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Introduction 
While preparing for my first multichannel piece I became aware of the need for more 
software tools designed in response to the kind of spatial thinking grown directly out 
of working with electroacoustic material. (Or at least electroacoustic as understood by 
a number of composers/researchers.) In this respect, one of the least explored areas in 
multichannel software development is ‘circumspectral’ diffusion.  

In his 2007 paper ‘Space-form and the Acousmatic Image’, Smalley refers to 
‘circumspectral spaces’ as resulting from the combination of ‘spectral space’ and 
‘circumspace’ - i.e. how the spectral content of a sound is distributed within the 
listening space to create a sense of ‘spatial scale and volume’ [1].  As he elaborates:       
 

How spectral space in itself is distributed contributes to the sensation of 
height, depth, and spatial scale and volume. I can create a more vivid 
sense of the physical volume of space by creating what I shall call 
circumspectral spaces, where the spectral space of what is perceived as a 
coherent or unified morphology is split and distributed spatially [2]. 

 
He goes on to discuss the concept in relation to his own compositions:  
 

In my music, for example, circumspectral approaches have been 
particularly effective in imparting spatial volume to attack-resonance 
spectromorphologies, both to the attack phase and to prolonged, 
fluctuating, resonance-based forms, giving the impression that the 
listener is inside the resonance [3]. 

 
I. Background: Spectral Space  
My research and compositional activities have for the most part been focused around 
the concept of spectral space - i.e. the impression of spatiality as attributed to the 
continuum of spectral frequencies [4]. Needless to mention that spectral space is not 
always pertinent to the listening experience. For instance, with clearly recognisable 
sound sources, the experience of spectral spatiality, which has a strong vertical bias, 
seems to be pushed into the background and instead one becomes aware of the 
suggested spatial settings of the sources themselves (i.e. ‘source-bonded’ spaces [5]).   
In general, sounds without direct extrinsic references encourage the listener to follow 
the spectromorphological attributes more closely: shapes and contours that articulate 
the domain of spectral frequencies. In this context the mental representation of 
‘source’ and spectromorphology converge and spectral domain takes on spatial 
characteristics in our listening imagination: it becomes the dimension that is occupied 
by sound-shapes. Nevertheless, this does not suggest that spectral spatiality is 
divorced from source-bonded spaces. In a sense, spectral space can be seen as a 
schema abstracted from certain types of source-bonded spaces. Perhaps the vertical 
spatiality of the spectral domain is heightened by spectral and morphological 



 

 

characteristics that bear similarities with ecologically familiar sources - e.g. a high-
frequency sound made up of short morphological units may evoke the utterance or [on 
a transmodal level] visual behaviour of smaller, sky-bound creatures. A striking 
example of this source-bonded nature of spectral space can be seen in the coda section 
of Risset’s Songes (starting at 6’.40”), where spectral space is reduced to its bare 
skeletal frame - a low, sustained drone supporting more animated higher frequency 
materials [6]. The spectral and perspectival motion of the higher material, coupled 
with its intrinsic spectral structure and morphology, clearly outlines a sort of birdlike 
flight or drift. Thus source-bonded, perspectival and spectral spaces work together to 
create a more vivid sense of spatial height and depth.       
 
More on Circumspectral Space  
In light of the above, my compositional interest in circumspectral sound diffusion is 
obvious. A similar method is used in certain diffusion systems where different types 
of loudspeakers are used for their characteristic sound quality (e.g. GRM’s 
Acousmonium) [7]. I have often diffused my works on loudspeaker orchestras that 
included overhead speakers. The signal is often passed through a high-pass filter 
before being routed into the overhead speakers. This allows one to exaggerate the 
sense of elevation in sounds that are already somehow elevated due to their spectral 
space occupancy and/or source-bonded characteristics. Naturally in a multichannel 
context one has far more control over the perspectival distribution of the spectral 
content during the composition stage. Although with careful mixing (e.g. in a DAW) 
one can certainly explore circumspectral spaces, it seem more appropriate to take 
advantage of a powerful audio-programming software like Csound to reduce the 
manual labour involved in such a task, whilst increasing the level of control offered to 
the composer. Ultimately, the intention is to create an environment that allows one to 
play with the ‘sculpting’ of spectra in circumspace in an intuitive and creative 
fashion.  
 
