of
execution of existing clients change. Those changes,
while minimal, would also have an effect in the
transmit timing of the UDP packets. In addition to
that, the wakeup latency of the UDP send thread
itself would add an additional (small) delay to the
first packet being sent out in a given Jack period.

As a first approximation the code was good
enough to verify that the network stack and high
resolution timers in Linux could deliver packets
reliably to the box every 166.6 uSecs.

3.4 More testing

Another test on June 1st was much more
successful. The glitches that had plagued the
previous test were the result of a coding error. The

UDP send thread was actually not running in the
SCHED_FIFO scheduling ring (booo!). With that fix
in place the audio output was much more stable.

We received a loaner box from Network Sound
with the custom FPGA code and we were able to
keep testing at CCRMA, this time using a desktop
machine with a second network interface dedicated
to the audio link. This combination did much better
than the laptop and there were almost no dropouts
even when loading the computer and transferring big
files through the regular eth0 interface.

3.5 Receiving audio

Receiving packets from the Mamba box did not
work and it took a long time to debug the problem.
We could see packets being received by the Linux
machine with tcpdump, but nothing was received by
the program. Eventually we found out by using
netstat that the packets being sent by the Mamba box
were not legal (we could see the network stack error
counters being incremented). A hex disassembly of a
dumped packet confirmed that the checksum was
wrong. A bug in the FPGA code, which was
promptly fixed by the Network Sound engineers.

Now we were at the end of June. Another flashed
FPGA and a test at Network Sound and we managed
to receive audio from the Mamba box with one
instance of the modified jack.udp program. A jaaa
process showed a perfect sine wave being received at
our end (one of the channels of the Mamba box was
being fed by a high quality audio analyser test
signal).

3.6 Looking at the recovered audio clock jitter

We fired another instance of the modified jack.udp
to send packets to the mamba box. And almost
immediately jaaa showed visible side bands around
the single spike that represented the sine wave.
Puzzling, until one of the engineers (I forget her
name) pointed out the obvious cause, this was the
confirmation that jitter in the received packets in the
Mamba box caused jitter in the recovered audio
clock. See below for measurements.

139

The jitter in the recovered audio clock is not a
problem in the real digital snake as the timing of the
packets sent by the master box is hardware driven.

3.7 Thread priorities

It is necessary to optimize the priority of all
SCHED_FIFO threads involved in this network
based “audio stack”.

As the timing of the outgoing packets is critical to
minimize audio clock recovery jitter, the UDP send
thread runs with a priority that is higher (by one)
than the priority of the main SCHED_FIFO thread of
jackd. Receiving packets is very important but the
timing is not so critical, so that the UDP receiving
thread runs with higher priority than the jackd client
thread of jack-mamba (it has less priority than
sending).

There are two additional sets of threads that can
use priority tweaking, although the result is not as
drastic as the main UDP send and receive threads
inside the modified jack-udp program.

As in the case of Jack, the IRQ thread for the
hardware Ethernet interface dedicated to audio can
be raised in priority. It should be higher than the
priority of jackd but probably lower than the priority
of the IRQ thread that takes care of the soundcard
hardware (more experimentation is needed to fine-
tune this – this will probably depend on the
reliability of the hardware drivers for sound and
network packets).

The kernel also has network transmit and receive
software interrupts that run with SCHED_FIFO
priority. They can also be optimized to run at higher
priority than other software interrupts.

4 Getting rid of the pipe

With the previous tests we had confirmed that it
was possible to send and receive packets from a
stock Linux machine running an RT patched kernel
with very occasional packet delays. Almost all of the
delays were short enough that the buffering inside
the Mamba box could cover for them.

To get better performance and to minimize the
jitter in the recovered audio clock we had to change
the internal architecture of the original jack.udp
program (now renamed jack-mamba). We wanted to
do away with the pipe based wakeup calls that the
jack callback function used to drive the UDP send
thread. After all, the UDP send thread needed to send
packets at a regular rate that should be locked to the
sampling rate of the soundcard being used by Jack.

If the UDP send thread were to send all packets at
exactly the right time, there should be no need for
wakeup calls, the Jack callback could feed the ring
buffer and the UDP send thread could empty it at
exactly the same rate, and both halves would not
need any additional synchronization. Enough extra
buffering in the ring buffer in the form of a fixed
time offset between arrival of samples to the Jack
callback and delivery of those samples in UDP
packets would provide for a cushion against latency
variations in the Jack callbacks and uneven
scheduling latencies in all processes involved,
including the UDP send thread.

Based on Jack time (jack_last_frame_time tells us
when the current Jack cycle started) we can know
exactly when the next packet should be sent. The
UDP thread can then use absolute time
clock_nanosleep calls instead of relative nanosleep
waits for delivering the packets at the right time. And
we can pass the absolute time stamp for each packet
in the same ring buffer that sends samples from the
jack callback to the UDP send thread.

The UDP thread is now an infinite loop that
checks for availability of data in the ring buffer in
each iteration. If there is enough data available to fill
one UDP packet, it reads it together with the absolute
time when it should be sent, and waits with a call to a
clock_nanosleep delay (with a TIMER_ABSTIME
argument). The packet is then sent at the right time
and the loop is iterated again.

If there is not enough data available in the ring
buffer the thread waits using a relative
clock_nanosleep call that delays the thread for the
duration of the pre-calculated inter-packet delay.

140

This can happen when there is a Jack xrun or the
Jack callback thread gets delayed for a long time.
After the wait the loop is iterated again.

In this way there is no additional scheduling delay
for the first packet at the beginning of a jack cycle
due to the pipe wakeup, all packets are scheduled at
the right time (in the steady state condition), the
scheduling time only depends on the start of each
Jack cycle and we can add a time offset for
additional buffering (and latency) in the ring buffer.

The jitter in packet delivery will of course be
impacted by any scheduling delays in the UDP send
thread, but with a properly configured RT patched
kernel and correct IRQ priorities it works fine.

The next graph shows inter-packet scheduling
delay measurements using tcpdump (with inter-
packet time stamps, the “-ttt” option) on the sending
machine over a period of 5 minutes, The X axis is
measured packet spacing (the theoretical delay in this
case should be 166.667 uSecs running Jack at 48KHz
with 128 x 2) and the Y axis is number of packets
that fall in a particular microsecond-wide bin:

Even with a properly tuned system there are still
occasional cases of long scheduling delays. A more
complete investigation needs to be done, adding code
to trigger Jack stack traces in those cases to try to see

why the scheduling latencies are happening.

The figure below show a 1KHz sine wave from a
Minirator MR-PRO generator being fed into channel
#1 of the Mamba box and received by a single
instance of jack-mamba:

The next figure shows the effect of recovered audio
clock jitter due to received packet timing differences
when we add another instance of jack-mamba
sending silence to the Mamba box (no other
changes). This is using jaaa peak hold and averaging
functions to see the worst long term distortion
products:

The bandwidth of the measurement is very small

Time delay between sent packets

141

(0.366Hz) and the distortion products are at or below
70dB below full scale. These measurements were
taken on a workstation with quad core Q9450 Intel
processors @ 2.66GHz, running Fedora 14 with a
2.6.33.19-rt31 kernel while logged into an NFS
served account through the normal eth0 interface.

4.1 Managing latency

The fact that there are elastic ring buffers between
the reception and transmission of the UDP packets,
and the Jack callbacks means we have potentially
variable input and output audio latencies.

The number of samples stored by the Jack callback
in the outgoing ring buffer determines the additional
output latency, and can be controlled. The number of
received UDP packets stored in the incoming ring
buffer determines the additional input latency. This
is set at program start time by discarding packets
until the latency corresponds to the desired amount.
Currently there is no way to detect dropped incoming
packets as there is no packet sequence information
being sent by the Mamba box in the header of the
packets. More work needs to be done in this regard.

4.2 Jack xruns

If an xrun occurs then the synchronization between
the jack callback thread and the UDP send thread is
broken. When that happens the reference timing for
the two threads is recalculated so that they are
synchronous again.

4.3 Error reporting

To report errors to the main program we added
another lock-free ring buffer that communicates error
messages back to the main program, it samples the
error queue and reports statistics to the console.

To be able to properly report errors with readable
timestamps we found it necessary to record the offset
between the return of the time system call and that of
clock_gettime at the startup of the program to
compensate the printed values for an offset between
the two clocks.

5 Network packet priorities

Linux provides several ways to prioritize network

traffic and we tried to add those options to the
program to further optimize performance and timing
of the packet delivery.

The first one is setting a higher socket priority for
the socket being used to transmit the UDP packets
(SO_PRIORITY) using setsockopt. We chose the
highest priority that we could use without having to
run the program with special privileges (6).

The second one is to change the Type of Service
(IP_TOS) of the packets. For this option it is
necessary for the executable to have special
permissions so it is not so easy to use. If that option
is used and the function returns an error, the program
suggests setting the executable to have the
appropriate capability (if file based capabilities are
available, of course).

6 Trial by fire

The Transitions Concert, our end of summer
concert, was going to have a first night (on
September 28th) curated by the author of this paper
with a new outdoors sound system that used 16 main
speakers in a 3D setup and 4 sub-woofers. Our goal
was to have a reliable system that could drive all 20
speakers from the 32 channel Mamba D/A box.

We used a Quad Core Intel machine running
Fedora 14 with a 2.6.33.14-rt31 patched kernel. A
second PCI express Intel dual port Ethernet card was
installed and provided a dedicated point to point
connection to the Mamba box. The computer was left
in the server room and just three Ethernet cables
connected the system to the outdoor concert venue.
Two were used to remote the monitor and USB
peripherals, and the third one connected the
workstation to the Mamba box. Jack-mamba worked
perfectly. No xruns or glitches in the 1 1/2 hours the
concert lasted.

7 A 32 channel USB soundcard

When using laptops it is normally desired to be
able to use the wired Ethernet interface to have a fast
network connection to the Internet. While it may be
possible to share the interface with the audio packets
using proper routing, it would be much better to have

142

a second Ethernet interface dedicated to audio.

We tried to use a USB 2.0 to Ethernet dongle and
the results were very promising. We configured the
Ethernet interface using the Network Managwer GUI
in a Fedora 14 installation to be tied to the hardware
address of the dongle, and use the proper fixed IP
address that the Mamba box sends to. We also set up
routing so that the default route for Internet access is
not changed and the new interface does not interfere
with existing network connections.

Once the interface is properly set up, it is possible
to plug in the dongle, wait until it is discovered by
Network Manager, and start jack-mamba right away.
It is almost as easy to use as a real USB soundcard.
The dongle can even be disconnected and
reconnected and audio starts streaming again with no
problems when the interface is again detected.

We could also create udev rules so that the priority
of the USB IRQ thread in RT patched kernels is
changed from the default when the dongle is
connected. No tests have been made on what
happens when the USB dongle shares the internal
chipset USB hub with other USB ports and
peripherals. Maybe this solution will not be workable
in all cases.

8 Processor load

On an Intel Quad Core workstation running at
2.66GHz the jack-mamba process uses around 15.9%
of a CPU (split into the three main threads that use
7.3%, 5.3% and 3.3%), the IRQ thread for the
Ethernet card uses 3.6% and the network software
IRQ (sirq-net-rx/1) uses 9.3% (for a total of
approximately 28.8%). This is one disadvantage of
this “soundcard” as it uses more processing power
than a standard PCI[e] interface.

Using the USB Ethernet interface instead, the total
load of jack-mamba is 17.9%, the ehci_hcd IRQ
thread for the USB interface uses 9%, the uhci_hcd
2%, and assorted sirq-net* and tasklets use 8.8% for
a total of around 37%.

While a USB based Ethernet dongle uses 30%

more CPU than a PCI express Ethernet interface it is
not unreasonable for such an interesting solution. Of
course the actual numbers in both cases will change
slightly with different hardware drivers.

9 Creating a networked audio hub

Another feasibility test we performed was to run in
the same machine jack-mamba and instances of
jack_netsource (the netone version of netjack) tied to
another dedicated Ethernet port with a DHCP server
running on it. With this setup a computer can use the
workstation as a networked audio hub and connect to
the Mamba box through a network interface. This is
the scheme the author uses to implement network
audio connectivity in his OpenMixer project (albeit
with regular PCI based RME soundcards delivering
audio to the speakers).

10 Future development

Currently the determination of the spacing
between outgoing UDP packets is based just on the
absolute times of the last two jack cycles, a more
precise determination should be arrived at, either
based on a moving average of jack period lengths, or
a proper phase locked loop[8].

A very desirable next step would be to convert the
jack client program into a proper jack backend. We
would need a stable clock source to drive the audio
packet delivery.

A simple option would be to switch the Mamba
box into master mode, and use the received UDP
packets to trigger the sending of the transmitted UDP
packets. In this way the sampling rate would be
defined by the Mamba box itself and there would be
no jitter noise added due to audio clock recovery.

A Mamba Jack backend would transform the
Mamba box into a real "sound card". And a USB to
Ethernet dongle would make this "sound card"
independent of the availability of a free Ethernet port
in the machine (USB ports are plentiful).

The jack-mamba program currently has support for
16, 32, 48 and 64 channel Mamba boxes but we have
only tested it with the 32 channel version. It remains

143

to be seen if a 64 channel box can be made to run
reliably and if the CPU load of the network stack
processes is low enough to make it practical.

Another task is devising a synchronization scheme
so that multiple boxes can have sample synchronous
output (maybe impossible). There are protocols that
can synchronize the clock of several computers very
accurately, perhaps with enough resolution to be able
to send UDP packets from different computers to
different Mamba boxes at the same absolute time.
But the ring buffer induced latencies and the
possibility of dropped packets could make this
unreliable. Word clock I/O on the Mamba boxes
could alleviate these problems.

We also need to see if Network Sound can add
sequence numbers to the Mamba UDP packet
headers to enable us to detect missing or out of
sequence packets. It would also be neat for the box to
be able to copy a word from the incoming header to
the outgoing header as this would make it possible to
try to detect outgoing packet loss.

The newest products from Network Sound can be
programmed through special UDP packets (including
the send and receive IP addresses and ports, master
mode, number of channels, etc). We need to write a
small program that can access that functionality.

11 Conclusion

A Jack client has been presented which sends and
receives UDP packets from one half of a Mamba
digital snake box and slaves its sampling rate to a n
existing soundcard. It has been tested with a 32
channel box with no problems in real life situations
(concert diffusion), and works even through a cheap
USB to Ethernet adapter. It runs in a regular Linux
workstation with no special tweaks other than an RT
patched kernel and proper IRQ thread priority
optimization.

While solving the original problem (a low cost
network based delivery of audio for WFS systems) is
not yet done, this simple program and its planned
migration to a full Jack backend could be useful
nevertheless for situations where a high channel

count soundcard is desired with low cost.

Jack-mamba will be made available under the GPL
in time for LAC2012.

12 Acknowledgements

It would have taken a much longer time to write
this program from scratch if it were not for Rohan
Drape, his jack.tools package and jack.udp. Of
course without Jack itself and all the wonderful
audio programs that can use it this would not have
been possible either. Many thanks to all the members
of the Linux Audio community!

It would also have been impossible to do this
without the enthusiastic support of CCRMA and
Chris Chafe (CCRMA's Director), and without the
help of all the people at Network Sound.

References

[1] Wikipedia: Audio over Ethernet
http://en.wikipedia.org/wiki/Audio_over_Ethernet
[2] Wikipedia: Audio Video Bridging
http://en.wikipedia.org/wiki/Audio_Video_Bridging
[3] LAU/LAD: “FOSS Ethernet soundcard” thread

(Will Godfrey - Folderol):
http://linuxaudio.org/mailarchive/lau/2009/11/23/162

370
[4] Jack-Audio-Devel: “Ethernet-based audio

interface using (net)jack idea” thread (Dan Swain):
http://permalink.gmane.org/gmane.comp.audio.jackit

/24568
[5] Network Sound: Mamba Digital Snake:
http://www.networksound.com/Digsnake.html
[6] Jacktrip and SoundWire:
https://ccrma.stanford.edu/groups/soundwire/softwar

e/jacktrip/
[6] Rohan Drape, jack.tools:
http://slavepianos.org/rd/
[7] Network Sound: Mamba Audio Streamer:
http://www.networksound.com/Mamba_AS.html
[7] Using a DLL to filter time, Fons Adriansen,
http://kokkinizita.linuxaudio.org/papers/usingdll.pdf

144

Controlling adaptive resampling

Fons ADRIAENSEN,

Casa della Musica,
Pzle. San Francesco 1,

43000 Parma (PR),
Italy,

fons@linuxaudio.org

Abstract

Combining audio components that use incoherent sam-
ple clocks requires adaptive resampling - the exact ra-
tio of the sample frequencies is not known a priori and
may also drift slowly over time. This situation arises
when using two audio cards that don’t have a common
word clock, or when exchanging audio signals over a
network. Controlling the resampling algorithm in soft-
ware can be difficult as the available information (e.g.
timestamps on blocks of audio samples) is usually in-
exact and very noisy. This paper analyses the problem
and presents a possible solution.

Keywords

Jack, ALSA, network audio, resampling

1 Introduction

Adaptive resampling is required when combin-
ing audio hardware running at incoherent sam-
ple rates into a single system. Incoherent here
means that the clocks are not derived from the
same source. Although the nominal sample rates
are known, their ratio is not exact and may even
drift over time. A fixed resampling ratio, e.g.
44100/48000, or even one that takes known errors
into account, will sooner or later require samples
to be inserted or dropped and this is in general
not acceptable.
The problem arises when adding a second sound
card to a Jack server, or when two machines, each
having their own audio hardware but no common
clock, need to exchange audio signals via a net-
work connection.

In hardware this is a relatively simple problem
to solve if both sample clocks are available or can
be extracted from the data streams. A PLL is
used to track the ratio error, and its output con-
trols a variable ratio resampler. Some professional

equipment includes such processing on selected
digital inputs.

For a sofware solution the main problem is not
the variable ratio resampling itself, but how to
control it. Audio data is handled in blocks of
typically a few milliseconds lenght, and the only
information available to control the resampling
algorithm are the timestamps for these blocks,
and in some cases data provided by e.g. ALSA’s
snd pcm avail() and similar functions. All this
information has considerable random and system-
atic errors, and it is by no means evident how to
turn it into the required smoothly changing con-
trol signal for the resampling algorithm.
None of the currently available solutions such as
the alsa in and alsa out clients that come with
Jack really gets this right. The purpose of this
paper is to analyse the problem and present a so-
lution. The algorithms discussed in the follow-
ing sections have been implemented in two new
applications, zita a2j and zita j2a wich allow to
add ALSA soundcards running at arbitrary sam-
ple rates as clients to a Jack server. Other imple-
mentations, e.g. for networked audio or allowing
to link two Jack servers running on the same ma-
chine will follow.

2 Requirements

Resampling itself, even with a variable ratio, will
not lead to any signficant loss of audio quality if
implemented correctly. The main consequences
when using fixed-bandwidth resampling (as e.g.
in libsamplerate and zita-resampler) will be a
small loss of bandwidth and some additional de-
lay. Both depend on the length of the multiphase
filter used by this algorithm, and the tradeoff be-
tween the two can be made by the user.
The effect of a non-constant resampling ratio de-

145

pends on the magnitude of the variation and on
its spectrum. Very slow and small changes are
equivalent to small movements of a listener w.r.t
the speakers, or a performer w.r.t. the micro-
phone. To put this in context, one sample at 48
kHz corresponds to about 7 millimeters in air. So
provided such changes are limited to a few sam-
ples and very gradual they won’t be noticed1.

Larger variations, even when quite slow, may
lead to perceptible delay and pitch changes which,
while not really degrading the audio signal qual-
ity, may not be acceptable from a musical point
of view.