On Reflection 
Before explaining the Csound code and giving an overview of the Max/msp interface 
we must consider further consequences of the tool imagined above.    
 Firstly, the conventional notion of ‘spatialisation’ of a source within listening 
space is not strictly relevant here. Circumspectral diffusion involves the distribution 
of the spectral content of a unified spectromorphology - i.e. spreading the spectrum of 
a uniform sound (not to use the term ‘source’) in space, be it a single ‘figure’, a 
complex texture, or a combination of the two. Consequently, circumspectral panning 
is not used to position or move single sources around the audience; to a certain extent 
the aesthetic attitude that leads to the concept of circumspectral space (as defined by 
Smalley) contradicts the notion of spatial composition as arbitrary circumspatial 
positioning and movement of input sounds. In circumspectral diffusion, perspectival 
space becomes subordinate to spectral space, or rather, perspectival space is utilised 
to enhance the intrinsic spatiality of the sonic material - in this sense space is not seen 
as an empty canvas or container, but as an intrinsic quality inherent in the material.  
 Furthermore, perspectival motion-trajectories are automatically formed as a 
result of temporally stable distribution of spectral content of a sound that is itself 
characterised by dramatic spectral motion. To test this idea we can imagine that the 
frequency continuum is mapped onto the circumspatial domain defined by an array of 
loudspeakers, in such a way that the lower frequencies in the input sound are ‘panned’ 
at 0° and the increasing frequencies are contiguously arranged in a clockwise circular 



 

 

fashion around the listener. So the very highest frequency (e.g. 20kHz) takes us back 
to 0° in a full clockwise circle.  In this case, a test sine-tone that glissandos from 20Hz 
to 20kHz will circle the listener in a clockwise fashion and finally terminate at 0° 
‘position’ - a typical circular panning motion without any actual automation [8]! 
 
 
 

Interesting circumspectral settings can be created by using complex 
spectromorphologies and creating a less straightforward circumspatial mapping of the 
spectral components. I have for instance had interesting results from noise-based 
sounds that were processed with numerous filter-sweep-like transformations to create 
broad spectral undulations. Even more interestingly, one can use stereo input sounds 
where the filtering motion is coupled with panoramic trajectories in the original stereo 
input. The stereo sound can then be mapped to the loudspeaker array as displayed 
above (the blue and red circles represent respectively the left and right channels of the 
input audio).  
 Note that the spectrum-to-circumspace mapping may be linear or logarithmic, 
the latter is perhaps more appropriate as the ear’s response to frequency increase and 
decrease is logarithmic. The above arrangement, used with the right sound material 

Figure 1. Circular panning motion. 
 



 

 

could lead to rather interesting spatio-morphological results in which the stereo image 
of the input sound is extended to a circumspatial image. Naturally the very lowest 
frequencies can seldom be localised so it would perhaps be more logical for the 
system to ignore the very lowest spectral frequencies (they can be mixed equally 
amongst the speakers) or even better, one could manually define the circumspectral 
mapping for each input sound - e.g. the most prominent spectral region in the sound 
can be panned to the front as to part-maintain the essence of the original stereo image.               
     
 
II. Implementation  
 
Concerning Sound Quality  
The flexibility of the pvs spectral processing opcodes in Csound have proven useful to 
me in the past, so this seemed like the best place to start in order to implement the 
aforementioned system. However, a note of warning must be included here. By its 
very nature, the faithful reproduction of an original signal from the data obtained by 
an FFT algorithm (as is the case with Csound’s pvanal and pvsynth) requires all the 
analysed FFT bins (each bin represents a very narrow frequency band). The omission 
or modification of the bins’ amplitudes and/or frequencies will introduce more or less 
noticeable artefacts (i.e. phase-related 
distortions), depending on the extent and 
nature of the modifications.  
 In this case we shall be using 
amplitude panning of the individual FFT 
bins and therefore artefacts will be 
introduced into the output signal as the bins 
become segregated and distributed amongst 
different speakers. (This implies the zeroing 
or attenuation of certain bins in different 
speakers - note that the bins exactly halfway 
between two speakers are mixed equally 
amongst two speakers.)  
 Optimal result is produced when no 
panning takes place and all the bins [from 
one input audio channel] are sent to one 
speaker. Obviously this defeats the point of 
implementing such a tool so we can 
minimise the unwanted artefacts by creating 
contiguous panning of the bins - the 
interface must encourage the user to make sure that the adjacent frequency bins are 
not drastically separated from each other in terms of their distribution amongst the 
loudspeakers. The random scattering of the bins within the circumspatial domain 
results in sounds with highly blurred transients (produced due to phase distortions), 
this may not be a problem for sustained morphologies but it will certainly be 
undesirable for transient materials. Using a hypothetical number of 16 bins, the right-
side of the above scenario will produce audible artefacts (blurring, added resonance or 
AM-like ringing) as the bins are drastically scattered within listening space, whereas 
the left-side will produce an acceptable result, even for more transient sounds. 
 

Figure 2. Panning of FFT bins. 
 



 

 

 
Summary  
In short, the algorithm works in the following steps: 

1. the input sound of each audio channel is analysed using pvsanal 
2. the resulting data for each analysis window is written to two tables (using 
pvsftw), one for frequency and one for amplitude. Each table index contains the 
amplitude or frequency for one analysis bin.  
3. the amplitude table is then passed unto a UDO, which recursively mixes the 
amplitude value for each bin among 6 tables (one for each loudspeaker), according 
to a ‘panning’ table that contains one panning value for each FFT bin at each index. 
4. the resulting 6 tables containing the amplitude values are then read frame-by-
frame and coupled with the original frequency values (we do not alter the 
frequencies). The product is written into a fsig stream (using pvsftr). 
5. finally the 6 output fsigstreams are re-synthesised and routed into the 
appropriate speakers.      

 
Implementation Part I  
The pvsftr opcode used to write the table data to an fsig stream requires an 
existing fsig stream.  Pvsinit may seem like an obvious choice here but in fact this 
opcode does not update the analysis frames, this would make the instrument 
dysfunctional [9]. A workaround is to use the pvsmix opcode to duplicate the fsig 
into 5 additional copies. These will later be overwritten by pvsftr so the exact 
content does not matter, as long as the fsig formats are identical. A simple re-
synthesis of the six fsig streams at this stage would give six identical outputs, 
naturally not the desired result.     
 
ain1 in  ;get input 
 
   denorm  ain1 ;denormalise    
     
fin1 pvsanal ain1,ifftsize,ihop,iwindow,iwindtype    
   
;initialise remaining fsigs  
fin2 pvsmix fin1, fin1     
fin3 pvsmix fin1, fin1 
fin4 pvsmix fin1, fin1 
fin5 pvsmix fin1, fin1 
fin6 pvsmix fin1, fin1 
 
 Next we must define the tables that are used to read and write the FFT data:   
 
ifreqin1  ftgen 0,0,iNumBins,-2,0       
iampin1   ftgen 0,0,iNumBins,-2,0 
iampout1  ftgen 0,0,iNumBins,-2,0 
iampout2  ftgen 0,0,iNumBins,-2,0 
iampout3  ftgen 0,0,iNumBins,-2,0 
iampout4  ftgen 0,0,iNumBins,-2,0 
iampout5  ftgen 0,0,iNumBins,-2,0 
iampout6  ftgen 0,0,iNumBins,-2,0 
 