But the really nasty effect of delay modula-
tion occurs when the variations contain higher fre-
quency components, even if these are quite small.
The result no longer appears as a modulation of
the signal (e.g. vibrato) but as parasitic signals,
noise or distortion. Some types of sound are very
sensitive to such phase modulation. This is really
the equivalent of jitter on the sample clock of an
A/D or D/A converter, and sadly, some of the
existing implementations of adaptive resampling
produce this at level that is some orders of mag-
nitude higher than the worst hardware.

Apart from audio quality considerations there are
some other aspects which are important. Both the
resampling, and moving audio signals between do-
mains with asynchronous periods will introduce
latency. It depends on the application if this is
acceptable or not. But at least the delay should
be stable and repeatable. Stability means that it
must not depend on e.g. whether a Jack client
implementing the resampling runs at the start or
near the end of a Jack cycle. Again, existing im-
plementations fail to meet this requirement.

Applications implementing adaptive resam-
pling can take up to a few seconds to stabilize
their control loops, and need to restart if synchro-
nisation is lost, e.g. when a misbehaving Jack
client results in a timeout of the server. This
is quite accecptable, but minor incidents such as
Jack1 skipping one or a few cycles should not
result in a change of the latency nor require a
restart.

1 Unless you are e.g. sending one channel of a stereo
pair via the resampler and the other not, but that is really
asking for trouble.

Jack client

Lock-free

audio queue
Resampler

HW
buffer

HW
buffer

LF data queue

ALSA thread

A2J

DLL DLLControl

Jack server

ALSA threadJack client

Lock-free

audio queue
Resampler

HW
buffer

HW
buffer

LF data queue

J2A

DLLControlDLL

Jack server

Figure 1: The structure of A2J and J2A

3 Problem analysis

Anyone trying to build an abstract picture of this
sort of algorithm and to reason about it will find
that it stretches his or her powers of imagination
to some degree. It helps to have a particular im-
plementation in mind. In this paper we will use
the structure of zita a2j and zita j2a as a frame-
work. However, the analysis is more general and
applies in other cases as well.

Figure 1 shows the structure of those applica-
tions. In this figure both are shown with the Jack
client connected directly to the sound card used
by the Jack server — this is the setup we would
use to measure the latency (using e.g. jack delay)
in a round-trip involving both Jack’s sound card
and the additional one.

Taking zita a2j as an example, the ALSA
thread, as regards audio processing, does little
more than transfer audio frames from the ALSA
device to a lock-free buffer. It also provides some
extra information which will be discussed later.
Keeping the ALSA thread as simple as this allows
it to run at a higher real-time priority than the
Jack server, and with a shorter period time, and
this in turn helps to obtain accurate timing infor-
mation. The actual resampling and the control
logic is performed in the process callback of the
Jack client. The structure of zita j2a is virually
the mirror image of zita a2j.

3.1 Building a model

What needs to do be done is to control the re-
sampling ratio in such a way that on average the
same number of samples enter and leave the lock-
free buffer. We also want to do this using only

146

very small and smooth changes of the resampling
ratio.

Monitoring the actual state of the buffer (the
number of frames stored in it) won’t work for sev-
eral reasons. The most fundamental one is that
we actually can’t observe the buffer state in any
reliable way from either side, as the other side
could be modifying it at the same time. At best
we could have an upper or lower bound. Also, this
value doesn’t change in a smooth way, but jumps
each time a period is processed on either side.
And these changes occur when the code of the
Jack process callback or the ALSA thread actually
runs, and this moment is not at all representative
of the real timing of the audio samples. For exam-
ple the process callback of the Jack client can run
at any time between the start of the current cycle
and the start of the next one, this just depends on
the position of the client in the connection graph
and on the CPU load of other clients.
The key to creating a working model is to take ab-
straction of the period based processing, including
the random timing errors, and imagine the resam-
pling algorithm as a continuous process.
Suppose we would have two continuous functions
of time, W (t) and R(t) that provide the number of
samples that have been written to resp. read from
the buffer at any time t. Then if ∆ is the required
delay of the whole process, we could evaluate the
error W (t) − R(t) − ∆ in each process callback
and use this to control the resampling ratio. This,
with some refinements and extra functionality, is
the basic algorithm used in zita a2j and zita j2a.
Remains to create those two functions. Let J(t)
be the function on Jack’s side and A(t) the one
on the ALSA side. Then for zita a2j J(t) = R(t)
and A(t) = W (t), and for zita j2a J(t) = W (t)
and A(t) = R(t).
On the Jack side, part of the solution is already
available in the server. The DLL (Delay Locked
Loop) that has been part of Jack since many years
computes in each cycle a prediction of the start
time of the next cycle, while removing most of the
jitter due to random wakeup latency. This pro-
vides a smooth and continuous mapping between
time (as measured by Jack’s microsecond timer)
and frame counts.

So we can implement J(t) by just reading the
timestamp provided by Jack’s DLL into tJ , and
summing the number of frames read from or writ-

time

Jack period

Alsa period

A(t)

J(t)

t_J

t_0A t_1A

A(t_J)

k_0A k_1A

J(t_J)

Figure 2: Delay calculation parameters

ten to the lock-free buffer in kJ . We don’t actually
need the function on Jack’s side, since we are only
interested in its value at the start of the current
period.

A similar DLL can be provided at the ALSA
side. This requires reading the wakeup time of
the ALSA device using Jack’s microseconds timer
and applying the DLL algorithm which is quite
simple. To transfer the data to the Jack side a
second lock-free queue is used. For each period
the ALSA thread sends a message containing it
current status, the computed timestamp for the
next period, and the number of frames written to
or read from the audio buffer. At the Jack side,
during each process callback these messages are
read and the frame counts are accumulated into
a variable kA1. The most recent data (tA1, kA1)
is used, along with the same from the previous
period, (tA0, kA0). Since the ALSA thread reports
the wakeup time of its next cycle, the interval
(tA0, tA1) includes the current wakeup time at the
Jack side (or in the worst case one of the endpoints
will be close), so a simple interpolation is all that
is needed to compute A(tJ). Figure 2 shows the
relevant parameters for the case zita a2j.

3.2 Resampler delay
The analysis so far has ignored the delay intro-
duced by the resampling process itself. There are
two aspects to this. First, this latency can be sig-
nificant and it must be taken into account when
defining the target value. Second, when using kJ ,
the number of frames transferred between the re-
sampler and the audio queue, as the value of J(t)
we are actually making an error. J(t) should in-
crease by exactly the same delta in each period,
the Jack period size either multiplied or divided
by the resampling ratio, but it doesn’t because it

147

inpdist = 2.7 samples

outdist = 4.5 samples

Figure 3: Resampler latency

is constrained to be integer. The sum will be ex-
act on average, there is no long term accumulating
error, but we are missing the fractional part.

That fractional part is actually represented by
the internal state of the resampler. To see this we
will use zita-resampler as an example. Constant
bandwidth resampling works by evaluating a FIR
filter (a near ’brickwall’ lowpass wich corresponds
to a windowed sinc() function in the time domain)
for each output sample. The central peak of the
impulse response corresponds to the current out-
put sample, and the actual coefficients used de-
pend on the position of the filter w.r.t. the input
samples. This is shown in Fig. 3, using a very
short filter. Actual resampling filters are much
longer.

When zita resampler finishes processing a block
of frames it remains in a state ready to compute
the next output sample, except that it may have
to read one or more input samples before it can
proceed. In Fig. 3 the bottom (red) dots represent
input samples and the top (blue) ones the out-
put. Solid dots are samples already used or com-
puted. The filter is aligned with the next output
sample. In this example one more input sample
is required to compute the next output, the first
non-solid one in the figure. This will not always
be the case, for example if the previous call termi-
nated because the output buffer was full it could
be that the next output doesn’t require a new in-
put sample. But in any case the distance between
the next input sample and the next output one is
well-defined and it can be expressed in either the
input or output sample rate. This value includes
the fractional part that is missing from kJ .

The Vresampler class used in zita a2j and
zita j2a provides a function inpdist() which re-

turns the current value of this delay at the input
sample rate, and this is used to correct the value
of kJ . One may ask if such a small error actually
matters. This depends on the nominal resampling
ratio. If this is not the quotient of two small inte-
gers then the fractional error is a pseudo-random
value and its effect willl be removed by the loop fil-
ter that controls the resampling ratio. The worst
case results if the two sample rates are nominally
the same. The error will be a sawtooth function
with a frequency equal to the difference between
the two actual sample rates. In this case the loop
filter may not completely remove it. The effect
was visible in test results of early implementa-
tions that did not include the correction in the
error calculation.

3.3 Closing the loop
Combining the elements presented above we can
now formulate the equations giving the delay error
for both cases. Let γ be the resampling ratio, dres

be the value returned by the inpdist() member of
the resampler, ∆ the target delay value and t = tJ
the start time of the current cycle, then

EA2J = W (t)−R(t) + dres −∆
EJ2A = W (t)−R(t) + dres ∗ γ −∆

Using the definitions of W () and R(), and setting

dA = A(tJ) = [kA1 − kA0]
tj − tA0

tA1 − tA0
(1)

these become

EA2J = [kA0 − kJ] + dA + dres −∆ (2)
EJ2A = [kJ − kA0]− dA + dres ∗ γ −∆ (3)

This error is first processed by a second order
lowpass filter and then becomes the input to the
second order loop filter. This is very similar to the
one used in Jack’s DLL, see [Adriaensen, 2005].
The first filter is added to further reduce phase
modulation by high frequency noise on the error
value. Its bandwidth is 20 times that of the loop
filter, so it does not affect stability. The resam-
pler code adds another lowpass to smooth ratio
changes. Also this one must be dimensioned so it
does not affect operation of the loop.
The values kJ and kA1 are obtained by accumulat-
ing differences in each cycle. To make the equa-
tions above represent the actual round trip delay

148

error we need to initialise them with the correct
values. Since kA0 is just kA1 from the previous cy-
cle it needs no initialisation. A bit of arithmetic
(which is left as an exercise for the reader and
wich may tickle his or her powers of imagination
a bit) will show that the correct initial values are

kJ = −PJ/γ

kA1 = PA

if the ALSA device is the input, and

kJ = PJ ∗ γ
kA1 = −PA

in the other case, with PJ and PA being the Jack
and ALSA period sizes, and γ the resampling ra-
tio.

The key to understand this is that at any time
the delay must be the sum of the number of frames
in both hardware buffers, the lock-free queue, and
the resampler, while taking the different sample
rates into consideration.

A related matter is to determine the target
round-trip delay value. Some more (simple) arith-
metic will show that

∆min,A2J = Tres + 2TJ + (1 + c)TA

∆min,J2A = Tres + 2TJ + 2TA

where Tres is the delay of the resampler, TJ and
TA the Jack and ALSA side period times, and c
is the maximum expected wakeup latency of the
ALSA thread, e.g. 1/2 when this thread is allowed
to run half a cycle late. These values allow for
worst case conditions, e.g. a Jack client running
near the end of the cycle.

3.4 Improving the settling time
The system discussed so far will provide a con-
stant processing delay, but with the loop running
at is normal bandwidth (around 0.05 Hz in the
current implementation) it could take a long time
to reach the target value ∆. We can do two things
to speed up convergence of the loop. One is to run
the loop filter at a higher bandwidth initially. The
other is to use the first delay error measurement
to force a situation close to the required one, and
then let the loop take care of the remaining error.
This requires modifying the state of the lock-free
queue. Note that once the system is running we

can’t set the number of frames in the queue to any
specific value in a safe way (as the other side may
be accessing the queue at the same time). The
only thing we can do is force a relative change by
either reading or writing a number of frames, and
that is fact all we need.

If N is the delay error rounded to the nearest
integer, then for the A2J case we set kJ = kJ +N
and read N frames from the queue, and for the
J2A case we set kJ = kJ − N and write −N
frames to the queue. Adjusting kJ removes most
of the error from the model, and applying the cor-
responding change to the queue ensures that the
model remains in sync with the actual situation.

Both example applications do remove the ini-
tial error in this way, then run the loop at higher
bandwidth for the first 4 seconds.

4 Implementation details

4.1 Delay error calculation
The kJ , kA0 and kA1 values used in (1,2,3) are
integers that are incremented by frame counts in
each iteration, so they will overflow at some time.
Since we only ever take differences of those, the
overflow doesn’t matter. But this part of the cal-
culation must be done as a subtraction of integers
without conversion to a floating point value, as
suggested by the square brackets in the equations.
The remaining parts can be done safely in floating
point since these terms are recomputed each time
and there will be no accumulating roundoff error.

Jack represent its microseconds timer as a 64-
bit integer type. These are difficult to use in
calculations so they are converted to double. To
avoid loss of precision, the actual value of tJ , tA0

and tA1 is the microseconds time masked to 28
bits, and divided by 106 to obtain seconds. This
representation will wrap around every 268.4 sec-
onds or so. Again since we are always taking dif-
ferences this is easy to detect and correct.

4.2 Error recovery and reporting
In case of a fatal error in the ALSA device or a
timeout of the Jack server there is no alternative
but to restart the loop initialisation. The two ap-
plications discussed here contain some state man-
agement code to allow this without having to
restart the actual processes. This uses a third
lock-free queue (not shown in Fig. 1) to send com-
mands from the Jack side to the ALSA thread.

149

When restarting the loop will settle quite fast, as
the previous resample rate correction can be re-
used.

The Jack1 server will occasionally skip some
cycles while creating or removing clients or when
making port connections. This can be detected
and handled quite easily and without introducing
any errors in the loop. The particular implemen-
tation of the lock-free audio queue allows it to
recover from overflow or underflow conditions by
just reading or writing the number of frames that
were missed before. When doing this, the same
adjustment is made to kJ to remove the error from
the delay calculation.

A fourth lock-free queue is used to convey sta-
tus and optional monitoring information for out-
put in the main thread.

4.3 The lock-free queue

When recovering from skipped cycles the lock-free
audio queue may be in an overflow or underflow
condition. The same is true when removing the
initial delay error as discussed in 3.4. Also, the
value of N used there can be positive or negative.

The lock-free queue must implemented in a way
that maintains correct read and write counters
and the corresponding data pointers at all times.
It must also allow logical read or write operations
of any number of items, including negative ones.

Such an implementation need not be more com-
plicated than some existing ones, and in fact it can
be much simpler. The C++ class used in zita a2j
and zita j2a uses a 2N buffer size as would most.
It maintains read and write counters as 32-bit in-
tegers. These are just incremented by the num-
ber of items the user claims to have read or writ-
ten, without enforcing any limits. The read and
write indices are the respective counters modulo
the buffer size. Since the buffer size divides the
232 range of the counters, these can be allowed
to overflow without any consequence. It is the
user’s responsability to avoid buffer overflow or
underflow if that matters, and the class provides
the necessary information to make this easy, so no
functionality is lost by this particular implemen-
tation.

5 Results

Figure 4 shows the result of a 1 kHz sinewave sig-
nal processed by zita j2a, with the sample rates

Figure 4: zita-j2a, 48.0 to 44.1 kHz

Figure 5: zita-j2a, 48.0 to 48.0 kHz

being 48 kHz at the Jack side and 44.1 kHz for the
ALSA device. The Y axis is the phase of the out-
put signal (w.r.t. to the generator) in degrees, the
X-axis is in centiseconds. The loop stabilises in
about 15 seconds. After that time, variations are
less than 0.5 degrees peak-to-peak. One degree
at 1 kHz corresponds to 2.78 microseconds. The
small bump at around 145 seconds is the result of
switching the desktop workspace. This measure-
ment was done one a single CPU machine, run-
ning a standard (unpatched) kernel and having no
HW video acceleration.

Figure 5 is the result of the same test but with
both ends running at 48.0 kHz. There is a pe-
riodic dip every 83 seconds, which corresponds

150

to a frequency of around 0.012 Hz. This is the
difference between the period frequencies of both
soundcards. Every 83 seconds the interrupts of
the two cards occur at almost the same time and
compete for the CPU. This effect would probably
not be visible on an SMP machine. It’s harmless
in practice as the delay changes are very small
and smooth.

6 Acknowledgements

The results reported in this paper build on the
work done by the Jack and ALSA developers. A
particular thanks to the members of the respec-
tive mailing lists for the prompt answers to all my
questions.

References

Fons Adriaensen. 2005. Using a DLL to fil-
ter time. Available at http://kokkinizita.
linuxaudio.org/papers/index.html.

151

152

Signal Processing Libraries for Faust

Julius SMITH
Center for Computer Research in Music and Acoustics (CCRMA)

Music Dept., Stanford University
Stanford, CA 94306,

USA
jos@ccrma.stanford.edu

Abstract

Signal-processing tools written in the Faust lan-
guage are described. Developments in Faust libraries,
oscillator.lib, filter.lib, and effect.lib since
LAC-2008 are summarized. A good collection of sinu-
soidal oscillators is included, as well as a large variety
of digital filter structures, including means for specify-
ing digital filters using analog coefficients (on the other
side of a bilinear transform). Facilities for filter-bank
design are described, including optional delay equal-
ization for phase alignment in the filter-bank sum.

Keywords

Faust, audio signal processing, filters, effects, oscilla-
tors

1 Introduction

The Faust (Functional AUdio STream) language,
developed at GRAME1 [1; 2], is well known for its
compact specification of signal-processing block
diagrams, and its compilation into efficient C++
audio applications and plugins. Thanks to the
use of architecture files that encapsulate platform-
specific details, Faust applications can be conve-
niently generated for a wide variety of host envi-
ronments (Linux, Mac, Windows), and audio plu-
gins can be generated for a wide variety of host ap-
plications such as Pd and SuperCollider, to name
just two [3; 4; 5].

In the architecture subdirectory within the
Faust distribution, there are presently seven
.lib files containing various utility functions.
Possibly the most commonly used of these is
music.lib, which also imports math.lib. Three
other .lib files pertain more specifically to signal
processing utilities:

1http://faust.grame.fr/

• oscillator.lib — signal sources

• filter.lib — general-purpose digital filters

• effect.lib — digital audio effects

The remaining two Faust library files are
maxmsp.lib—a Max/MSP compatibility library,
and reduce.lib—enabling function application
across a signal in time, such as maxn(n) =
reduce(max,n) to compute the maximum ampli-
tude of a signal.

The directory examples/faust-stk/ addition-
ally contains instrument.lib, providing com-
mon utility functions for the Faust-STK collec-
tion [6], such as envelope generators and table-
lookup utilities.

The libraries oscillator|filter|effect.lib
were first discussed at LAC-08 [7]. This pa-
per provides an overview of developments since
then and up to Faust release version 0.9.46
(Dec. 2011).

2 Faust Library oscillator.lib

The purpose of oscillator.lib is to provide
reference implementations of various elementary
waveform generators, such as sinusoidal, saw-
tooth, and pulse-train, as well as other classic sig-
nals such as pink-noise, etc.

2.1 Sinusoid Generators
All sinusoidal oscillators in oscillator.lib are
invoked via the same API as osc(freq) (defined
in music.lib), where freq is the desired osc-
illation frequency in Hz. However, some provide
two outputs instead of one when both “in-phase”
and “quadrature” (sine and cosine) are available.
All are filter-based. That is, they are implemented
as lossless second-order filters driven by an im-
pulse signal [1,0,0,...], and they use no wave

153

tables.2 All algorithms have been previously pub-
lished [8; 9; 10; 11].3

Presently, the following algorithms are imple-
mented:

oscb “biquad” two-pole filter section
(impulse response)

oscr 2D vector rotation
(second-order normalized ladder)
provides sine and cosine outputs

oscrs sine output of oscr
oscrc cosine output of oscr
oscs state variable osc., cosine output

(modified coupled form resonator)
oscw digital waveguide oscillator

oscws sine output of oscw
oscwc cosine output of oscw

The relative merits of each oscillator type are
summarized below. Note that all differences have
to do with finite numerical precision effects and
dynamic range variations under time-varying con-
ditions. The best overall choice depends on the
situation.