 

 

 ifreqin1 is used to hold the frequency values that are common to all six 
resulting fsig streams (as we are not altering the frequencies directly).   
 iampin1 is used to hold the input amplitude values. And finally the iampoutN 
tables are used by the UDO to write the resulting mixed values in six separate 
locations. 
 Note that iNumBins, which defines the size of the ftables should be set to 
ifftsize/2+1 as defined at the top of the instrument (see csd). 
 In the interest of readability the names of the six output ftables (sited in the code 
snippet above) are passed to the UDO via a list held in a table:    
 
iampoutlist  ftgen 0,0,8,-2,iampout1,\ 
 iampout2, iampout3, iampout4, iampout5, iampout6 
 
Implementation Part II 
We can also take advantage of the tabmorph opcode in the UDO to have the 
possibility of morphing between two or more tables that hold the ‘panning’ values for 
the FFT bins. The code snippet below defines four panning tables and two control 
busses (the value of these busses are written from within the Max/msp interface) for a 
two dimensional morphing plane that allows the user to morph between the four 
tables. 
 
 
kmorph_y chnget "morph_y"  
kmorph_x chnget "morph_x"  
kmorph_y port kmorph_y, 0.01, i(kmorph_y)  
kmorph_x port kmorph_x, 0.01, i(kmorph_x)  
 
;define 4 tables to be morphed 
itabpan1     ftgen 1,0,iNumBins,-7,1, iNumBins,1 
itabpan2     ftgen 2,0,iNumBins,-7,1, iNumBins,1 
itabpan3     ftgen 3,0,iNumBins,-7,1, iNumBins,1 
itabpan4     ftgen 4,0,iNumBins,-7,1, iNumBins,1 
 
;pack them into a list 
ipantablist     ftgen 0,0,4,-2,\ 
   itabpan1, itabpan2, itabpan3, itabpan4       
 
 
Part III 
Next we write the input fsig to the already defined tables ifreqin1 and iampin1. 
Using the kflag output of pvsftw we ensure that the table operations in the UDO is 
only activated when the frame has been analysed and is ready for processing. Finally 
pvsftr is called six times to access the six output tables (written inside the UDO 
mechanism) and transfer their data into the predefined fsigs, before synthesising the 
result.   
 
 
;engin 
kflag0 pvsftw fin1, iampin1, ifreqin1 
if (kflag0 > 0) then ; only proc when frame is ready 
 



 

 

 circumspect iNumBins, iampin1, ifreqin1,\ 
  iampoutlist, ipantablist, kmorph_x, kmorph_y 
 
 pvsftr fin1, iampout1, ifreqin1 
 pvsftr fin2, iampout2, ifreqin1 
 pvsftr fin3, iampout3, ifreqin1 
 pvsftr fin4, iampout4, ifreqin1 
 pvsftr fin5, iampout5, ifreqin1 
 pvsftr fin6, iampout6, ifreqin1 
endif 
 
;synthesise output 
aout1 pvsynth fin1 
aout2 pvsynth fin2 
aout3 pvsynth fin3 
aout4 pvsynth fin4 
aout5 pvsynth fin5 
aout6 pvsynth fin6 
 
 outh aout1, aout2, aout3, aout4, aout5, aout6 
 
The User-Defined-Opcode  
In principle the UDO is rather simple. First we read the table names from 
iampoutlist and ipantablist and ensure that the output tables are cleared before 
writing the calculated bin values for the current frame.   
 
iclear   ftgen 0, 0, inumbins, -2, 0  
 
;unpack list of ampout tables 
iampout1 tab_i 0, iampoutlist   
iampout2 tab_i 1, iampoutlist 
iampout3 tab_i 2, iampoutlist 
iampout4 tab_i 3, iampoutlist 
iampout5 tab_i 4, iampoutlist 
iampout6 tab_i 5, iampoutlist 
;unpack list of pan tables 
itab1  tab_i 0, ipantablist   
itab2  tab_i 1, ipantablist 
itab3  tab_i 2, ipantablist 
itab4  tab_i 3, ipantablist 
 