• oscb, the impulsed direct-form biquad4 is the
fastest computationally, requiring only one
multiplication and two additions per sample
of output. However, as is well known, the
amplitude of oscillation varies strongly with
frequency, and it becomes numerically poor
toward freq=0 (“dc”).

• oscr, the “2D vector rotation,” requires four
multiplies and two additions per sample. Its
amplitude is invariant with respect to fre-
quency, and it is good all the way down to dc.
Since its coefficients are numerically inexact
roundings of s = sin(2*PI*freq/SR) and c
= cos(2*PI*freq/SR), where SR denotes the
sampling rate (defined in music.lib), there
is long-term amplitude drift corresponding to
the extent the identity s2+c2 = 1 is violated.
This oscillator provides in-phase (cosine) and
phase-quadrature (sine) outputs.

2osc(freq) in music.lib uses a length 216 wave table.
The linearly interpolated variant osci(freq) adds linear
interpolation.

3https: //ccrma.stanford.edu/~jos/pasp/-
Digital Waveguide Oscillator.html

4https://ccrma.stanford.edu/~jos/filters/-
Direct Form II.html

• oscs, based on the classic “state variable fil-
ter,” [12, p. 530] and known as the “magic
circle algorithm” in computer graphics, is
quite fast, requiring only two multiplies and
two additions per output sample. Its ampli-
tude varies much less with frequency, and it
too is good down to dc. There is no am-
plitude drift over time, so this one can be
used for very long signal durations. On the
other hand, there is some dependence of osc-
illation amplitude on frequency. At low fre-
quencies, its two state variables are nearly in
phase quadrature, but they become in-phase
at SR/2. Thus, two outputs with approxi-
mately 90-degrees relative phase at low fre-
quencies could be brought out. The output
that is brought out is the “cosine” choice.

• oscw, the second-order digital waveguide os-
cillator, requires one multiply and three ad-
ditions when frequency is constant, and an-
other multiply when frequency is changing.
Otherwise it has all of the good properties of
oscr (except for internal dynamic range nor-
malization), providing sine and cosine out-
puts in exact phase quadrature, and no de-
pendence of amplitude on frequency. How-
ever, unlike oscr, oscw exhibits no amplitude
drift while frequency is fixed. This is because
it uses a “structurally lossless” algorithm de-
rived by transformer coupling of normalized
digital waveguides [10; 8].5 A negative point
relative to oscr is that numerical difficulties
may arise below 10 Hz or so, implying that
oscw is not a good choice for LFOs. Inter-
nally, the state variables of oscw require a
larger dynamic range than those of oscr. It
is likely that oscw would be the most eco-
nomical choice for special-purpose VLSI.

2.2 Virtual Analog Waveforms

The following waveform generators are presently
included, among others:

imptrain(freq) periodic impulse train
squarewave(freq) zero-mean square wave

sawtooth(freq) alias-suppressed sawtooth
sawN(freq) order N anti-aliased saw

5https: //ccrma.stanford.edu/~jos/pasp/-
Digital Waveguide Oscillator.html

154

The sawtooth and sawN algorithms are based
on recently developed “Differentiated Polynomial
Waveform” (DPW) methods for virtual analog
waveform generation [13; 14]. The default case
is sawtooth = saw2, where saw2 is a differenti-
ated parabolic waveform (order 2). More gen-
erally, sawN is based on a differentiated polyno-
mial of order N . The higher the order, the less
aliasing is incurred. Bandlimited square, triangle,
and pulse-train are derived as linear filterings of
bandlimited sawtooth in Faust releases beyond
0.9.46.

2.3 Noise Generation

The basic white-noise generator, uniformly dis-
tributed between −1 and 1, is noise, defined
in music.lib. Based on that, oscillator.lib
also defines pink noise, also called “1/f noise”
[15], implemented (approximately) as white noise
through a three-pole, three-zero IIR filter that ap-
proximates a 1/f power response.6 The third-
order IIR filter was designed using invfreqz in
Octave (matlab).

3 Faust Library filter.lib

Filter-related utilities are provided in
filter.lib. The principal functions defined
appear in Fig. 1, p. 4, and Fig. 2, p. 5. To save
space, functions introduced at LAC-08 [7] are not
repeated here (such as EKS string synthesizer
elements, comb filters, cubic distortion overdrive,
dc blockers, speaker bandpass, Crybaby wah
pedal, etc.). The subsections below provide
further discussion of various groups. The source
is documented with comments and references so
that anyone knowledgeable in basic digital filter
theory [16] should be able to use it as a (terse)
manual and starting point for further reading.

3.1 Direct-Form Digital Filters

The four direct-form digital filter structures have
coefficients that appear in the filter transfer
function.7 The functions tf1(b0,b1,a1) and
tf2(b0,b1,b2,a1,a2) specify first- and second-
order (biquad) digital filter sections, respectively.
Often larger filters are built by stringing first-

6https: //ccrma.stanford.edu/~jos/sasp/-
Example Pink Noise Analysis.html

7https: //ccrma.stanford.edu/~jos/filters/-
filters/Four Direct Forms.html

and second-order sections in series and/or par-
allel. The Faust language makes this especially
easy to do.

The function iir(bcoeffs,acoeffs) allows
specification of an arbitrary-order IIR digital fil-
ter in direct form. The arguments bcoeffs and
acoeffs are each parallel signal banks that pro-
vide the coefficients, and they may be thought
of as “lists” of coefficients. The pattern match-
ing facility in Faust allows recursive defini-
tion in terms of such lists. As an example,
tf2(b0,b1,b2,a1,a2) can be alternatively spec-
ified as iir((b0,b1,b2),(a1,a2)). As usual in
Faust, the specification is compact:

iir(bv,av) = sub ~ fir(av) : fir(bv);

where fir(bv) specifies a general causal FIR dig-
ital filter, with bv the list (“vector”) of FIR “tap”
coefficients. It is given by

fir(bv,x)
= sum(i,count(bv),take(i+1,bv) * x@i);

where count and take are defined in math.lib.

3.2 Ladder and Lattice Digital Filters
Ladder and lattice digital filters have superior nu-
merical properties. Using the pattern-matching
facility, it was possible to specify all four ma-
jor types recursively in Faust. A particularly
valuable case is the normalized ladder filter [17]
iir nl(bcoeffs,acoeffs), used as the basis for
the super-robust biquad tf2snp(). While nor-
malized biquads are straightforward to design
(e.g., nlf2() in filter.lib), the normalized lad-
der filter realizes rational transfer functions of any
order (any number of poles and zeros) in terms of
a power-normalized ladder structure. For an in-
troduction and pointers to references, see [8] and
filter.lib.8

3.3 Digital Filter Sections Specified as
Analog Filter Sections

It is convenient to be able to specify basic filter
section in terms of analog filter coefficients, as op-
posed to the usual digital-filter coefficients. This
is easy to do in Faust by including a built-in bilin-
ear transform.9 This makes use of the wonderful

8https: //ccrma.stanford.edu/~jos/pasp/-
Conventional Ladder Filters.html

9https: //ccrma.stanford.edu/~jos/pasp/-
Bilinear Transformation.html

155

Direct-Form Digital Filters (§3.1, p. 3)
fir(bcoeffs) general FIR digital filter

iir(bcoeffs,acoeffs) general IIR digital filter
tf1(b0,b1,a1) first-order direct-form digital filter = iir((b0,b1),(a1))

tf2(b0,b1,b2,a1,a2) iir((b0,b1,b2),(a1,a2))

Lattice/Ladder Filters (§3.2, p. 3)
iir lat2(bcoeffs,acoeffs) two-multiply lattice digital filter

iir kl(bcoeffs,acoeffs) Kelly-Lochbaum ladder digital filter
iir lat1(bcoeffs,acoeffs) one-multiply lattice digital filter

iir nl(bcoeffs,acoeffs) normalized ladder digital filter
tf2np(b0,b1,b2,a1,a2) biquad based on stabilized 2nd-order normalized ladder

nlf2(f,r) second-order normalized ladder digital filter, special API

Analog-Specified Filters (§3.3, p. 3)
tf2s(b2,b1,b0,a1,a0,w1) tf2 specified via s-plane (analog) coefficients

tf2snp(b2,b1,b0,a1,a0,w1) tf2s using a protected normalized ladder filter for tf2
tf2sb(b2,b1,b0,a1,a0,w1,wc) tf2s plus a mapping to bandpass in the digital domain

tf1sb(b1,b0,a0,w1,wc) same as tf2sb but for first-order filter sections

IIR Low/High/Band-Pass (§3.4, p. 6)
lowpass(N,fc) Nth-order Butterworth lowpass, −3 dB frequency at fc Hz
highpass(N,fc) Nth-order Butterworth highpass, −3 dB frequency at fc Hz

bandpass(Nh,fl,fu) Order 2*Nh Butterworth bandpass, −3 dB frequencies fl,fu Hz
bandstop(Nh,fl,fu) Order 2*Nh Butterworth bandstop filter, −3 dB gain at fl,fu Hz

lowpass3e(fc) 3rd-order elliptic lowpass, 60 dB stopband rejection, 0.2 dB passband rip.
lowpass6e(fc) 6th-order elliptic lowpass, 80 dB stopband rejection, 0.2 dB passband rip.
highpass6e(fc) highpass transformation of lowpass6e (ω ← 1/ω)

bandpass12e(fl,fu) bandpass transformation of lowpass6e
bandpass6e(fl,fu) bandpass transformation of lowpass3e

Shelfs, Peaking Equalizers See Faust example parametric eq.dsp
low shelf1(L0,fx,x) 1st-order shelf, dc gain L0 dB, crossover to unity gain at fx Hz

low shelf1 l(G0,fx,x) dc gain G0 (linear), crossover to unity gain at fx Hz
low shelf3(L0,fx,x) 3rd-order low shelf
low shelf5(L0,fx,x) 5th-order low shelf

low shelf = low shelf3; // default = third-order case
high * same high-shelf cases as for low shelf

peak eq(Lfx,fx,B) 2nd-order “peaking equalizer”, peak level Lfx dB, width B Hz at fx Hz
peak eq cq(Lfx,fx,Q) Constant-Q 2nd-order peaking equalizer section, Q = fx/B
peak eq rm(Lfx,fx,w) Regalia-Mitra 2nd-order peaking equalizer section, w ~ PI*B/SR

Fractional Delay Lines (§3.6, p. 6)
fdelayN(maxdelay, delay) Nth-order FIR Lagrange-interpolated delay line, N=1,2,3,4
fdelayNa(maxdelay, delay) Nth-order IIR allpass-interpolated delay line, N=1,2,3,4

Figure 1: Functions defined in filter.lib since LAC-08. See the source code for full usage documenta-
tion and literature references.

156

Filter Banks (§3.7, p. 6)
mth octave analyzer(O,M,ftop,N) N-band octave filter-bank, M band-slices per octave,

Butterworth band-split order O (not 0, must be an odd integer),
N = total number of bands (including dc and Nyquist),
ftop = highest band-split crossover frequency (e.g., 20 kHz)

mth octave analyzer6e(M,ftop,N) uses order 6 elliptic band-split filters
mth octave filterbank(O,M,ftop,N) mth octave analyzer followed by delay equalizer

mth octave filterbank alt dc-inverted variant (cheaper for odd O)
mth octave spectral level spectrum analyzer using mth octave analyzer(5), displays

(in bar graphs) the average signal level in each spectral band
mth octave spectral level6e order 6 elliptic crossovers

spectral level = mth octave spectral level(2,10000,20); // simplest
half octave analyzer(N) = mth octave analyzer6e(2,10000,N);

half octave filterbank(N) = mth octave filterbank5(2,10000,N);
octave filterbank(N) = mth octave filterbank5(1,10000,N);
octave analyzer(N) = mth octave analyzer6e(1,10000,N);
analyzer(O,lfreqs) general analyzer, order O Butterworth crossovers at listed freqs

filterbank(O,lfreqs) analyzer(O,lfreqs) : delay equalizer (allpass-complementary)
filterbanki(O,lfreqs) Inverted-dc variant

Figure 2: Filter-bank functions defined in filter.lib. See the source code for full usage documentation
and literature references.

feature of Faust that if the coefficients are con-
stant, all expressions will compile away to leave
numerical digital-filter coefficients. On the other
hand, if a slider-control, say, is providing an ana-
log coefficient, the bilinear transform will be com-
puted in real time (at the control rate) from the
controller by the compiled result. Normally a one-
pole smoother such as smooth(0.99) is used to
interface the final computed coefficient into the
filtering computation at the full sampling rate.

In particular, tf2s(b2a,b1a,b0a,a1a,a0a,w1)
equals tf2(b0d,b1d,b2d,a1d,a2d) specified in
the analog domain, where a last-letter ‘a’ means
‘analog’, and ‘d’ means ‘digital’. (Note the oppo-
site numbering of the coefficients, in conformance
with typical notation.) Thus, the analog transfer
function specified is

H(s) =
b2,a s2 + b1,a s + b0,a

s2 + a1,a s + a0,a
.

The parameter w1 is the digital frequency ωd to
which analog frequency ωa = 1 is mapped; it de-
termines the frequency-scaling parameter of the
bilinear transform. In lowpass or highpass filter
design, the frequency mapping is applied to the
cutoff frequency (−3 dB point).

Butterworth filters are particularly easy to
specify in analog form [18; 19; 16], 10 because,
for order N , all N zeros are at infinity and all
N poles lie along a circle in the left-half s-plane.
For example, the second-order Butterworth low-
pass filter with its −3 dB frequency normalized
to ωa = 1 is simply

H(s) =
1

s2 +
√

2 s + 1

and can be specified as tf2s(0,0,1,sqrt(2),1).

3.3.1 Normalization and Stability
Protection

For extreme time-varying filtering applications, a
practically useful variant named tf2snp is pro-
vided that implements tf2s using a normalized
ladder filter (for decoupling signal and coeffi-
cient energy, §3.2) together with stability pro-
jection (easy to do in ladder/lattice digital fil-
ters by simply clipping their reflection coefficients
to the range (−1, 1)). This is used in the most
numerically robust Moog VCF implementation
moog vcf 2bn (effect.lib, §4).

10https: //ccrma.stanford.edu/~jos/filters/-
Butterworth Lowpass Design.html

157

The example vcf wah pedals.dsp in the
Faust distribution provides a comparison of three
Moog VCF implementations as well as the second-
order Crybaby wah-pedal and a fourth-order wah-
pedal based on the Moog VCF.

3.3.2 Bandpass Mapped Biquad
The function tf2sb(b2,b1,b0,a1,a0,w1,wc) is
a bandpass mapping of the basic analog-specified
biquad tf2s. In addition to the frequency-scaling
parameter w1 (which gets set to half the desired
passband width in radians per second), there is
a desired center-frequency parameter wc (also in
rad/s). Thus, tf2sb implements a fourth-order
digital bandpass filter section specified by the co-
efficients of a second-order analog lowpass proto-
type section. Such sections can be combined in
series for higher orders. The order of mappings is
(1) frequency scaling (to set lowpass cutoff w1),
(2) bandpass mapping to wc, then (3) the bilinear
transform, with the usual scale parameter 2*SR,
where SR denotes the sampling rate. The Faust
implementation for this was based on algebra car-
ried out in maxima.

3.4 Butterworth Lo/Hi/Bandpass Filters

Butterworth lowpass and highpass filters of any
order can be defined recursively in Faust thanks
again to the pattern-matching facility in the lan-
guage. The elliptic (Cauer) filters11 are special-
cased because the pole locations are computed
using the elliptic rational function, which is not
available in typical computer math libraries. Such
a function could of course be supplied as a foreign
function in Faust.

3.5 Shelf and Equalizer Sections

The low/high shelf and peaking equalizer sections
implemented in filter.lib are described further
in filter.lib and in [16].12

3.6 Lagrange/Thiran-Interpolated
Fractional Delay Lines

Delay lines interpolated using higher-order FIR
Lagrange interpolation are all used as follows:

fdelayN(maxdelay, delay, inputsignal)

11http://en.wikipedia.org/wiki/Elliptic filter
12https: //ccrma.stanford.edu/~jos/filters/-

Low High Shelf Filters.html

where N=1,2,3, or 4 is the order of the Lagrange
interpolation polynomial. Note that this API fol-
lows that of fdelay in music.lib. The requested
delay should not be less than (N − 1)/2 because
the interpolating polynomial needs to be able to
“reach” that far into the “past” when interpolat-
ing.

Delay lines interpolated using higher-order IIR
allpass Thiran interpolation are all invoked as

fdelayNa(maxdelay, delay, inputsignal)

where N=1,2,3, or 4 is the order of the allpass in-
terpolation filter. In this case, it is recommended
that the requested delay be at least N − 1/2 be-
cause an Nth-order allpass provides a delay of N
samples as its coefficients approach zero. Note
that delay arguments that are too small can pro-
duce an unstable allpass filter. For rapid delay
modulations, Lagrange (FIR) interpolation is gen-
erally preferred. However, allpass interpolation
introduces no gain distortion and may therefore
be preferred in nearly lossless feedback loops.

3.7 Filter Banks
A filter bank splits its input signal into a bank
of parallel signals, one for each spectral band.
If the bandpass filters used to create the chan-
nel signals are carefully designed, one may sum
the channel signals to get back the original input
signal (possibly scaled and/or delayed). In this
case, the filter bank is said to be a Perfect Re-
construction (PR) filter bank [20]. However, for
purposes of spectrum analysis, in which only the
channel signal powers are displayed, the PR con-
dition is overkill. Therefore, the filter banks im-
plemented in filter.lib are divided into “an-
alyzers”, which do not have the PR property,
and “filter banks” which are “allpass complemen-
tary”. Allpass-complementary filter banks are
reasonable choices for “graphic equalizer” appli-
cations. An allpass-complementary filter bank is
PR when the allpass reduces to a pure delay and
possible scaling. In this terminology, the filter
banks in filter.lib are implemented as analyz-
ers in cascade with delay equalizers that convert
the analyzer to an allpass-complementary filter
bank. Spectrum analyzer outputs should at least
be nearly “power complementary”, i.e., the power
spectra of the individual bands should at least ap-
proximately sum to the original power spectrum.

158

The typical filter bank or analyzer is con-
structed as a dyadic filter bank, meaning that
it consists of a sequence of band-splits, forming
a binary tree of lowpass/highpass filter sections.
Since audio applications are presumed, only the
lower band is split when going from one stage to
the next.

In the Faust distribution, both filter banks and
spectrum analyzers are illustrated in the example
graphic eq.dsp. See also spectral level.dsp
which is a standalone spectrum analyzer (nice as
a standalone JACK app).

The example gate compressor.dsp included
with the Faust distribution exercises the gate
and compression utilities.

Space limitations preclude further discussion
here. Please see comments in filter.lib for fur-
ther usage details.

4 Faust Library effect.lib

The modules in effect.lib classify as “digital
audio effects”. In general, they tend to be special-
purpose filters, frequently nonlinear and/or time
varying.

4.1 Moog Voltage Controlled Filters
New since the analog-form Moog VCF [7] is the
implementation moog vcf 2b of the ideal Moog
VCF transfer function factored into second-order
sections. As a result, its static frequency re-
sponse is more accurate than moog vcf which
suffers from an unwanted one-sample delay in
its feedback path. On the downside, its coef-
ficient formulas are more complex when one or
both parameters are varied. The res parameter
of moog vcf 2b[n] is the fourth root of that in
moog vcf, so, as the sampling rate approaches in-
finity, moog vcf(res,fr) becomes equivalent to
moog_vcf_2b[n](res^4,fr) (when res and fr
are constant).

4.2 Artificial Reverberation
The reverberation modules in effect.lib are de-
scribed in [8]. Of special note is the high-quality
reverberator called zita rev1, ported to Faust
from the C++ source of zita-rev1 written by Fons
Adriaensen.13 It combines Schroeder allpass and
FDN reverberation techniques [8].14

13http://kokkinizita.linuxaudio.org/linuxaudio/-
zita-rev1-doc/quickguide.html

14https://ccrma.stanford.edu/~jos/pasp/Zita Rev1.html

5 Conclusion

Developments since LAC-08 for Faust libraries
oscillator|filter|effect.lib were outlined.
The overall goal is to accumulate reference imple-
mentations of commonly used algorithms in mu-
sic/audio signal processing, with a general prefer-
ence for expressive parametric algorithms yielding
the highest performed sound quality per unit of
computation.

6 Acknowledgments

Special thanks to Yann Orlarey for contributing
various improvements to the functions described
in this paper and making others possible at all,
particularly with respect to the use of pattern
matching. Special thanks also to Albert Gräf for
adding the pattern-matching facility to the Faust
compiler.

References

[1] Y. Orlarey, D. Fober, and S. Letz,
“Syntactical and semantical aspects of
Faust”, Soft Computing, vol. 8, no. 9, pp.
623–632, 2004.

[2] A. Gräf, “Term rewriting extension for the
Faust programming language”, in Proc. 8th
Int. Linux Audio Conf. (LAC2010), Utrecht,
http://lac.linuxaudio.org/, 2010,
http://lac.linuxaudio.org/2010/papers/-
30.pdf.

[3] Y. Orlarey, A. Gräf, and S. Kersten, “DSP
programming with Faust, Q and
SuperCollider”, in Proc. 4th Int. Linux
Audio Conf. (LAC2006), ZKM Karlsruhe,
http://lac.zkm.de/2006/proceedings.shtml,
2006, pp. 39–40,
http://lac.zkm.de/2006/proceedings.shtml-
#orlarey et al.

[4] A. Gräf, “Interfacing Pure Data with
Faust”, in Proc. 5th Int. Linux Audio
Conf. (LAC2007), TU Berlin,
http://www.kgw.tu-berlin.de/~lac2007/-
proceedings.shtml, 2007,
http://www.kgw.tu-berlin.de/~lac2007/-
papers/lac07 graef.pdf.

[5] J. O. Smith, “Audio signal processing in
Faust”, 2012,
https://ccrma.stanford.edu/~jos/aspf/.

159

Moog VCF See Faust example vcf wah pedals.dsp
moog vcf(res,fr) analog-form Moog VCF

res = corner-resonance amount between 0 (none) and 1 (max)
fr = corner-resonance frequency in Hz (less than SR/6.3 or so)

moog vcf 2b(res,fr) Moog VCF implemented as two biquads (tf2)
moog vcf 2bn(res,fr) two protected, normalized-ladder biquads (tf2np)

Phasing and Flanging See Faust example phaser flanger.dsp
vibrato2 mono(...) modulated allpass-chain (see effect.lib for usage)
phaser2 mono(...) phasing based on 2nd-order allpasses (see effect.lib for usage)

phaser2 stereo(...) stereo phaser based on 2nd-order allpass chains
flanger mono(...) mono flanger

flanger stereo(...) stereo flanger

Envelopes/Compression/Expansion See Faust example gate compressor.dsp
amp follower ud(att,rel) att = attack time-constant (sec) going up

amp follower(rel) rel = release time = time-constant (sec) going down (att=0)
autowah(level) level 0 to 1

gate mono(thresh,att,hold,rel) squelch signal when below thresh (in dB),
for at least hold seconds

gate gain mono(thresh,att,hold,rel,x) “gain computer”
gate stereo(thresh,att,hold,rel,x,y) two mono gates using same gain computer

compressor mono(ratio,thresh,att,rel) single-channel dynamic-range compression:
ratio = compression ratio dB-in over dB-out above thresh
thresh = dB level threshold above which compression kicks in

compressor stereo(...) stereo case, common gain computer
limiter 1176 R4 mono = compressor mono(4,-6,0.0008,0.5);

limiter 1176 R4 stereo stereo case

Artificial Reverberation See Faust examples freeverb|reverb designer|zita rev1.dsp
jcrev, satrev Historical early Schroeder reverberators
fdnrev0(...) Feedback Delay Network (FDN) reverberator [8]

prime power delays(N,pathmin,pathmax) utility for finding prime-power delays across a range
zita rev fdn(f1,f2,t60dc,t60m,fsmax) order 8 FDN used in zita-rev1 - see effect.lib for usage

zita rev stereo(...) stereo version of zita-rev1 - see effect.lib for usage
zita rev1 ambi(...) zita-rev1 in ambisonics mode

mesh square(N) N by N square digital waveguide mesh

Other Modules
stereo width(w) stereo width effect based on the Blumlein Shuffler
apnl(a1,a2,x) nonlinear allpass filter used in Faust-STK [6]

piano dispersion filter(M,B,f0) closed-form piano-string allpass by Rauhala et. al [21]

Figure 3: Functions defined in effect.lib since LAC-08.

[6] R. Michon and J. O. Smith, “Faust-STK:
A set of linear and nonlinear physical
models for the Faust programming

language”, in Proc. 14th Int. Conf. Digital
Audio Effects (DAFx-11), Paris, France,
September 19–23, 2011.

160

[7] J. O. Smith, “Virtual electric guitars and
effects using Faust and Octave”, in Proc.
6th Int. Linux Audio Conf. (LAC2008),
http://lac.linuxaudio.org/, 2008.

[8] J. O. Smith, Physical Audio Signal
Processing, https://-
ccrma.stanford.edu/~jos/pasp/, Dec.
2010, online book.

[9] J. Dattorro, “Effect design: Part 3:
Oscillators: Sinusoidal and pseudonoise”, J.
Audio Eng. Soc., vol. 50, no. 3, pp. 115–146,
2002.

[10] J. O. Smith and P. R. Cook, “The
second-order digital waveguide oscillator”,
in Proc. 1992 Int. Computer Music Conf.,
San Jose. 1992, pp. 150–153, Computer
Music Association,
http://ccrma.stanford.edu/~jos/wgo/.

[11] J. W. Gordon and J. O. Smith, “A sine
generation algorithm for VLSI
applications”, in Proc. 1985 Int. Computer
Music Conf., Vancouver. 1985, Computer
Music Association.

[12] H. Chamberlin, Musical Applications of
Microprocessors, Hayden Book Co., Inc.,
New Jersey, 1980.

[13] V. Välimäki, “Discrete-time synthesis of the
sawtooth waveform with reduced aliasing”,
IEEE Signal Processing Letters, vol. 12, no.
3, pp. 214–217, 2005.

[14] V. Välimäki, J. Nam, J. O. Smith, and J. S.
Abel, “Alias-suppressed oscillators based on
differentiated polynomial waveforms”, IEEE
Trans. Audio, Speech, and Language
Processing, vol. 18, no. 5, May 2010.

[15] R. F. Voss and J. Clarke, “‘1/f noise’ in
music: Music from 1/f noise”, J. Acoust.
Soc. of Amer., vol. 63, no. 1, pp. 258–263,
Jan. 1978.

[16] J. O. Smith, Introduction to Digital Filters
with Audio Applications, http://-
ccrma.stanford.edu/~jos/filters/,
Sept. 2007, online book.

[17] A. H. Gray and J. D. Markel, “A
normalized digital filter structure”, IEEE
Trans. Acoustics, Speech, Signal Processing,
vol. ASSP-23, no. 3, pp. 268–277, June 1975.

[18] C. S. Burrus, Digital Signal Processing and
Digital Filter Design (Draft), Connexions,
Sept. 2009, online book:
http://cnx.org/content/col10598/latest/.

[19] T. W. Parks and C. S. Burrus, Digital
Filter Design, John Wiley and Sons, Inc.,
New York, June 1987, contains FORTRAN
software listings.

[20] P. P. Vaidyanathan, Multirate Systems and
Filter Banks, Prentice-Hall, 1993.

[21] J. Rauhala and V. Välimäki, “Tunable
dispersion filter design for piano synthesis”,
IEEE Signal Processing Letters, vol. 13, no.
5, pp. 253–256, May 2006.

161

162

The Integration of the PCSlib PD library in a Touch-Sensitive
Interface with Musical Application

José Rafael Sub́ıa Valdez
IUNA - UNQ
Buenos Aires

Argentina
jsubiavaldez@gmail.com

Abstract

This paper describes the study and use of the PC-
Slib library for Pure Data and its implementation in
the project “Interface Design for the development of a
touch screen with musical application” [Causa, 2011]
The project consists of a touch-sensitive interface that
allows the drawing of musical gestures that are then
mapped to a harmonic structure generated by the PC-
Slib library. Pure Data also is responsible of the trans-
lation and reproduction of the musical gestures via
MIDI.

Keywords

Pitch Class Sets, XML, Musical Gesture, Harmonic
Structure

1 Introduction

The creation of touch sensitive screens over the
years, has led to many performance instruments
and tools. However, this technology has not yet
entered the music writing and composing for fixed
media category such as scores. Touch Screen in-
struments like the ReacTable 1 or the Lemur 2

have existed for a few years now. These innovative
instruments have broken down technological walls
permitting the development of more interfaces in-
cluding the one developed in this project. Nev-
ertheless, the ReacTable, the Kitara Digital Gui-
tar 3 and such, have exploited the “Real-Time”
characteristic of these interfaces. Their use has
been focalized as instruments to perform and not
so much to write music. Some other develop-
ments that approach the same questions stated
in this project have been scarcely documented.
French composer, Philippe Leroux used a system

1www.reactable.com
2www.jazzmutant.com/lemur overview
3www.misadigital.com/guitars.htm

that translated drawings entered in a Wacom 4

tablet to pitches resembling the inputted sketch
[Vassilandonakis, 2008]. This project used Open-
Music 5 to do so. Nonetheless, while Leroux’s
system intends to capture human gesture such as
hand writing to be used or to create music struc-
tures, this project explores the use of codified tra-
ditional nomenclature. “Ugarit” is a touch sensi-
tive screen that allows the writing of music by
entering codified drawings that represent specific
and traditional musical gestures.The result is a
graphic score that will only produce sound after
the notes are entered. With the help of the Pitch
Class Sets [Forte, 1974] theory and its implemen-
tation in Pure Data through the PCSlib library,
“Ugarit” lets the user concentrate in writing mu-
sical gestures and building music pieces without
preoccupying him or herself of the harmonic struc-
ture. “Ugarit” maps the drawings to a harmonic
structure that the system previously creates al-
lowing its operator to think the writing of music
in a different way.

Figure 1: “Ugarit” Multitouch screen

“Ugarit” could also allows the teaching of mod-

4www.wacom.com/
5http://repmus.ircam.fr/openmusic/home

163

ern music theories in a unique manner. Its cheap
development, and its friendly interface, lets it to
be assembled in schools everywhere. “Ugarit”
would be perfect for teaching music for children
or any kind of non-specialized public. Because
it uses a modern approach to music paradigms, it
would be updating the music theory taught to the
public. It allows users to create music focusing in
melodic contours and assembling musical gestures
in time. Such ways of thinking music are the key
to understand the creation of some of the modern
music of the XXI century. It lets the user experi-
ment with these nontraditional music concepts by
taking care of complex harmonic structures inter-
nally. This permits the creation of “modern-like”
music without the full knowledge of complex con-
cepts needed to produce it.

2 Data Interpretation (Connection of
the Touch Sensitive Interface and
Pure Data)

2.1 Musical Data Entry
A team of four artists/programmers that were di-
vided in two groups developed the complete sys-
tem. Emiliano Causa and Sebastian G. Botasi de-
veloped the graphical part of the interface while
Mat́ıas Romero Costas and the author of this pa-
per programmed the audio part. This paper only
describes in detail the implementation of a spe-
cific part of the program, but a brief schematic
of the entire workflow is illustrated in the block
diagram bellow. [fig. 2]

The musical data entry is accomplished through
an XML6 file generated by Processing7 after the
census and analysis of the touchscreen interface
drawing. PD then reads the file through the
“Detox” object. This object is developed as an
external in the “jasch lib” library developed by
Jan Schacher. “Detox” allows reading the XML
file informing the user when a “tag-tree” is opened
or closed. The data is then routed through a se-
ries of abstractions that stores it in “coll” objects.
Mat́ıas Romero Costas8 developed this part of the
program. It was later modified and completed
with the part of the program that maps the val-

6XML files are text files with especific formats that can
be interpreted by different programs

7http://www.processing.org/
8For more information, read documentation writen by

the autor.

Figure 2: System workflow

ues of the surface to the pitches of the harmonic
structure, this will be explained later.

2.2 Music Gesture players
The musical gestures implemented in the touch
screen interface are “chord”, “trill”, “tremolo”,
“melody”, “note”, “arpeggio” and “glissando”.
All of them were implemented in a way that all
action constituting the gesture, are united in a
group of parameters. For this, the players assem-
ble messages, used as buffers or temporary memo-
ries, that feed the “makenote” and “noteout” ob-
jects. “Makenote” and “Noteout” objects convert
and send the processed midi messages to the cor-
responding outputs. These messages are created
by receiving stored data from the “col” objects
that deliver stored data in groups corresponding
to gestures one at a time when the groups indexes
are equivalent to playback time.
2.2.1 Tremolo and Trill
Essentially, the algorithm for trill and tremolo are
the same since the gesture works the same way. A
buffer generates two messages that store the two
values to be interleaved at a certain speed during
the duration of the event. The only difference is
that the tremolo player. Sets the two messages
with the two pitches entering from the screen,
while the trill player only receives one pitch and
trills with a semitone above it. This is accom-

164

Figure 3: Tremolo Subpatch where the“coll” object
is

plished by simply adding one to the entered pitch.

Figure 4: specific gesture to draw that produces a
“tremolo”

2.2.2 Chord
The chord player uses a single line message as
a buffer and builds one with all the pitches of
the chord. The program must set the message
correctly inserting the pitches and key velocities
of the notes for the “makenote” object to play the
chord properly. For this player, as well as for the
“arpeggio” player, it was necessary to modify the
abstractions where “coll” objects are, in order to
filter the different start times of each individual
note of the gesture entering from the surface and
set only the time of the first note as the same
for each. This was achieved with the abstraction
“once” developed by Thomas Musil in Austria. It
allows only the first value to pass acting as a gate.

2.2.3 Arpeggio
The Arpeggio playback, as well as the chord play-
back, results with the same modification of ab-
stractions where the corresponding “coll” object
is placed. In addition, the arpeggio involves us-

ing the start time of the first note and then an
algorithm that plays the rest of the notes in suc-
cession. For this, we had to use 5 messages as
temporary memory where the arpeggio notes (5
maximum) would be stored and then executed by
a small counter that triggers them one by one in
rapid succession, a fundamental characteristic of
the arpeggio.

Figure 5: Arpeggio Player Subpatch

2.2.4 Glissandos
The glissando player is very simple. It always
makes a linear interpolation between one note and
another. It uses the note from which the glissando
starts and the note to which it arrives and then
interpolates these two pitches linearly using the
“step” object, the object can also set the step size
of the increase.

2.2.5 Melody and Notes
The two gestures “melody” and “note” use the
same player called “NotaPlayer” (NotePlayer)
since their respective abstractions where the “col”
object are, delivers the pitches used in the musical
gesture one by one. This allows the use of a single
note player because the gesture may be divided
temporarily without any problem and each note
can have different and independent durations.

3 Pitch structuring using PCSlib

3.1 Basic Pitch Class Set theory
background

Howard Hanson first introduced Pitch Class Set
(PCS) theory in the 1960’s. It was initially cre-
ated as a new way to analyze and classify tonal

165

music but soon music theorists like Allen Forte
and Robert Morris started to use it for atonal
temperate music. The theory is based in the in-
terval relations created between notes in a music
piece. It allowed theorists to find coherent and
close relations in harmonic structures of modern
music that were difficult to find in those times.

The PCS theory uses the same analog Set The-
ory used in combinatorial algebra seen in math-
ematics. It allows classifying and studying rela-
tions between groups of notes that have the same
interval characteristics. The theory establishes
that each group of notes has a prime form, this
permits a better way to classify groups of notes.
To do this, the theory considers that all pitches
should be enumerated from zero to eleven starting
from C (see Table 1). This admits a better order
for classifying same set types that only differ in
the pitches involved (see Table 2). It also estab-
lishes that the octave relation is not important,
meaning that if a Db4 is played and a F6 follows,
the interval taken into consideration would be a
major third, ignoring the two-octave difference.

C C# D D# E F F# G G# A A# B
0 1 2 3 4 5 6 7 8 9 10 11

Table 1: Cromatic Scale enumerated from 0

Finally, the PCS theory allows mathematic op-
erations in groups of pitches. Some simple op-
erations include transposition, inversion and ret-
rogradation. More complex operations are also
viable and are the true potential of this theory
applied to composition.

0 3 4 7 PCS 4-17 Prime Form
1 10 9 6 PCS 4-17 Inverted & Transposed

Table 2: Same Class Set with different Pitches, note
that the same Set Class has the same intervals

3.2 Harmonic Structure Creation
The harmonic structure used is made with the
“pcs chain” object part of the PCSlib library
[Di Liscia and Cetta, 2011a]. This object pro-
duces Pitch Class Set chains of the same set class
[Di Liscia and Cetta, 2011b]. This part of the pro-
gram is located in a subpatch and lets you choose
a PCS of five or six notes. Then the object will
split the PCS in two and will provide all possible

Figure 6: Patch that generates de Harminoc Struc-
ture with “pcs chain”

combinations. The user then selects the partition
to start the chain. The object provides a list of all
possible partitions; the last option is always the
best fit to saturate the total chromatic scale. The
program uses this option to create the harmonic
structure.[fig. 6]

3.3 Mapping of the harmonic structure
to the inputted musical gesture

The harmonic structure will be essential to the
color of any gesture entered. To achieve this,
a compromise is necessary between the gesture,
which is delivered in discrete MIDI values, and
the pitches that will have to be changed to cor-
rectly fit the harmonic structure. This allows mu-
sical coherence of any piece of music written on
the surface and allows the user greater freedom to
concentrate on musical gesture without worrying
about the pitches to use.

To accomplish this, we had to develop several
algorithms that find the best accommodation of
the pitches incoming from the gestures drawn on
the surface to the harmonic structure. This way,
the distortion between the drawing in the surface
and the resulting pitches played is set to the min-
imum as possible. A clear example of such distor-
tion would be the accommodating of the pitches
from the drawn gesture to pitches that are too
far apart from the registry and “ambitus” of the
gesture entered. [fig. 7]

Through different algorithms the program is
able to restructure the pitches inputted. Each
solution was different for each musical gesture be-

166

Figure 7: Diagram of how a part of the Permutation
Algorithm works

cause the Pitch Class Sets theory relates to each
gesture in a different manner. This means that
the algorithm in the illustration above will not
work to accommodate the pitches of the gesture
called “melody”. However, all the particular solu-
tions to the problem have the same analysis sys-
tem [Di Liscia and Cetta, 2011c] for the data entry
from the surface. The analysis will help compare
the pitches of the gesture to the pitches of the
harmonic structure created. It will sort the data
and extract the absolute pitches eliminating the
octave relationship. On the other hand, it does
keep track of the “octave” in which the pitches
are subtracted from, finally with the help of the
object “pcs pf” it is able to find out to which set
class the pitches entered form. All programming
is achieved thanks to a set of abstractions included
in “Pd-extended” known as “list-abs”. These ab-
stractions allow the manipulation of lists, a cor-
nerstone in algorithmic programming for pitch re-
lation manipulation.

3.3.1 Mapping of the gesture “chord”
and “arpeggio” to PCS

The program that maps the music gesture
“chord” and “arpeggio” is the same due to the
fact that the “arpeggio” is a chord whose notes
are deployed in time when played. The solution
to the correct mapping has several steps. In addi-
tion to the analysis [fig. 8] previously explained,
the program must compare the arrangement of
the incoming pitches from the chord generated to
the pitches previously generated in the harmonic

structure.