 ;zero ampout tables before processing each frame 
 tablecopy iampout1, iclear   
 tablecopy iampout2, iclear 
 tablecopy iampout3, iclear 
 tablecopy iampout4, iclear 
 tablecopy iampout5, iclear 
 tablecopy iampout6, iclear 
 
We also create two temporary tables to hold the calculated morphed values for mixing 
the bins among the six tables. These ‘buffer’ tables allow us to hold the interpolated 
values between panning tables itab1, itab2 and itab3, itab4 and further interpolate 



 

 

between them. Consequently, this gives us a two dimensional morphing domain for 
morphing between four tables.     
 
itabbuf1  ftgen 0, 0, inumbins, -2, 0 
itabbuf2  ftgen 0, 0, inumbins, -2, 0 
 
 In the following section we recursively loop through the table indices (bin 
amplitude values) and the panning tables. After calculating the interpolated panning 
value for the current bin, the input amplitude of the bin is read and mixed among six 
tables, depending on the panning value. The six speakers are treated in pairs so for 
instance when the panning value is 0.5 the bin is mixed equally between speakers one 
and two. A value of 1.5 means equal mixing between speakers two and three, and so 
on. Also note that we are using a constant power panning law with square root curve, 
which can be changed if desired. 
 
kcount = 0 
loop: 
kout1 tabmorph kcount, kmorph_x, 0, 1, itab1, itab2 
kout2 tabmorph kcount, kmorph_x, 0, 1, itab3, itab4 
 tabw   kout1, kcount, itabbuf1 
 tabw   kout2, kcount, itabbuf2 
 
kpan tabmorph kcount, kmorph_y, 0, 1,\  
        itabbuf1,  itabbuf2    
kamp  tab   kcount, iampin 
 
  if (kpan<=1) then 
   kpan1 = sqrt(1-kpan) 
   kpan2 = sqrt(kpan) 
   tabw kamp*kpan1 , kcount, iampout1 
   tabw kamp*kpan2 , kcount, iampout2 
  elseif (kpan<=2) then 
   kpan = kpan - 1 
   kpan1 = sqrt(1-kpan) 
   kpan2 = sqrt(kpan)   
   tabw kamp*kpan1 , kcount, iampout2 
   tabw kamp*kpan2 , kcount, iampout4 
  elseif (kpan<=3) then 
   kpan = kpan - 2 
   kpan1 = sqrt(1-kpan) 
   kpan2 = sqrt(kpan)  
   tabw kamp*kpan1 , kcount, iampout4 
   tabw kamp*kpan2 , kcount, iampout6 
  elseif (kpan<=4) then 
   kpan = kpan - 3 
   kpan1 = sqrt(1-kpan) 
   kpan2 = sqrt(kpan)    
   tabw kamp*kpan1 , kcount, iampout6 
   tabw kamp*kpan2 , kcount, iampout5 
  elseif (kpan<=5) then 
   kpan = kpan - 4 
   kpan1 = sqrt(1-kpan) 



 

 

   kpan2 = sqrt(kpan)    
   tabw kamp*kpan1 , kcount, iampout5 
   tabw kamp*kpan2 , kcount, iampout3 
  elseif (kpan<=6) then 
   kpan = kpan - 5 
   kpan1 = sqrt(1-kpan) 
   kpan2 = sqrt(kpan)    
   tabw kamp*kpan1 , kcount, iampout3 
   tabw kamp*kpan2 , kcount, iampout1 
  endif   
 