Figure 8: Patch that analizes the incoming MIDI
pitches

This operation is performed by subtracting one
chord to the other and finding the smallest dif-
ference in intervallic distance from one another.
Then, the chord generated is swapped with the
object “pcs perm” until the permutation with
least difference is found. This means that the
chord that replaces the entrant is chosen accord-
ing to which has the greatest similarity in the dis-
position of the entered pitches and the area cov-
ered by the chord. The program does not analyze
deeper if there are several permutations with the
same result, it chooses the first one with the least
difference to optimize processing time. Finally,
the program seeks the best accommodation for
octave placement with an algorithm which states
that if the difference in semitones between two
notes is higher than 6, the interval can be in-
verted to bring one chord closer to the ambitus
of the original inputted chord. Example of the al-
gorithm, the 2 PCS are subtracted and then the
intervals are added. (see Table 3 & Table 4).

3 5 7 10 Touch-screen
4 0 11 7 Harm. Struct.
1 + 5 + 4 + 3 = 13

Table 3: Interval Subtraction of PCS & addition of
intervals

167

3 5 7 10 Touch-screen
0 4 7 11 Harm. Struct.
3 + 1 + 7 + 11 = 5 Best Option

Table 4: Interval Subtraction of PCS & addition of
intervals (Best Option for Replacement)

3.3.2 Mapping of the gesture “glissando”
and “tremolo” to PCS

Gestures “glissando” and “tremolo” were equally
resolved because both receive data from the XML
file the same way. The XML file delivers the ini-
tial and final pitch that the players need to re-
produce the gestures, which must be accommo-
dated to reproduce correctly the pitches entering
from the harmonic structure. For this, the per-
mutation algorithm explained in the above pro-
cess is the same, but was simplified by omitting
the ”pcs perm” object. The program compares
the intervals entered form the XML file and the
extracted from the harmonic structure. If the dif-
ference between the two intervals exceeds the aug-
mented forth, the interval is inverted to better
resemble the drawn gesture in the surface.

3.3.3 Mapping of the gesture “melod́ıa”
(melody) to PCS

The mapping of “melody” gesture to the previ-
ously designated PCS in the harmonic structure
was accomplished in several steps. First, you
must understand the concept of “melodic con-
tour” and how the algorithm keeps its design and
direction regardless of whether the area in which
it develops is distorted. This is necessary because
for the contour drawing to be maintained, it is
more important to keep the direction of the inter-
vals before the closeness of the notes.

The program creates a matrix where the two
different PCS are entered, one incoming from the
XML file and the other from the harmonic struc-
ture. The PCS are sorted according to a posi-
tion index designated by the melody. The pitches
are later rearranged in ascending order. First,
an index number is allocated to each pitch of the
melody entered from the XML file. For example,
if you enter the PCS [3 0 7 9 5] as the melody con-
tour, an index is given to each pitch producing a
matrix like shown below. (see Table 5).

It is later re-order in ascending order for it to
later be compared with the PCS entering from the

Figure 9: Diagram that shows the posible distortion
of the gesture “melody”

0 1 2 3 4 Index (Sorted)
3 0 7 9 5 PCS from the XML

Table 5: Step 1 of the melodic contour mapping

harmonic structure. (see Table 6).

1 0 4 2 3 Index (un-sorted)
0 3 5 7 9 PCS from the XML

Table 6: Step 2 of the melodic contour mapping

Now the PCS from the harmonic structure can
be entered, it is sorted in ascending order and
inserted into the matrix. For example, the PCS
from the harmonic structure will be [4 11 6 2 8]
that once re-ordered will look as follows: [2 4 6 8
11]. Now you can place that vector in the table
and the matrix will be as follows (see Table 7).

1 0 4 2 3 Index (un-sorted)
0 3 5 7 9 PCS from the XML
2 4 6 8 11 PCS from Harm. Structure

Table 7: Step 3 of the melodic contour mapping

Thus we have the two PCS sorted from lowest
to highest order and the index vector from the
melodic order is now un-sorted. Then all that re-
mains is to rearrange the matrix according to the
first vector re-ordering from smallest to largest
and extract the row number three. Resulting in
the following. (see Table 8).

168

0 1 2 3 4 Index (Sorted)
3 0 7 9 5 PCS from the XML
4 8 11 2 6 PCS from Harm. Structure

Table 8: Step 4 of the melodic contour mapping

The PCS from the harmonic structure in the
correct order to keep the melodic contour is [4 2 8
11 6]. As for the drawing of the melody, the result
is the contour maintenance and so, it causes the
least amount of distortion of the drawing entered
from the surface.

Figure 10: melodic contour maintained dispite the
new pitches

All this part of program was development in
the “abstraction” called “zzzzmelodia” and uses
the ”matrix” object included in the ”iemmatrix”
library. Finally, the new pitches are replaced in
the “coll” object, which are then reproduced when
the complete surface input is executed.
3.3.4 NO - Mapping of the gesture

“Nota” (note) to PCS
The music gesture “nota” (note) was the only one
left without mapping to a previously designated
pitch entering from the harmonic structure. This
is because the independence that ”nota” has as
a gesture and its immediate relation to a pitch,
led to the conclusion that it was the only gesture
totally free from the harmonic structure mapping
process.

4 Conclusions

The Touch-Sensitive Interface with Musical Ap-
plication was developed in 2011 and exhibited as

a prototype on September 23, 2011. Through-
out its development, objectives were achieved by
solving problems step by step. Pure Data proved
to be very versatile for data processing as imple-
mented in this project even though it is difficult
to achieve this type of programs in environments
known as “max”. The PCSlib library showed to
be very complete and it allowed experimental ap-
proaches in the creation of harmonic structures
with the use of the Pitch Class Sets theory. The
touch sensitive surface named “Ugarit” opens new
paradigms for cheap technology with extreme po-
tential for teaching music in new ways. It could
take music education a step closer to modern mu-
sic by implementing PCS theory in the teaching of
music and modern music theories by underlining
the importance of musical gesture and intervallic
relations.

The “Ugarit” was developed in a research pro-
gram of a public university in Argentina. It is
still in a complete experimental stage due to lack
of income. Because the team depends entirely on
public resources, the further development of the
project is uncertain. However, its success after
presenting it, proved to be a viable project. Now
the developing team must wait and see what will
become of this project. Most recently they have
presented a complete report of the project and
all the work done during this early stage. For
more information about this project, such as re-
quirements and building steps, it is encouraged to
contact the author of this paper.

5 Acknowledgements

The Author would like to thank the entire team;
Emiliano Causa, Sebastian G. Botasi & Mat́ıas
Romero Costas. With whom he worked during
the complete development of “Ugarit”. And a
special “thank you” to Dr. Pablo Di Liscia & Dr.
Pablo Cetta for their guideness over the years.

PCSlib belongs to the research project “Musi-
cal Applications of sets and combinatorial matri-
ces of set classes” Director Dr. Oscar Pablo Di
Liscia and Dr. Pablo Cetta, in Quilmes National
University.

Touch-Sensitive Interface with Musical Appli-
cation belongs to the research project “Design
and development of applications and interfaces
for augmented reality for synthesis and digital
audio processing” Part of the program PICTO-

169

ART. Director Carmelo Saitta and Pablo Cetta
in Area Transdepartamental of Multimedia Arts
from National College of Art (IUNA)

References

Emiliano Causa. 2011. Diseño de interface
para el desarrollo de una pantalla sensible al
tacto con aplicación musical. Revista de Inves-
tigación Multimedia (RIM), Buenos Aires, Ar-
gentina.

Pablo Di Liscia and Pablo Cetta. 2011a. Com-
posición asistida en entorno PD. Revista de
Investigación Multimedia (RIM), Buenos Aires,
Argentina.

Pablo Di Liscia and Pablo Cetta. 2011b.
Elementos de Contrapunto Atonal. EDUCA,
Buenos Aires, Argentina.

Pablo Di Liscia and Pablo Cetta. 2011c. Me-
didas de similitud entre sucesiones ordenadas
de grados cromáticos. Revista de Investigación
Multimedia (RIM), Buenos Aires, Argentina.

Allen Forte. 1974. The Structure of Atonal Mu-
sic. Yale University Press, London.

Miller Puckette. Pd documentation.

Yiorgos Vassilandonakis. 2008. An interview
with philippe leroux.

170

��

������������������������

��������� ������

������������� �������

�������� ������

����������

��������

� ����� ���� ������������ ������ ���� �� ��� �����
���� �� ���������� ��������� ��� ������ �� �������
����������� ����� ������ ��� ������� �� ��� ������
�� ��� ������ � ����������������� �������� ������� ����
�� ��� �������� ���������� �� �������� ���������� ��
�������� ��������� ���� �� ��� �������������
������� ��� ����� ��������� ��� ������� ��� ��
�������������� ������ ��� ������������ �� �������
�������� ��� �� ����� ������� �����������

��������

����� ���������� ����� �������������� ���
���������� ����� ������������ ������������
���������������

� ���������� ������ �� ��� �����

����� �������� ���������� ��������� �� ��� ���������
�� ���� ����� �������� ����������� �������������������
�� �������� ��� ���� ������� � ������� ������
�������� �� ��� ������ �� ��� ������� �����
��������� �� ��� ���� ���������� ��������
����������� ��������� ��� ������������� ��
������������ ��������������� ������� �����������
��������� ������� ����������� ��������� ��� ��������
�� ��� ��������� �� ���� ����� ��������� �� ����� ���
�������� �� ��������� ��� ����� ��������� �� ���
���������� �� ���� �������� �� ����� ��� ��������
��������� ��� ��� ������ ��� ������� ��� ������������
�� ������������ ��� ���� �� �������� ��� �� ��� ������
������� ��������� ����� �� �������� ��� ����������
����������� � ������ ����� �� �������� �������� ���
���������� �������� �� ����� ��� �������� ��� ������ ��
���� ���� ��� ������ ��������� ��� ����� �� �������� ��
�������� � �������� �� ��� ������ �� �������
������������ ����� ������� ��������� ����������� ���
������������ �� ��� ������� ���� ���� ���������
������ ������� ����������� �� ��� ���� �� �������� ��
��� �������������������� ��� ������� ����� �� ��

������� �����������������������������

������� �� ����� ���� �� ��� ����������� ������ ��
����� ���� ������������ �����������

� ����������������

���� �� ��� ������������ ���� ���� ���� ������
��� ������� ���� ����� ���� �� �� ������ ������� ����
������� ������ �� ���� �� ��� ���� ��� �������� ����
��������� ����� �� ��������� ������� ����������� �
���� ��� ���� ������ ���� ��� �� ���� �� ��� ���� ����
��������� �� ����� ������� ��������� �� ��� ����
��������� ���� ���� �� �� ���� ����������� �� �����
������� ��� ���������� ���������� ����� ��������������
��������� ��������� ���������� ������������ ��� ��
������ ����� ���������������� ������������ ������� ��
������������ ��� ���������� ���� ��� �� ���� ���
������� ����� �� ��� ����������� ��� �� �� ������
��������������� ������������������������������

171

��� ������������ ������

�� ��� ����� ��� ���� ��� ��������� �������� ���
��������� ����� ����������� ���� �� ��� ����������
���� ���� �� �� �������� ���������� ����
��������������� ������� ������ ��� � ������ ���
��� ��������������� ���� ���� ��� � ��� � �������
������������� ������������ ���� ������ ����
�������� ���� � ���� �� ������ ���������������
������������ ����� �� ���� ����� ��� �� ������
�������� �� �� ���������� ������ ����� �� �������������

��� ������������� ������ �� �������� ������

���� ��� ����������� �� ������� ����� ���� �����
����������

����� ����������� ����� ���������� ��� �������� ��
����������� ������ ��� ��������� ���� ��� ���� ��
����� ����������� ����� �������� �������������
����� ��� �� ������� �� ������ ���� �������� �������
��� ������ ��� ������ �� ����������� �������� ����
��� ������������ ����� �������� ���� ���� ������
���� �� �������� ������� ��� ����� ��������� �� ���
������ ��� �� �������� �������� ��� �������� ����� ��
������� �� ��� ����� ����� ���� �� ����� ������ ����
��������� �� ������ ��� ��� ������������ �� ��������
�� ������ ���� ���� ���� ������ ����� ���� �� ���
������� ��������������� ���� ���� ���������� �����
��� ��� ���� �� � �������� ���� ��� ������ ��� ������
�� ��� �������� �� ���� ������� ��� �� ��� ��������

���� ��� �� �� �� ����� ���� ���� ����� ���� � ���������
�������� ������ ������������������ ��� ��������
��� ������� �� �������� ������ ���� ������������
����������� ����� ��� �� ������� �������������
������� ����� ��� �� ���� �� ����� ������ �����
����� ������ ��� ���� ��� ���� ��������� �� �� ����
������� ��� ������ �� ���������� � ���������� ����
���������������

���

���� ��� �������������� ������� ����� ���� ���� ������ ��
��������� ������� ����� �� � ������� ����� ������ ������
�������������������������

��� ������� ����� ����� ����� ����� ��� ��������
�� ��� �������� � ������������� ���� �������� ������
���� ��� ��� ����� ����������� �������� ����
���������������� �� ����������� ������ �� ����
����� �� � ������� ���� ����� ����� ������ ��������
������������������������

172

� ����������� ����������� ����� ��������� ���
�������������� �� �������������

����� ��������� ��� ������� ������� �� �� ���
������ ���� ������ �� ������ �� ����������� ����
������������� ����� ����������� ��������� ������
���� ���� �������� ���� �������� ������� �� ������
����������������� ���� �
���������� ������� ����� �� ���� ��������� ���� �

������������� ������� ������� ��� ���������������
����������� ��� ������ �� � ������ ������� ���
������������� ��� ����� ��������� ����������� ���
����� �������� ������ ��� ������� ����� ������ ����
�� ���� ���� �� �������� ���� ������� ��� �������
���� ������ ���� ��������� �������� ��� �����
��������� ��� ������� ������� ��� ��������� ��
����������� ���� �� �������� ���������� ��
������������ ���������� ������ ��� ��� �� ���������
�� ��������������� �������� �� �����������
�� �������� ��� �������� ������ �� �������

������������ ��������� ����������� ����� ������� ��
���������� ���� ������ ���� ���������� � ��������
��� �������� ���������� ��� ���� ������� �� ������
����������� ����������� ������� ����������
�� ���� � � ���������� �� ��� ������ �� ������

�������� ���� ������� � ����������������
����������� ���� �������� �� ����� ������� �������
��� ������������������ ��� �������� ��� �������
�� ���� � � ������������� ��� �������� ��� ������

���� ��� ����������� �� � �������� ������ ����
��������� ���� ���� �� ��� �������� ���� �� �
������� ������ ������������ ������ ������
�� ���� ����� �� ������� ������ ���� ����������

�� �� ���������� ��� ���� ���� �� ��� ����
���������� ��������� ������ ������
�� ���� ������ ��������� �������� ��� ����� ��

������ ��� ����� ������� ���� ������ �� ���������
�����
������ �� �������� ����� �� �������� ������

������� ��� ���������� ���� ���� �������� ��������
�� ��� ����� ��������� ������� �� ���������� ����
���� ���� �� ���� ����� �� ��� �������� ���� �� �� �� ��
�� �� �� ��� ��� ������ ��� ��������� �� ��������
������� �� �������� ��� ��������� �� ���� �������
����������� ��� ������ ��� ����� ��� ������� ��
����� ������������
������������� ���� ��� ������������������ �������

�������� �� ����������� ���� ����� ����
������������ ���� ��� �������� ����������

� ������� ��� ������

��������� ���������� ���� ���� �������� ����
������� ������ ������ ��� ��������� ������� ����
������ ��� ����� ��� �������� ��� �� ����������� �
������� ��� ������ � ���������� ����� �� ����
������������ �������� �� ��� ���� ������ ����� ��
��� ������ ����� ��� ��������� ������� ���� � ����
���� ������� ������ ������ � ��������� ���������
������� � ��������� �������� ��� ������� ��������
��� ������ ���� ��� ����������� ���� �������
�������� ��� ���� �� ��� ������ �������� ������
������ ��� ��������� ����������� ��� ������ �� �
��������� ��������� ������� ����� ���� � �������
������ ��� � ������� ���� ������� ���� ��� ���� ����
������ ������ �������� �� ��� ����� ��� ����� ��
��������� ����� ������ �� ��� ������� ������ ��
���������

���� �� ������ ���� �� ��� ����� ���

� ����������

� �������� ����������� �� �������� �����
������������ ����� ������ ��� �������������� �����
���� ��� ����������� �������� ��� ���� ����������
���� ���� �� ���� ���������� ��� ����� �� �������
�� ��� � �������� ������ ��� �� ��������� ���������
���� ����� �� �� ����������� ��� ����� ��������� ���
����� ������� �� ������ �� �� ����������� ��� �����
�������� ������

� ����������������

�� ������ �� ������ ����������� �� ��� ������� ��
��� ������ �� ��� ������ ���������� ��������
���������� ��� ��������� ������������� ��� ���
������ ������������� �� ���� �������� ��� �� ��� ���
���������� �� �������� � ��� ���� �� ��� �� ���

173

������ �� �������������� ��������

����������

��� �� ���������� ����� �������� ��������� ��������
��� ������������ ������� ��� �������������
�������� �����������

��� �� ����� �� �������� �� �������� �� ������
����� �������� �������� ����������� �� ������
��������� � ���������� ������ ������ ��������
�������� ����������

��� �� ������� ��� �� ���������� ����� ���
�������� ��������� ��� ���������������
������������ �� �� ������� � ������ ��� ��
�������� �������� ��� ������������� ����� �����
�������� ��� ������ ���������� ��������������
������� ��������

��������

����� �����������

�������������������������������

������

�������������������������������

��������������

�������������������������������������

����������

�������������������������������������

�������

������������������

������ ��������� �������

����������������������������������

174

Minivosc - a minimal virtual oscillator driver for ALSA (Advanced
Linux Sound Architecture)

Smilen Dimitrov and Stefania Serafin
Medialogy, Aalborg University Copenhagen

Lautrupvang 15
DK-2750 Ballerup,

Denmark,
{sd, sts}@create.aau.dk

Abstract
Understanding the construction and implementation
of sound cards (as examples of digital audio hardware)
can be a demanding task, requiring insight into both
hardware and software issues. An important step to-
wards this goal, is the understanding of audio drivers
- and how they fit in the flow of execution of software
instructions of the entire operating system.
The contribution of this project is in providing sam-

ple open-source code, and an online tutorial [1] for a
mono, capture-only, audio driver - which is completely
virtual; and as such, does not require any soundcard
hardware. Thus, it may represent the simplest form of
an audio driver under ALSA, available for introductory
study; which can hopefully assist with a gradual, sys-
tematic understanding of ALSA drivers’ architecture -
and audio drivers in general.

Keywords
Sound card, audio, driver, ALSA, Linux

1 Introduction
Prospective students of digital audio hardware,
could choose the sound card as a topic of study:
on one hand, it has a clear, singular task of
managing the PC’s analog interface for playback
and capture of digital audio data - as well as
well-established expectations by consumer users
in terms of its role; on the other hand, its un-
derstanding can be said to be cross-disciplinary,
as it encompasses several (not necessarily overlap-
ping) areas of design: analog and digital electron-
ics related to soundcard hardware and PC bus
interface implementation; PC operating system
drivers; and high-level PC audio software.
Gaining a sufficient understanding of the inter-

play between these different domains in a work-
ing implementation can be an overwhelming task;
thus, not surprisingly, the area of digital audio
hardware design and implementation (including

soundcards) is currently dominated by industry.
Recent developments in open source software and
hardware may lower the bar for entry of newcomer
DIY enthusiast - however, the existence of many
open source drivers for commercial cards doesn’t
necessarily ease the introductory study of a po-
tential student.
In essence, an implementation of a soundcard

will eventually demand dealing with the issue of
an operating system driver. In the current sit-
uation, a prospective student is then faced with
a ’chicken-and-egg’ problem: proper understand-
ing of drivers requires knowledge of the hardware
(which the drivers were written for); and yet un-
derstanding the hardware, involves understanding
of how the drivers are supposed to interface with
it1. A straightforward way out, would be to study
a ’virtual’ driver - that is, a driver not related to
an actual hardware; in that case, a student would
be able to focus solely on the software interac-
tion between the driver, and the high-level audio
program that calls it. Unfortunately, in the case
of the ALSA driver architecture for Linux, pre-
existing examples of virtual drivers are in fact not
trivial2 - and, just as existing ALSA driver tutori-
als, assume previous knowledge of bus interfaces
(and thus hardware).
The minivosc driver source code with the cor-

responding tutorial (on the ALSA website [1]) rep-
resents the simplest possible virtual ALSA driver,
that does not require additional hardware. It has
already led to the development of the driver used
in the (possibly first) demonstration of an open
soundcard system in AudioArduino [2] (and fur-

1and the lack of open card hardware designs for study
makes this problem more difficult

2and may require existence of real soundcards on the
system

175

ther used in [3]) - and as it limits the discussion
to only the software interaction between driver
and high-level software, disregarding issues in bus
interfacing and hardware - it would represent a
conceptually simpler entry level for a prospective
student of sound card drivers.

2 Premise
Personal computer users working with audio typ-
ically rely on high-level audio software (from
media players such as VLC, to more special-
ized software like Pure Data, or the wave editor
Audacity3) to perform their needed tasks – and
the sound card (as hardware) to provide an analog
interface to and from audio equipment. This nec-
essarily puts demands on the operating system of
the PC, to provide a standardized way to access
(what could be different types of) audio hardware.
An operating system, in turn, would provide an
audio or soundcard driver API (application pro-
gramming interface), which should allow for pro-
gramming of a driver that: abstracts some of the
’inner details’ of the soundcard implementation;
and exposes a standardized interface to the high-
level audio software (that may want to utilize this
driver). This, in principle, allows interfacing be-
tween software and hardware released by different
vendors/publishers.
Earlier work like [4] attempts to provide a sys-

tematic approach to soundcard implementation;
however, one clear conclusion from such a naïve
approach is that: regardless of the capabilities
of the hardware - one cannot achieve a fine con-
trol of timing required for audio, by using what
corresponds to a simple ’user space’ C program.
Problems like these are typically solved within the
driver programming framework of a given oper-
ating system - and as such, acquaintance with
driver programming becomes a necessity for any-
one aiming to understand development of digital
audio hardware for personal computers. In terms
of FLOSS4 GNU/Linux- based operating systems,
the current driver programming framework - as it

3Note that software like JACK - while it can be con-
sidered more ’low-level’ than consumer audio software - is
still intended to route data between ’devices’. Since it is the
driver that provides this ’device’ (as a OS construct that
software can interface with) in the first place - drivers lay in
a lower architectural layer than even software like JACK,
and so involve different development considerations.

4free/libre/open source software

relates to soundcards and audio - is provided by
the Advanced Linux Sound Architecture (ALSA).
ALSA supersedes the previous OSS (Open Sound
System) as the default audio/soundcard driver
framework for Linux (since version 2.6 of the ker-
nel [5]), and it is the focus of this paper, and the
eponymous minivosc driver (and tutorial). The
minivosc driver was developed on Ubuntu 10.04
(Lucid), utilizing the 2.6.32 version of the Linux
kernel; the code has been released as open source
on Sourceforge, and it can be found by referring
to the tutorial page [1].

2.1 Initial project issues
The minivosc project starts from the few read-
ily available (and ’human-readable’) resources re-
lated to introductory ALSA driver development:
[8], [9], [10], and [11]. Most of these resources
base their discussions on conceptual or undis-
closed hardware, making them difficult to read
for novices. On the other hand, there are few
examples of virtual soundcard drivers, such as
the driver source files dummy.c (in the Linux
kernel source tree [12]) and aloop-kernel.c (in
the ALSA source tree [13]); however, these drivers
don’t have much documentation, and can present
a challenge for novices5. All these resources [8;
9; 10; 11; 12; 13] have been used as a basis
here, to develop an example of a minimal virtual
oscillator (minivosc) driver.

3 Architectural overview of PC audio
Even if the minivosc driver is a virtual one, one
still needs an overview of the corresponding hard-
ware architecture - also for understanding in what
sense is this driver ’virtual’. As a simplified illus-
tration, consider Fig. 1.
A driver will typically control transfers of data

between the soundcard and the PC, based on in-
structions from high-level software. The direction
from the soundcard to the PC is the capture direc-
tion; the opposite direction (from the PC to the
soundcard) is the playback direction; a soundcard
capable of delivering both data transfer directions

5the ’dummy’ driver doesn’t actually perform any mem-
ory transfers (which is, arguably, a key task for a driver),
so it cannot be used as a basis for study – the ’loopback’
driver is somewhat more complex than a basic introductory
example, as it is intended to redirect streams between de-
vices, and as such assumes some preexisting acquaintance
with the ALSA architecture

176

�������������

���������

��

�
�
�

���

���

���

���

���

���

�����
���

�����
��

����

�����������
��������

������

���

�
�
�

�
�
�

����
����

���

Figure 1: Simplified overview of the con-
text of a PC soundcard driver (portions
used from Open Clip Art library).

simultaneously can be said to be a full-duplex de-
vice.
While Fig. 1 shows the hard disk as (ultimately)

both the source for the playback direction, and
the destination for the capture direction - within
this process, the CPU may use RAM memory
at its discretion. In fact, the driver is typically
exposed to pointers to byte arrays (buffers) in
memory (in ALSA known as PCM (sub)streams [7,
’PCM (digital audio) interface’], and named dma_
area), that represent streams in each direction.
In terms of audio streams, Fig. 1 demonstrates

a device capable of two mono (or one stereo) in-
puts, and two mono (or one stereo) outputs. Since
audio devices like microphones (or amplifiers for
speakers) typically interface through analog elec-
tronic signals - this implies that for each ’digi-
tal’ input [or output] audio stream, a correspond-
ing analog-to-digital (ADC) [or digital-to-analog
(DAC)] converter hardware needs to be present
on the soundcard6.
As the main role of the soundcard is to provide

an analog electronic audio interface to the PC -
the role of the ADC and DAC hardware is, of
course, central. However, the PC will typically in-
terface to external hardware through a dedicated
bus for this purpose7. This means, that some bus
interfacing electronics - that will decode the sig-

6Note, however, that this correspondence could, in
principle, be solved by a single ADC or DAC element -
along with a (de)multiplexer which would implement time-
sharing of the element (for multiple channels)

7noting that, in principle, the buses used for hard-
disks (such as Integrated Drive Electronics (IDE)) or RAM
(known as ’Memory Interconnect’) can be distinct

nals from the PC, and provide signals that will
drive (at the very least) the ADC/DAC converters
- needs to be present on the soundcard as well8.
An ALSA driver uses a particular terminology

when addressing these architectural surroundings.
The ’soundcard’ on Fig. 1 will be considered to
be a card by the driver9. One level deeper,
things can get a bit more complicated: assum-
ing that Fig. 1 represents a stereo soundcard, it
would have one input stereo connector (attached
to two ADCs), and one output stereo connector
(attached to two DACs); an ALSA driver would
correspondingly be informed about a card, that
has one stereo input device (consisting of two
subdevices) - and one stereo output device (con-
sisting, likewise, of two subdevices). Note that:
“..we use subdevices mainly for hardware which
can mix several streams together [14]” and “typ-
ically, specifying a sound card and device will be
sufficient to determine on which connector or set
of connectors your audio signal will come out, or
from which it is read... Subdevices are the most
fine-grained objects ALSA can distinguish. The
most frequently encountered cases are that a de-
vice has a separate subdevice for each channel or
that there is only one subdevice altogether [15]”
The ALSA driver is informed about such a hi-

erarchical relationship (between card, devices and
subdevices) through structures (C structs, written
by the driver author in the driver source files) -
defined mostly through use of other structures,
predefined by the ALSA framework (alias the ALSA
’middle layer’). The driver code, additionally, es-
tablishes a relationship between these structs, and
the PCM stream data that will be assigned to
each in memory; and connects these to predefined
ALSA framework driver functions, which define the
driver (and the corresponding hardware) behavior
at runtime. Finally, Fig. 1 shows that other types
of devices, such as a MIDI interface, can also be
present on the soundcard. The ALSA framework

8For example, [4] describes a device that interfaces
through the Industry Standard Architecture (ISA) bus -
and uses standard TTL components (such as 74LS08,
74LS688, 74LS244, etc) to implement a bus interface;
[2] describes a device that interfaces through the Universal
Serial Bus (USB) - and uses the FT232 chip by FTDI to
implement a bus interface

9noting that, in principle, the driver should be able to
handle multiple cards; and be able to individually address
each one

177

has facilities to address such needs too - as well as
having a so-called mixer interface10 - which will
not be discussed here.
Application level From the PC perspective,
a high-level audio software (audio application) is
used, in first instance, to issue start and stop of
audio playback or capture. When such a high-
level command is issued by the user, the audio
application communicates to the driver through
the application-level API and: obtains a han-
dle to the relevant structures; initializes and al-
locates variables; opens the PCM device; speci-
fies hardware parameters11 and type of access (in-
terleaved or not) - and then starts with reading
from (for capture) or writing to (for playback) the
PCM device, by using ALSA API functions (such
as snd_pcm_writei/snd_pcm_writen or snd_pcm_readi
/snd_pcm_readn) [16]. The PCM device is repre-
sentation of a source (or destination) of an audio
stream12. The kernel responds to the application
API calls by calling the respective code in the
kernel driver, implemented using the kernel (ALSA
driver) API [8].13

4 Concept of minivosc
A user would, arguably, expect to hear actual re-
produced sound upon clicking ’play’; while record-
ing, in principle, doesn’t involve user sensations
other than indication by the audio software (e.g.
rendering of captured audio waveform). Taking
this into account, it becomes clear that the stated
purpose of minivosc - to be a ’virtual’ driver
(independent of any actual additional soundcard
hardware) - can only be demonstrated in the cap-
ture direction14: as the driver simply has refer-

10which allows for, say, individual volume control di-
rectly from the main OS volume applet

11access type, sample format, sample rate, number of
channels, number of periods and period size

12and it can have: "plughw" or "hw" interface; play-
back or capture direction; and standard (blocking), non-
blocking and asynchronous modes (see also [7, ’PCM (dig-
ital audio) interface’])

13Note that the application doesn’t have to talk to the
driver directly; there could be intermediate layers, forming
a Linux audio software stack (see [17]). However, in this
paper, we focus solely on the perspective of the ALSA kernel
driver.

14however, note that aloop-kernel.c[13], is also a ’vir-
tual’ driver, and yet works in both directions; however,
since it is intended to ’loop back’ audio data between ap-
plications and devices[18], the virtual setups possible can
be reduced to the case when the ’loopback’ driver routes

ences to data arrays in memory, the effect of play-
ing back (i.e., copying) data to non-existing hard-
ware will be pretty much undetectable15. How-
ever, even with non-existing hardware, we can al-
ways write some sort of predefined or random data
to the capture buffers in memory - which would
result with visible incoming data in the high-level
audio software (like when performing ’record’ in
Audacity).
To avoid the conceptualization problems of

ALSA devices vs. subdevices, the minivosc driver
is deliberately defined as a mono, 8-bit, capture-
only driver, working at 8 kHz (the next-lowest16

rate ALSA supports). The 8-bit resolution al-
lows also for direct correspondence between: the
digital representation of a single analog sample;
and the storage unit of the corresponding arrays
(buffers) in memory, which are defined as char*.
Hence, one byte in memory buffer represents one
analog sample, the next byte represents the next
analog sample, etc. This allows for simplification
of the process of wrapping data in a ring buffer,
and thus easier grasping of the remaining key is-
sues in ALSA driver implementation.

5 Driver structures
The minivosc driver contains four key structures
- three of which are required by (and based on
predefined types in) the ALSA framework:

• struct variable of type snd_pcm_hardware (re-
quired) - sets the allowed sample formats, sampling
rates, number of channels, and buffering properties

• struct variable of type snd_pcm_ops (required) -
assigns the actual functions, that should respond to
predefined ALSA callbacks

• struct variable of type platform_driver (re-
quired) - named minivosc_driver, it describes the
driver, and at the same time, determines the bus
interface type

• struct variable of type minivosc_device - custom
structure that contains all other parameters related

one audio application’s data written to its playback inter-
face, back to its capture interface; and another audio ap-
plication grabs data from the ’loopback’ capture interface
and writes it to disk.

15similar to, in Linux parlance, ’piping’ data to /dev/
null. While a specific consumer of such data could be
programmed, that alone complicates the understanding of
interaction between typical audio software and drivers

16The lowest ALSA rate being 5512 Hz, see
include/sound/pcm.h in Linux source [19]

178

to the soundcard, as well as pointers to the digital
audio (PCM) data in memory

The minivosc_driver struct variable defines the
_probe and _remove functions, required for any
Linux driver; however, by choosing the struct
type, we also determine the type of bus this driver
is supposed to interface through. For instance, a
PCI soundcard driver would be of type struct pci
_driver; whereas a USB soundcard driver would
be of type struct usb_driver (see [1]). However,
minivosc is defined as platform_driver, where
“platform devices are devices that typically appear
as autonomous entities in the system [20, ’plat-
form.txt’]” - and as such, it will not need actual
hardware present on any bus on the PC, in order
for the driver to be loaded completely17.
The snd_pcm_ops type variable simply points to

the actual functions that are to be executed as the
predefined ALSA callbacks, which are discussed in
the next section. The different fields in snd_pcm
_hardware allow the device capabilities in terms
of sampling resolution (i.e., analog sample for-
mat) and sampling rate to be specified. For this
purpose, there are predefined bit-masks in ALSA’s
pcm.h [19], such as SNDRV_PCM_RATE_8000 or SNDRV_
PCM_FMTBIT_U8 (for 8 kHz rate, or for sample for-
mat of 8-bit treated as unsigned byte, respec-
tively). One should be aware that audio soft-
ware may treat these specifications differently:
for instance, having arecord capture from the
minivosc driver, will result with an 8-bit, 8 kHz
audio file - simply because that is the default for-
mat for arecord. On the other hand, Audacity
in the same situation - while acknowledging the
driver specifications - will also internally convert
all captures to the default ’project settings’, for
which the minimum possible values are 8000 Hz
and 16-bit [21].18

One of the most important structures is what
we could call the ’main’ device structure, here
minivosc_device. It can also be a bit difficult to
understand, especially since it is - in large part -
up to the driver authors themselves to set up the
structure, and its relationships to built-in ALSA

17which is not the default behavior for actual hardware
drivers - they will simply not run some of their predefined
callbacks, if the hardware is not present on the bus

18While these captures can be exported from Audacity
as 8-bit, 8 kHz audio files - that process implies an addi-
tional conversion from the internal 16-bit format.

structures. These relationships are of central in-
terest, because a driver author must know the lo-
cation of memory representing the digital audio
streams (snd_pcm_runtime->dma_area in Fig. 2), in
order to implement any digital audio functionality
of the driver. And finding this memory location
is not trivial - which is maybe best presented in
graphical manner, as in Fig. 2, which shows a par-
tial scope of the ’main’ structure minivosc_device
and its relationships.
On Fig. 2, only minivosc_device has been

written as part of the driver code - all other
structs (with darker backgrounds) are built-ins,
provided by ALSA. Pointers are shown on left edge
of boxes; self-contained struct variables are on
the bottom edge19. Some relationships (such as
snd_pcm_substream->runtime to snd_pcm_runtime
pointing) are set up internally by ALSA; the
relationships to the ’main device’ structure
(minivosc_device) have to be coded by the driver
author. Further complication is that the au-
thored relationships can not be established at the
same spot in the driver code - as some structures
become available only in specific ALSA callbacks.
This is a conceptual departure from the typ-

ical basic understanding of program execution -
where a predetermined sequential execution of
commands is assumed. Instead, driver program-
ming may conceptually be closer to GUI program-
ming, where the author typically writes callback
functions that run whenever a user performs some
action. Additionally, we can expect to encounter
different amount of instances of some of these
structs! For example, snd_pcm_substream can carry
data for a given output connector, which could be
stereo. So, if a stereo file is loaded in audio soft-
ware, and ’play’ is clicked - we could expect ALSA
to pass a single snd_pcm_substream, carrying data
for both channels, to our driver. However, if we
are trying to play a 5.1 surround file, which em-

19Note, the ALSA struct boxes show only a small selec-
tion of the structs’ actual members; while the ’main de-
vice’ struct still contains some unused variables, leftover
from starting example code. Connections are colored for
legibility.
Unlike a more detailed UML diagram, a map like Fig. 2

helps only in a specific context: e.g., the driver is supposed
to write to the dma_area when the _timer_function runs,
however this function provides a reference to minivosc_
device; the map then allows for a quick overview of struc-
ture field relationship, so a direct pointer to the dma_area
can be obtained for use within the function.

179

minivosc_device

card
pcm
timer_ops

substream

cab
le_

lo
ck

p
cm

_
p
erio

d
_
size

p
cm

_
b
p
s

v
alid

ru
n
n
in
g

p
erio

d
_
u
p
d
ate_

p
en
d
in
g

irq
_
p
o
s

p
erio

d
_
size_

frac

last_
jiffies

tim
er

p
cm

_
b
u
ffer_

size

b
u
f_
p
o
s

silen
t_
size

w
v
f_
p
o
s

w
v
f_
lift

snd_card
private_data

snd_pcm private_data

d
ev
ice

snd_pcm_substream

private_data

pcm
runtime

snd_pcm_runtime
private_data

dma_area

d
m
a_
b
y
tes

0 1 2 3 4 5 6 7 8 9 ..

Figure 2: Partial ’structure relationship map’ of the minivosc driver.

ploys 2 stereo and one mono connector - we should
expect three snd_pcm_substreams to be passed to our
driver. This could further confuse high-level pro-
grammer newcomers, that might expect to receive
something like an array of substreams in such
a case: instead, ALSA may call certain callbacks
multiple times - and it is up to the driver author
to store references to these substreams.
minivosc avoids these problems as a mono-

only driver - thus within the code, we can expect
only one instance of each struct shown on Fig. 2;
and the reference to the only snd_pcm_substream
can be found directly on the main ’device’ struct,
minivosc_device. This allows us easier focus on
another important aspect of ALSA - the timing
of execution of callbacks, which is necessary for
understanding the driver initialization process in
general.

6 Execution flow and driver functions
The device driver architecture of Linux specifies
a driver model [20], and within that, certain call-
back functions that a driver should expose. In
the case of minivosc, first the __init and __exit
macros ([22, Chapter 2.4]) are implemented, as
functions named alsa_card_minivosc_init and alsa
_card_minivosc_exit. These functions run when a
driver module is loaded and unloaded: the ker-
nel will automatically load modules, built in the
kernel, at boot time - while modules built ’out
of tree’ have to be loaded manually by the user,
through the use of the insmod program. The _
init function in minivosc registers the driver, and
attempts to iterate through the attached sound-
cards. As minivosc is a ’platform’ driver, and
there is no actual hardware - the _init, in this
case, is made to always result with detecting a
single (virtual) ’card’. Next in line of predefined
callbacks are _probe and _remove [20, ’driver.txt’],

in minivosc implemented as minivosc_probe and
minivosc_remove. In principle, they would run
when a (soundcard) hardware device is attached
to/disconnected from the PC bus: for instance,
_probe would run when the user connects a USB
soundcard to the PC by inserting the USB connec-
tor - if the driver is already loaded in memory. For
permanently attached devices (think PCI sound-
cards), _probe would run immediately after _init
detects the cards; thus, in the case of minivosc,
_probe will run immediately after _init, at the mo-
ment when the driver is loaded (by using insmod).
The minivosc driver code informs the system

about which are its init/exit functions, by use
of module_init/module_exit facility (see [23, ’Chap-
ter 2’]); while it specifies which are its probe/re-
move functions through use of the platform_driver
structure. Finally, last in line of predefined call-
backs are the ALSA specific callbacks; the driver
code tells the system which are these functions,
through the predefined ALSA struct snd_pcm_ops.20

While ALSA may define more snd_pcm_ops call-
backs [9], there are 8 of them being used
in minivosc, by assigning them to functions:
one, snd_pcm_lib_ioctl, being defined by ALSA
– and seven snd_pcm_ops functions written as
part of minivosc: minivosc_pcm_open, minivosc_hw_
params, minivosc_pcm_prepare, minivosc_pcm_trigger,
minivosc_hw_free, minivosc_pcm_close, minivosc_pcm_
pointer. As clarification - here is the order of exe-
cution of above callbacks for the minivosc driver,
for some common events:
• driver loading: _init, then _probe
• start of recording: _open, then _hw_params, then

20Note that the term ’PCM’ is used in ALSA to refer
generally to aspects related to digital audio - and not to
the particular ’Pulse Code Modulation’ method as known
from electronics (although that is where the term derives
from [7, ’PCM (digital audio) interface’]).