kcount = kcount + 1 
if (kcount < (inumbins-1)) kgoto loop 
 
 
Interface 
A full description of the Max/msp GUI is beyond the scope of this article so I shall 
limit myself to the basic principle here. The source-code is available for those 
interested in further exploration.  
 The instrument described above is used for only one input channel, but as 
mentioned before my intention was to be able to use stereo inputs. This is achieved 
from within Max/msp by using two Csound~ objects, or rather two instances of 
Csound~ inside a poly~ object. The advantage of this method is that we can use two 
processors and achieve basic multithreading, one thread for each input channel [10]. 
Without this multithreading the instrument would be hardly usable in read-time due to 
the heavy duty UDO and the presence of six audio channels. 
 The interface uses a similar method as the GRM frequency warp plug-in 
described elsewhere [11] where the user can draw a function to fill the panning table. 
In this case the x axis denotes frequency and the y axis represents the panning value. 
The six speakers are mapped to values ranging from zero to six, where 0 = 6 (to allow 
a fully wrapped circle). The mapping can be linear or one of two alternative 
logarithmic scaling formulae (similar to the GRM tools interface) [12]. The user can 
fill four such tables for the right and left channels each (eight in total), and interpolate 
between their values by using a two dimensional controller [in the “MORPH” 
section].  
 The user also has the option of filling the panning tables with statistically 
generated values, complete with masking functions. The values can be either scattered 
(to produce the aforementioned blurring effect) or smoothly interpolated (using a low 
pass filter for the statistical values).  
 
 
 
 
 
 
 
 
 
 
 



 

 

  
 
 

 
Figure 3. A Max/MSP Graphical User Interface for Csound. 

 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Figure 4. Max/MSP Generated Panning Tables. 
 
 
 
III. Conclusion 
The current circumspectral tool is far from complete, many more possibilities remain 
to be explored (e.g. using a vbap algorithm with a 3-D speaker array that includes 
overhead speakers). I hope that in this paper I have managed to encourage the reader 
to carry out further explorations of this uncharted territory. Perhaps one explanation 
for the rarity of such software tools is the relative absence of literature concerning 
spatial thinking in acousmatic music, particularly approached from an aesthetic point 
of view. The aousmatic space is manifold and is created through the interaction of 
spectral, percpectival and source-bonded spaces: circumspectral spaces are born as a 
facet of this interactive context. Moreover, not all sounds are open to all manners of 
spatial [perspectival] configurations - e.g. low frequency, sustained 
spectromorphologies cannot be used to create coherent spatial trajectories, on the 
other hand high frequency particles or textures beg for spatial animation and even 



 

 

evoke spatial trajectories without any actual perspectival motion. At a recent concert 
at Belfast’s SARC it was brought to my attention (by a non-musician) that some of 
the pieces included twisting and turning sounds that circled the audience or flew 
overhead. In fact these were all stereo pieces and even in the hands of a skilled 
diffuser the manual creation of circular percpectival motion would have been near 
impossible - a clear indication that spectral motion alone can create the illusion of 
spatial motion.           
 All sounds occupy spectral space (which may or may not be perceptually 
pertinent, depending on the listening context) and all sounds suggest source-bonded 
spaces. Consequently, all sounds are by their very nature pregnant with an inherent 
spatiality. It is my view that there is far more to the composition of space [and spatial 
thinking in acousmatic music] than source-localisation and movement within listening 
space, often referred to as ‘spatialisation’. Although such technology is much needed 
and highly valuable for the acousmatic composer, from a compositional stance the 
notion of ‘spatialisation’ can potentially lead to a simplistic and sterile aesthetic 
approach that neglects the inherent spatiality of sounds - I prefer the terms 
‘perspectival projection’ to ‘spatialisation’. It is the understanding of this inherent 
spatiality and our perception of it that must guide the composition of space in 
acousmatic music. One could even go as far as to suggest that it is the power to create 
spatiality that marks acousmatic music as a unique form of artistic expression. We 
need more technological tools and research that enrich our ability to explore and 
sculpt sonic spatiality in an aesthetically sophisticated manner.                   
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