180

_prepare, then _trigger
• end of recording: _trigger, then _hw_free,

then _close
• driver unloading: _exit, then _remove

We already mentioned that for the minivosc
driver, loading/unloading events happen when
the insmod/rmmod commands are executed. ’Start
of recording’ event would be the moment when
the ’record’ button has been pressed in Audacity;
or the moment when we run arecord from the
command line – correspondingly, ’end of record-
ing’ event is when we hit the ’stop’ button in
Audacity; or when arecord exits (if, for instance,
it has been set to capture for only a certain
amount of time). However, note that – even with
all of this in place – the actual performance of
the driver in respect to digital audio is still not
defined; memory buffer handling is also needed.

6.1 Audio data in memory (buffers) and
related execution flow

As noted in Sec. 5 ’Driver structures’, one of the
central issues in ALSA driver programming is the
location in memory, where audio PCM data for
each substream is kept - the dma_area field being
a pointer to it. In principle, each substream can
carry multi-channel data: for instance, a 16-bit
sample would be represented as two consecutive
bytes in the dma_area; while stereo samples could
be interleaved [24]. Thus ALSA introduces the con-
cept of frames [25], where a frame represents the
size of one analog sample for all channels carried
by a substream. As minivosc is specified as a
mono 8-bit driver, we can be certain that each
byte in its dma_area will represent a single sample
- and that one frame will correspond to exactly
one byte.
The approach to implementing the sampling

rate that minivosc has (taken from [13]), is to
use the Linux system timer ([26, ’Kernel Mech-
anisms’], [23, ’Chapter 6’]). Note that standard
Linux system timers are “only supported at a res-
olution of 1 jiffy. The length of a jiffy is dependent
on the value of HZ in the Linux kernel, and is 1
millisecond on i386 [27]”. However, there also ex-
ist so-called high-resolution timers [28] (for their
basic use in ALSA, see [12]).

6.2 The sound of minivosc - Driver
execution modes

The driver writes in the dma_area capture buffer
repeatedly (as controlled by timers), within the
_xfer_buf function - or more precisely, within the
minivosc_fill_capture_buf function called by it. In
the minivosc code, three different variants can
be chosen (at compile time), for copying a small
predefined ’waveform grain’ array repeatedly in
the capture buffer, which results in an audible os-
cillation when the capture is played back (hence
oscillator in the name). Note the need to ’wrap’
the writing to the capture buffer array, since in
ALSA, it is defined as a circular or ring buffer
[24]. Finally, all of the three ’audio generation’
algorithms can be commented, in which case the
minivosc driver will simply write a constant value
in the buffer. There is an additional facility, called
’buffermarks’, which indicate the start and end of
the current chunk, as well as the start and end
of the dma_area - which can be used to visualize
buffer sizes.
7 Conclusions
The main intent of minivosc is to serve as a basic
introduction to one of the most difficult issues in
soundcard driver programming: handling of digi-
tal audio. Given that many newcomers may have
previous acquaintance with ’userland’ program-
ming, the conceptual differences from user-space
to kernel programming (including debugging [1])
can be a major stumbling block. While a focus on
capture only, 8-bit / 8 kHz mono driver leaves out
many of the issues that are encountered in work-
ing with real soundcards, it can also be seen as
a basis for discussion of [2], which demonstrates
full-duplex mono @ 8-bit / 44.1 kHz (and can in-
terface with stereo, 16-bit playback). Thus, the
main contribution of this paper, driver code and
tutorial would be in easing the learning curve of
newcomers, interested in ALSA soundcard drivers,
and digital audio in general.
8 Acknowledgments
The authors would like to thank the Medial-
ogy department at Aalborg University in Copen-
hagen, for the support of this work as a part of a
currently ongoing PhD project.

References
[1] S. Dimitrov, “Minivosc homepage,” WWW:

http://www.alsa-project.org/main/index.php/

181

Minivosc / http://imi.aau.dk/~sd/phd/index.
php?title=Minivosc, 21 Dec 2010.

[2] S. Dimitrov and S. Serafin, “Audio Arduino - an
ALSA (Advanced Linux Sound Architecture) au-
dio driver for FTDI-based Arduinos,” in Proceed-
ings of the 2011 conference on New interfaces for
musical expression, 2011.

[3] ——, “Towards an open sound card — a bare-
bones FPGA board in context of PC-based digital
audio,” in Proceedings of the 2011 Audio Mostly
conference, 2011.

[4] S. Dimitrov, “Extending the soundcard for use
with generic DC sensors,” in NIME++ 2010:
Proceedings of the International Conference on
New Instruments for Musical Expression, 2010,
pp. 303–308.

[5] D. Phillips, “A User’s Guide to ALSA | Linux
Journal,” WWW: http://www.linuxjournal.com/
node/8234/print, 2005.

[6] git.alsa project.org, “alsa-kernel.git/tree - Docu-
mentation/,” WWW: http://git.alsa-project.org/
?p=alsa-kernel.git;a=tree;f=Documentation.

[7] J. Kysela, A. Bagnara, T. Iwai, and F. van de
Pol, “ALSA project - the C library ref-
erence,” WWW: http://www.alsa-project.org/
alsa-doc/alsa-lib/index.html, 22 Dec 2010.

[8] T. Iwai, “The ALSA Driver API,”
WWW: http://www.alsa-project.org/~tiwai/
alsa-driver-api/index.html, 21 Dec 2010.

[9] ——, “Writing an ALSA Driver,” WWW:
http://www.alsa-project.org/~tiwai/
writing-an-alsa-driver/, 21 Dec 2010.

[10] B. Collins, “Writing an ALSA driver,” WWW:
http://ben-collins.blogspot.com/2010/04/
writing-alsa-driver.html, 21 Dec 2010.

[11] S. K., “HowTo Asynchronous Playback -
ALSA wiki,” WWW: http://alsa.opensrc.org/
index.php/HowTo_Asynchronous_Playback

[12] J. Kysela, “sound/drivers/dummy.c,” WWW:
http://git.kernel.org/?p=linux/kernel/git/
stable/linux-2.6.32.y.git;a=blob;f=sound/
drivers/dummy.c, 22 Dec 2010.

[13] J. Kysela, A. İnan, and T. Iwai,
“drivers/aloop-kernel.c,” WWW: http:
//git.alsa-project.org/?p=alsa-driver.git;a=
blob_plain;f=drivers/aloop-kernel.c;hb=
e0570c46e3c4563f38e44a25cfac1f07ff5a02a8, 2010.

[14] www.alsa project.org, “Asoundrc - AlsaProject,”
WWW: http://www.alsa-project.org/main/
index.php/Asoundrc, 22 Dec 2010.

[15] V. Schatz, “A close look at ALSA,” WWW: http:
//www.volkerschatz.com/noise/alsa.html, 2010.

[16] M. Nagorni, “ALSA Programming HOWTO
v.0.0.8,” WWW: http://www.suse.de/~mana/
alsa090_howto.html, 15 May, 2011.

[17] G. Morrison, “Linux audio uncovered,” Linux
Format magazine, no. 130, pp. 52–55, April
2010, URL: http://www.tuxradar.com/content/
how-it-works-linux-audio-explained.

[18] J. Kysela, “snd-aloop and alsaloop notes,”
WWW: http://people.redhat.com/~jkysela/
RHEL5/loop/BACKGROUND, 22 Dec 2010.

[19] J. Kysela and A. Bagnara, “git.kernel.org - in-
clude/sound/pcm.h,” WWW: http://git.kernel.
org/?p=linux/kernel/git/stable/linux-2.6.32.y.
git;a=blob;f=include/sound/pcm.h;, 2010.

[20] git.kernel.org, “Documentation/driver-model,”
WWW: http://git.kernel.org/?p=linux/
kernel/git/stable/linux-2.6.32.y.git;a=tree;f=
Documentation/driver-model, 22 Dec 2010.

[21] wiki.audacityteam.org, “Bit Depth - Audac-
ity Wiki,” WWW: http://wiki.audacityteam.org/
wiki/Bit_Depth, 22 Dec 2010.

[22] P. J. Salzman, M. Burian, and O. Pomerantz,
The Linux Kernel Module Programming Guide.
CreateSpace, 2009, URL: http://linux.die.net/
lkmpg.

[23] A. Rubini and J. Corbet, Linux device drivers.
O’Reilly Media, 2001, URL: http://www.xml.
com/ldd/chapter/book.

[24] J. Tranter, “Introduction to Sound Programming
with ALSA | Linux Journal,” 2004, WWW: http:
//www.linuxjournal.com/article/6735?page=0,1.

[25] www.alsa project.org, “FramesPeriods - AlsaPro-
ject,” WWW: http://www.alsa-project.org/
main/index.php/FramesPeriods, 28 Dec 2010.

[26] D. Rusling, “The linux kernel,” The Linux Docu-
mentation Project, 1996, URL: http://www.tldp.
org/LDP/tlk/.

[27] elinux.org, “High Resolution Timers -
eLinux.org,” WWW: http://elinux.org/High_
Resolution_Timers, 28 Dec 2010.

[28] T. Gleixner and D. Niehaus, “Hrtimers and
beyond: Transforming the linux time subsys-
tems,” in Proceedings of the Ottawa Linux
Symposium, Ottawa, Ontario, Canada, 2006,
URL: http://www.kernel.org/doc/ols/2006/
ols2006v1-pages-333-346.pdf.

[29] M. Johnson et al., Linux Kernel Hackers’ Guide.
Johnson, 1993, URL: http://www.tldp.org/LDP/
khg/HyperNews/get.

182

An Open-Source C++ Framework for Multithreaded Realtime
Multichannel Audio Applications

Matthias GEIER1, Torben HOHN2 and Sascha SPORS1

1Quality & Usability Lab, TU Berlin
Ernst-Reuter-Platz 7

10587 Berlin, Germany
matthias.geier@tu-berlin.de
sascha.spors@tu-berlin.de

2Linutronix GmbH
Auf dem Berg 3

88690 Uhldingen, Germany
torbenh@linutronix.de

Abstract

An open-source C++ framework is introduced which fa-
cilitates the implementation of multithreaded realtime
audio applications, especially ones with many input
and output channels. Block-based audio processing is
used.

The framework is platform-independent and differ-
ent low-level audio backends can be used for both real-
time and non-realtime operation. Support for further
backends can be added easily.

Keywords

MIMO, realtime, multithreading, C++

1 Introduction

Most realtime audio processing applications
which have to handle a high number of input and
output channels are bound to a specific realtime
audio framework. This is not a problem in itself,
because there are several very good frameworks
available. Some of them can be used on several
platforms and some of them even have the possi-
bility to switch between different audio backends.

Such frameworks are perfectly suitable to cre-
ate stand-alone applications. But what if you
want to compare the audio output of your pro-
gram with the prototype algorithm you realized
in your favorite software for numerical process-
ing? Wouldn’t it be nice to create a shared library
for this software directly from your realtime C++
code? And while we are at it, wouldn’t it be nice
to use the same source code to create a plugin for
your favorite graphical patching software?

Multichannel applications often have an em-
barrassingly high potential for parallel compu-
tation on multi-processor/multi-core computers,
especially if they have many output channels.
Wouldn’t it be nice if parallel processing would be

automatically provided in all the aforementioned
scenarios?

To tackle these challenges, this paper presents
a new C++ framework for interactive multiple-
input/multiple-output (MIMO) audio applica-
tions. It is part of the Audio Processing Frame-
work (APF)1, which is free software released un-
der the GNU General Public License (GPL)2.

Applications created with this framework are
automatically capable of multithreading. The
number of audio threads is chosen by the user and
does not change during runtime. The scheduling
mechanism is simple and static, yet effective (see
section 5). Applications are not bound to a spe-
cific audio driver. Audio backends for both real-
time and non-realtime operation can be switched
easily (at compile time) and new backends can be
added by the user. This way, it is possible to im-
plement audio algorithms for a realtime applica-
tion, but the algorithms can nevertheless be eval-
uated block-by-block in a non-realtime manner.
For more information about the audio backends
and their usage see section 4.6.

2 Target Applications

The presented framework can be used for any
block-based audio application with many input
and output channels. The overall topology of
the audio processing graph should not change too
much during runtime, but the number of chan-
nels and other system parameters may change dy-
namically. Typical applications are sound field
synthesis, multichannel echo cancelling and loud-
speaker/microphone beamforming. The target
systems range from stereo processing on a sim-
ple laptop to dedicated computer systems driv-

1http://tu-berlin.de/?id=apf
2http://gnu.org/copyleft/gpl.html

183

ing tens or even hundreds of loudspeaker chan-
nels with as many input channels. The first ap-
plication using the framework is the SoundScape
Renderer (SSR)3, a tool for object-based spatial
audio reproduction providing a variety of render-
ing algorithms [Geier et al., 2008].

3 Realtime & Non-Realtime Threads

An application based on the presented framework
uses two different kinds of threads. The actual au-
dio processing is mostly done in a callback func-
tion which is called successively – for every au-
dio block – from the audio backend. The thread
running this callback function is called realtime
thread because only a given time period is avail-
able for the computation of each audio block.
Therefore, only a certain fixed amount of calcula-
tions may be done, depending on block size, sam-
pling rate, processor speed and other factors. Ad-
ditionally, no blocking functions may be called in
the realtime thread. Especially operations like al-
locating memory, reading and writing of files and
sockets, creating and joining threads and waiting
for mutexes have to be avoided. If processing of
an audio block is not finished at the required time,
the output data is not ready on time and has to be
discarded, leading to errors in the output signal.

The other kind of thread is simply called non-
realtime thread. Threads of this kind handle input
from the user interface, read and write files, re-
serve and free memory, communicate via network
and do anything else which is not related to audio
processing.

The timing of the audio callback function is
normally bound to the soundcard, which imposes
the mentioned realtime constraints. However, –
as described in section 4.6 – there is a special au-
dio backend which can be used for offline process-
ing. In this case, realtime-safety would not be
needed anymore. The thread running the audio
callback function should nevertheless be consid-
ered as realtime thread. Audio algorithms should
be backend-agnostic and assume to be potentially
used in a realtime context.

In interactive applications, information must be
transferred from the non-realtime thread to the
realtime thread. This should not be done by writ-
ing to and reading from the same memory loca-
tion in both threads, respectively, because this

3http://tu-berlin.de/?id=ssr

can lead to data corruption. A mutex cannot
be used either, because this would be realtime-
unsafe. Instead, a lock-free queue is used (see
section 4.3).

If more memory is needed for audio processing
or if unused memory shall be freed, this may not
be done in the realtime thread. Therefore, if new
memory is needed, it is allocated and initialized
in the non-realtime thread and then a pointer to
the new data is transferred to the realtime thread
in a realtime-safe way. This is realized by means
of the realtime-safe list described in section 4.4.

4 Components

The framework is implemented in C++ using the
Standard Template Library (STL). Many struc-
tural decisions are made at compile time to avoid
unnecessary runtime overhead. In most cases,
generic programming is preferred over classic
object-oriented programming. Dynamic polymor-
phism is only used where actually needed.

The framework does not define a special data
type for audio data, only the audio backends (see
section 4.6) define a sample type (in most cases
– but not necessarily – float). Within the audio
algorithms themselves, arbitrary data types can
be used.

The following sections describe the main com-
ponents of the framework.

4.1 Lock-free Ringbuffer

The key component to make the framework
both realtime-safe and thread-safe is a lock-
free ringbuffer. It is available as the class
LockFreeFifo<Command*> and it is only thread-
safe for single-reader/single-writer access. This
means that only one single thread is allowed to
use the push() function to write data to the ring-
buffer and only one other thread is allowed to use
the pop() function to retrieve data from the ring-
buffer. It has to be ensured by the programmer
that each function is only used in the appropriate
thread.

4.2 Command Queue

Two instances of the lock-free ringbuffer are
used in the CommandQueue, a lock-free queue for
arbitrary user-defined commands which can be
defined by implementing the member functions
execute() and cleanup().

184

Every command object is created and initial-
ized in a non-realtime thread, all necessary mem-
ory is allocated at this time. A pointer to the fully
constructed command object is pushed to an in-
stance of LockFreeFifo<Command*>. The main
realtime thread periodically (usually once per au-
dio block) processes all items from this queue
with the function process_commands(), which in
turn invokes the virtual execute() function on
each command object. Of course, the execute()
function is not allowed to use any realtime-unsafe
functions. After execution, it is not safe to deal-
locate the memory used by the command object
within the realtime thread. Therefore, the com-
mand object is pushed into another instance of
LockFreeFifo<Command*> to be deallocated in
the non-realtime thread. Before that, the vir-
tual cleanup() function is called from the non-
realtime thread.

To add a command to the CommandQueue, the
member function push() is used, the function
wait() can be used to wait until the command is
actually executed and cleaned up. No actual com-
mands are defined by the CommandQueue, only the
abstract base class Command from which arbitrary
commands can be derived as long as they pro-
vide an implementation for the execute() and
cleanup() member functions.

The transport of information from the realtime
thread to the non-realtime thread also has to be
triggered by the latter. For that, commands can
be defined which query the information in the
execute() function and provide it to the non-
realtime thread in the cleanup() function.

Typically, an application holds exactly one in-
stance of CommandQueue which is responsible for
all the communication to and from the realtime
thread. If there are several non-realtime threads
– for example for a graphical user interface and
a network interface which work in parallel – ac-
cess to the CommandQueue has to be locked with a
mutex. This is not done automatically.

4.3 Thread-safe Data Access

To avoid parallel writing and reading at the
same memory location from a realtime and
a non-realtime thread, respectively, the class
SharedData<T> can be used. It wraps a single
variable of any standard or user-defined type. In-
ternally, it uses a reference to a CommandQueue to

push a custom Command which holds a copy of the
value that is assigned to the actual variable in the
execute() function.

4.4 Realtime-safe List

To handle a dynamic number of audio channels,
the realtime-safe data structure RtList<Item*> is
used. In the non-realtime thread, list elements are
created, initialized and added to the list with the
add() function and elements are removed with the
rem() function, whereby the deallocation of any
memory also happens in the non-realtime thread.
Communication between threads is again handled
by means of the CommandQueue. In the realtime
thread, the relevant functions of a std::list can
be used, namely begin(), end(), empty() and
size().

When adding items to the RtList, ownership is
passed to the list. That means the responsibility
to destroy the object at an appropriate time is
transferred to the list and user code may not call
delete on an object owned by an RtList.

4.5 MIMO Processor

The class MimoProcessor is the base class for
the signal processing part of an application.
When deriving from MimoProcessor, several tem-
plate arguments have to be used. The first
one is the deriving class itself. This C++ id-
iom is called Curiously Recurring Template Pat-
tern (CRTP) [Coplien, 1995] and it is used to
achieve compile-time polymorphism. The rest
of the template arguments are so-called policy
classes. The user can choose from a given set
of policies and even implement new ones. This
programming strategy is called policy-based class
design [Alexandrescu, 2001]. One of the policies
selects the audio backend which is described in
section 4.6.

The MimoProcessor incorporates one instance
of CommandQueue for all realtime-safe and thread-
safe operations. Instances of RtList and
SharedData can be used with this queue.

4.6 Audio Backends

The MimoProcessor base class is not limited to
a specific audio backend. By means of policy-
based design, the audio backend can be specified
as template argument at compile time.

Currently, the JACK Audio Connection Kit

185

(JACK)4 is supported (jack_policy), support
for PortAudio5 is underway and further audio
backends can be added easily.

A special policy class is the pointer_policy,
which can be used with any C or C++ program;
in this case, the audio callback function has to
be called explicitly. This can be used in a re-
altime context, for example in an External for
Pure Data6 and Max 7 (utilizing the flext library).
However, it can also be used in a non-realtime
context for offline processing, for example in a
MEX-file (shared library) for Matlab8 and GNU
octave9 or in an application which reads all inputs
from a multichannel audio file and writes all out-
puts to another multichannel file. Example code
is available for all mentioned applications.

4.7 Crossfade
When doing block-based processing, the input sig-
nal is divided into consecutive blocks of audio
data and it is assumed that all parameters of the
algorithm are constant during one audio block.

Parameter changes only happen between blocks
and this can very often lead to audible artifacts
due to discontinuities in the resulting output sig-
nal. One way to reduce these errors is to calcu-
late each block two times – once with the param-
eters of the previous block and once with the cur-
rent parameters – and make a crossfade between
the two resulting blocks. With large parameter
changes and small blocksizes there may still be
audible artifacts, but in most cases the transitions
become inaudible.

The described crossfade functionality is built
into the MimoProcessor. Only if parameters
change – as noticed by the CommandQueue – the
specified audio algorithm is processed twice and
a crossfade is done automatically. In static sce-
narios the overhead of crossfading may not be
wanted. Therefore, the whole functionality can
be switched off at compile time.

5 Parallel Processing

The desired audio processing algorithm has to be
organized in several lists of type RtList<Item*>.

4http://jackaudio.org
5http://portaudio.com
6http://puredata.info
7http://cycling74.com/products/max
8http://mathworks.com/products/matlab
9http://gnu.org/software/octave

These lists hold polymorphic base class pointers
and allow the execution of the virtual function
Item::process() on each list item. To do the
actual signal processing, item classes have to be
defined – derived from the class Item – and they
have to implement their signal processing algo-
rithms in the process() function. By implement-
ing the list items and assembling them into lists,
the programmer can establish the overall audio
processing graph. The different lists can be seen
as stages of the algorithm. Lists are processed
one after each other, items within one list are pro-
cessed in parallel by several threads.

The process() function is called from a real-
time thread and has to fulfill the following con-
straints. It may write data only to places where
the item has exclusive access, either in mem-
ber variables of the object itself or in dedicated
memory areas elsewhere. It may read data from
any of the RtLists except the list where its ob-
ject belongs to, because other list elements could
be written to at the same time by another real-
time thread. The amount of memory used by a
list item may not change during its lifetime. It
must be allocated in the non-realtime thread and
when the item is removed, its memory must also
be deallocated in the non-realtime thread. This
happens automatically if the add() and rem()
functions of the RtList are called from the non-
realtime thread.

Especially in applications with a dynamic num-
ber of channels, RtLists can be iterated over by
means of the begin() and end() functions which
reflect possible changes in the length of the list.
In less dynamic scenarios, references to other ob-
jects – as long as they will not be removed during
runtime – can also be specified at initialization of
the list item.

Parallel processing is achieved by automatically
executing different process() functions in differ-
ent realtime threads which can run in parallel on
multi-processor/multi-core computers. The num-
ber of realtime threads can be specified by the
user, according to the available resources, and this
number does not change during runtime. If N
threads are requested, N−1 worker threads are
created. The main audio thread – the one where
the audio callback function is called from – is nor-
mally created and controlled by the audio back-
end.

186

The distribution of list elements to the audio
threads is very simple. The main audio thread
gets every N -th item starting with the first, the
first worker thread gets every N -th item start-
ing with the second and so on until the (N−1)th
worker thread, which gets every N -th item start-
ing with the N -th. This very basic scheduling
mechanism may not be the best choice for arbi-
trary audio processing graphs, but it works quite
well for the targeted application areas. It works
best if the length of the lists is much bigger than
the number of threads and if the amount of work
done in the process() function is not too differ-
ent in all items of a given list.

The main audio thread and the worker threads
are synchronized with semaphores. Each worker
thread does a very simple cycle of operations re-
peatedly. It waits until signaled from the main
audio thread by a semaphore and then processes
all items of the current list which are chosen by
the aforementioned scheduling algorithm. When
finished, it signals to the main audio thread and
waits again until the next iteration. The cycle of
the main audio thread can be defined by the user.
Typically, several lists are processed one after
each other with the function _process_list().
Within this function, the specified list is set as
current list, the worker threads are signaled via
their semaphores to start processing and the main
audio thread itself then also processes the appro-
priate items of the current list. Afterwards, the
main audio thread waits until all worker threads
have signaled that they are done with their parts
of the list.

6 Additional Components

As mentioned in the introduction, all presented
components are part of the Audio Processing
Framework (APF). Additionally, several other
components are included in the APF, among them
a delay line, a partitioned convolution engine (us-
ing the FFTW library10), several specialized iter-
ator classes, math operations and many helper
functions. For a full list of features and more
detailed information see the online documenta-
tion11.

10http://fftw.org
11http://dev.qu.tu-berlin.de/projects/apf

h1,1(t)

h1,2(t)

h1,3(t)

h1,4(t)

input 1

h2,1(t)

h2,2(t)

h2,3(t)

h2,4(t)

input 2

+ output 1

+ output 2

+ output 3

+ output 4

Figure 1: Example MIMO system with 2 input chan-
nels and 4 output channels. In the general case of N
inputs and M outputs, N×M filters are needed.

7 An Example

Figure 1 shows a generic MIMO system with a
filter between each input and each output. The
main objective of the programmer is to identify
which parts of the algorithm shall form separate
objects, how they depend on other objects and
which of these objects can be processed in paral-
lel. In the example, three kinds of objects come to
mind – the input channels, the filters and the ad-
ditions (which can be combined with the output
channels).

To implement the filter class, the convolver
which was mentioned in the previous section can
be used. A filter object is always bound to one
specific input channel, so a reference can be spec-
ified at initialization and stored within the filter
object. Because of that, the process() function
of the filter object does not need to iterate over
the whole list of inputs but can rather get the
input data directly via the internal reference to
the corresponding input channel. Input data is
processed by the convolver and the result is writ-
ten to a member variable inside the filter object.
Apart from these processing instructions, the fil-
ter object must also provide means for the fol-
lowing stages of the algorithm to read the output
data of the filter. This is normally done by pro-
viding (read-only) begin() and end() functions
which return iterators to the data. Of course, the
filter class has to be derived from the class Item

187

so that all filter objects can be added to a list of
type RtList<Item*>. Having a dynamic number
of inputs is no problem. Whenever an input is
added, a whole set of filter objects – one for each
output channel – has to be created an added to
the list at once. To safely switch filter coefficients
during runtime, the CommandQueue is used.

The other class which has to be defined in this
example is for the addition, which can be com-
bined with the output channels. Each addition
corresponds to one unique output channel. The
process() function of the addition object must
iterate over all filter objects and find out which of
the filter outputs must be added. Therefore, each
filter object must contain a flag of some kind to be
associated with a certain output channel. If the
number of inputs is supposed to change dynam-
ically, this information cannot be stored in the
addition object itself because this would require
dynamic memory allocation which is not allowed
in a realtime context. Once all relevant filter data
is added, the result can be written directly to the
corresponding output.

Most of the work is done in the process()

functions. The only thing left to do is to call
_process_list() for each of the defined lists in
the main audio callback function.

8 Acknowledgements

Thanks to Till Rettberg for many helpful sug-
gestions and discussions. This work was partly
funded by German Research Foundation (DFG)
grant FOR 1557.

References

Andrei Alexandrescu. 2001. Modern C++ De-
sign: Generic Programming and Design Pat-
terns Applied. Addison-Wesley.

James O. Coplien. 1995. The column without
a name: Curiously recurring template patterns.
C++ Report, 7(2):24–27.

Matthias Geier, Jens Ahrens, and Sascha Spors.
2008. The SoundScape Renderer: A unified
spatial audio reproduction framework for arbi-
trary rendering methods. In 124th Convention
of the Audio Engineering Society.

188

Using the BeagleBoard as hardware to process sound
RAFAEL VEGA

El Software Ha Muerto
Medellín, Colombia

rvega@elsoftwarehamuerto.org

DANIEL GÓMEZ
Grupo Leonardo, Universidad ICESI

Cali, Colombia
dgomez@icesi.edu.co

Abstract

This paper describes the implementation of diverse
layers of code to enable an open source embedded
hardware device to run audio processing pure data
patches. The evolution of this implementation is
reviewed describing different approaches taken by
the authors in order to find optimal software and
hardware settings. Although some problems are
detected when running specific patches, the system
has a conjunction of features that are relevant for the
floss audio community.

Keywords

Beagleboard, Puredata, sound processing, sound
synthesis, opensource.

1 Introduction

Although there is a large number of open-source
software tools for working with audio, there are few
open-hardware alternatives for musical applications.
There is a need to explore the possibilities of open
hardware in conjunction with open source software
to close the gap between musicians, music producers
and the hardware used to create their sounds. It is
foreseeable that the closer the sound workers get to
the tools they use, the more expressiveness and
creativity that can be achieved.

In the Latin American context, there has been an
evolution of software design for musical and sonic
scenarios along with different MIDI or OSC
interfaces attached to laptops [5] [6] [12]. This
experimental and DIY tools are designed and used in
specific concert or installation situations. Due to
their low cost and ease of production we have
wondered whether these tools could be a solution for
musicians that can barely afford a commercial

electronic musical instrument. This project is the
first step to explore such platform.

This paper describes the diverse approaches taken to
build a stable platform for processing and
synthesizing audio signals using an open source, low
cost, portable computer such as the BeagleBoard. To
achieve this goal, diverse software APIs were
explored and the Linux stack, libpd [3] and JACK
server were chosen for the current implementation.
We present the work so far which is a DSP engine
that can parse pd patches and run in a BeagleBoard.
Although the project should include physical
interfaces that allow for changing parameter values at
run time, these features have not been implemented
at this early stage.

2 Related work

Some open source tools for musicians exist with
varying price ranges, programmability and scope. A
common approach has been to develop hardware and
firmware and release it as GPL or CC, so that users
are able to experiment with the assembly, and
possible tweaking of hardware and software. This
approach is taken by projects such as Meeblip [7] a
diy monophonic synthesizer that works with an
atmega chip; Shruthi-1 [8] is another open source
(GPL firmware and CC schematics) that runs on a
custom mother board. The system that is closer to
our approach is Satellite CCRMA [1] where a
platform is designed to host PureData under a Linux
architecture in the BeagleBoard. Their motivation is
to support the creation of new instruments and
installations guided by low cost, portability and an an
existing community of users such as Pure Data
community. Their project is aimed to enhance the
longevity of new instruments and to become a
possible standard platform for further developments.
Although the hardware and software used are the

189

same as in our project, our approach differs on the
methodology of the implementation described
further.

3 Our Work

PureData was chosen as the language for the
description of DSP processes for several reasons: It
has been greatly adopted by programmers, sound
designers, musicians and tinkerers to implement their
audio processing algorithms with many of them
using it on-stage (running on a laptop computer). It
has an easier learning curve than text-based
programming languages such as C++ and it's more
suited for rapid implementation of algorithms than
compiled languages. Finally, there is a large amount
of patches already created by it's user community
that can be leveraged by anyone for their creations.

On the hardware side, an inexpensive, portable and
powerful computer was needed and having an open
design would allow for future enhancements or
alterations to the board. Some options such as the
PandaBoard were considered but the open-ness, price
range and community around the BeagleBoard made
it the option of choice. The BeagleBoard project was
started by a group of Texas Instruments employees in
association with Digi-Key with open-source
development in mind and is now supported by a very
active community and available from a number of
international distributors.

The decision was made to write a C++ program
called XookyNabox that would parse a PD patch
using an available library and one of the available
Linux API's to access the input and output audio
buffers. Three libraries were considered:
PDAnywhere [4] [9], ZenGarden [11] and libpd [10].
PDAnywhere was discarded right away because of
the fact that it uses fixed point arithmetic and the
lack of active development around it. After taking a
quick look at the implementation and API's for
ZenGarden and libpd, ZG was chosen because the
readability of the code and it's ease for embedding
into C++ (and objective-C) projects. This gave way
to the first version of XookyNabox.

The lower level, blocking ALSA API was used to
interface with the hardware, along with a number of
very simple PD patches. It ran but some
synchronization issues were found where the sound
output for simple oscillators was rendered at different
frequencies than expected. The decision was made
then to switch the ALSA API with the higher level
and callback based API of PortAudio. This approach
solved the synchronization issues but it was required
that the program ran as a daemon so that it could be
launched at startup in the BeagleBoard without user
interaction. This became an issue and the the
architecture of the program was changed again.

The next version of XookyNabox still used
ZenGarden and was implemented as a JACK client.
This time it ran as a daemon without issues but once
slightly more complicated patches were used, some
of the PD blocks did not run in the BeagleBoard.
This, and the fact that many vanilla PD blocks were
not implemented in ZenGarden, showed the
necessity to use a more robust PD implementation.
Enter libpd.

The final version of XookyNabox is implemented as
a JACK client and instantiates libpd.

4 The approach that worked

A lightweight, minimalistic Linux distribution that
was able to run on the BeagleBoard was needed and
Angstrom Linux fit the bill [13]. Also, JACK, ALSA,
and the JACK devel libraries are available pre-
compiled in the default package repositories for
Angstrom.

The Linux system was configured to start
automatically at runlevel 3 (without a GUI) and
JACK was set up to launch at system startup with a
sample rate of 48KHz and a buffer size of 256
samples as suggested by the BeagleBoard user
community:

jackd -d alsa -p 256 -n 4 -P hw:0 -C hw:0 -S -r 48000
&;

190

Image 1. Block diagram of the system.

Here's an overview of the implementation of the
XookyNabox code. The interesting portion is the
process function where mono input buffers from
JACK are combined into an interleaved stereo buffer,
it is then fed into libpd and the reverse process is
applied to libpd's output buffer using a simple
technique described in the Audio Programming Book
by Boulanger and Lazzarini [2]:

�������������������������

���������������

���

��

��������������

���

��

�����������

�����������

�����������

�����������������������������������

��������������������������������

����������������

����������������������

������������������������������

�������������

�����������������

�����

�������������

�

�����������������������������������

���������

����������������������������������

����������������������

��������������������������������������

����������������������

�

������������������������

������������������������

������������������������

�����������������

��

�������������������������

���

�

���������������������������

���������������������������

���������������������������

�����������������������

�����������������������������������

��������������������

���������������������������������������

������������

�

��������������������������

��������������������������

��������������������������

��

������

���

�������

��������������������������������

��������������������������������������

��������������������������������

��������������������������������������

���������������������������������

��������������������������������������

���������������������������������

��������������������������������������

��

������������

���������������������

��

��������������������������

������������������������������

��������������

��������������

�����

�����������������

���������������������������������������

��

����������������������������

��������������������������������

���������������

���������������

�����������������

�

191

It is worth mentioning that an iOS version of
XookyNabox was written successfully as a
CocoaTouch application that uses libpd and the
CoreAudio API's.

5 The patches

The system was tested with basic signal
processing and sound synthesis patches constructed
exclusively using objects from pd-vanilla. The pd
patches were transferred to the SD card that stores
the file system for the Linux installation on the
Beagle Board. Once the system is powered, the
XookyNabox code fetches a file called “patch.pd”
and tries to load it. We had successful experiences
with some patches, but on the other hand, others did
not load at all. The tested patches had no
interactivity, they were just single processes that
either generated or processed sound in an automatic
fashion.

The list of successfully loaded processing patches
includes ring, fm and am modulation, filtering and
clipping. Successful synthesis patches include
additive, subtractive and FM modulation, although
envelopes were impossible to create. The problem
with controlling the amplitudes over time was a crash
of the XookyNabox program that occurred when a
patch tried to set the phase of an osc~ object to any
specific angle. The same problem occurred when
using basic objects for creating envelopes (line,
line~, vline~ and delay) so a limit to the testing
emerged due to system failures.

The first debugging process was to make a list of
objects that, if included, made patches crash, but, at
the time of writing this paper, we just got started
with checking for the different errors that came form
the pdlib when loading the mentioned objects. At
this point there is no clarity on the cause of the
program crash.

6 Conclussions and future work

At the time of writing the paper, there are still
complications in the loading of some pd patches
related with specific connections and objects. This
complications are below the XookyNabox code and
go deeper into libpd in combination with the other
JACK, ALSA and Angstrom settings. The actual
possibilities of the system are limited and a thorough
debugging has to be made.

Paralell to a debugging phase, the development of an
interactive electronic bridge to allow communication
of electronic sensors (accelerometers,
potentiometers, sliders, buttons, etc) to control the
patch in real time is a next step in the project.

Although there are some problems to solve, the use
of pd patches in a portable, light and relatively low
cost computer makes foreseeable a new generation of
easily programmable customized audio hardware.

7 Acknowledgements

This paper is the consequence of a long term
collaboration within different groups of enthusiasts
and academics namely the AudioProgramming group
in Medellín, the ACORDE research group, the
LEONARDO research group, Julián Brolin Giraldo
at the Un-Loquer hackerspace and the invaluable
support from Juan Reyes.

References

[1] Edgar Berdahl, and Wendy Ju (2011) “Satellite
CCRMA: A Musical Interaction and
SoundSynthesis Platform” Proceedings of the New
Interfaces for Musical Expression congreess 30
May–1 June 2011, Oslo, Norway.

Available online:
https://ccrma.stanford.edu/~eberdahl/Papers/NIME
2011SatelliteCCRMA.pdf

[2] Richard Boulanger and Victor Lazzarini (2010)
“The Audio Programming Book” The MIT Press,
2010.

192

[3] Peter Brinkmann, Peter Kirn, Richard Lawler,
Chris McCormick, Martin Roth, Hans-Christoph
Steiner “Embedding Pure Data with libpd” Pure
Data Convention Weimar, Berlin 2011.

[4] Gunter Geiger (2003) PDa: Real Time Signal
Processing and Sound Generation on Handheld
Devices. Proceedings of the 2003 International
Computer Music Conference (San

Francisco), International Computer Music
Association, 2003.

[5] Pérez, J., & Jaramillo, J. (2011). MEII: Sistema
interactivo para promover la construcción
expresiva musical en niños de 4 a 8 años. Revista
S&T, 9(17), 55-66. Cali: Universidad Icesi

Web Resources

[6] Juan Reyes, Sonare,
https://ccrma.stanford.edu/~juanig/artes/sonare.ht
ml

[7] meeblip http://meeblip.noisepages.com
[8] shruthi-1 http://mutable-instruments.net/shruthi1
[9] Gunther Geiger, PDa, http://pd-

anywhere.sourceforge.net
[10] Peter Brinkmann, Peter Kirn, Richard Lawler,

Chris McCormick, Martin Roth, Hans-Christoph
Steiner, libpd, https://github.com/libpd/libpd

[11] Zen Garden
https://github.com/mhroth/ZenGarden

[12] Leonrado Parra, FatChorizo,
http://youtu.be/upDvvV0rGuM

[13] Linux Angstrom http://www.angstrom-
distribution.org

193

194

