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1. PREFACE
Csound is one of the most widely acknowledged and long standing programs in the field of
audio-programming. It was developed in the mid-80’s at the Massachusetts Institute of
Technology (MIT) by Barry Vercoe.

Csound's history lies deep in the roots of computer music, however, as it is a direct
descendant of the oldest computer-program for sound synthesis, 'MusicN' by Max Mathews.
Csound is free, distributed under the LPGL licence and it is tended and expanded by a core of
developers with support from a wider community.

Csound has been growing for more than 25 years. There are few things related to audio that
you cannot do with Csound. You can work by rendering offline, or in real-time by processing
live audio and synthesizing sound on the fly. You can control Csound via MIDI, OSC, or via the
Csound API (Application Programming Interface). In Csound, you will find the widest collection of
tools for sound synthesis and sound modification, including special filters and tools for spectral
processing.

Is Csound difficult to learn? Generally, graphical audio programming languages like Pd, Max or
Reaktor are easier to learn than text-coded audio programming languages like Csound,
SuperCollider or ChucK. You cannot make a typo which produces an error which you do not
understand. You program without being aware that you are programming. It feels like patching
together different units in a studio. This is a fantastic approach. But when you deal with more
complex projects, a text-based programming language is often easier to use and debug, and
many people prefer programming by typing words and sentences rather than by wiring
symbols together using the mouse.

Note: Thanks to the work of Victor Lazzarini and Davis Pyon, it is also very easy to use
Csound as a kind of audio engine inside Pd or Max. See the chapter "Csound in other
applications" for further information. 

Amongst text-based audio programming languages, Csound is arguably the simplest. You do
not need to know anything about objects or functions. The basics of the Csound language are
a straightforward transfer of the signal flow paradigm to text.

For example, to make a 400 Hz sine oscillator with an amplitude of 0.2, a PD patch may look
like this:

The corresponding Csound code would be the following:

    instr 1
aSig      oscils    0.2, 400, 0
          outs      aSig, aSig
    endin

One line for the oscillator, with amplitude, frequency and phase input; one line for the output.
The connection between them is an audio variable (aSig). The first and last lines encase these
connections inside an instrument. That's it. 
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But it is often difficult to find out how you can do all the things in Csound that are actually
possible. Documentation and tutorials produced by many experienced users are scattered
across many different locations. This was one of the main motivations in producing this
manual: To facilitate a flow between these users and those willing to learn more about
Csound, offering both the beginner and the advanced user all the necessary information about
how they can work with Csound in any way they choose for creating their music.

Ten years after the milestone of Richard Boulanger's Csound Book the Csound FLOSS Manual
is intended to be a platform for keeping the information about Csound up to date and to offer
an easy-to-understand introduction and an explanation of different topics - not as detailed and
in depth as the Csound Book, but including new information and sharing this knowledge with
the wider Csound community.

Throughout this manual we will attempt a difficult balancing act. We want to provide users
with nearly everything important there is to know about Csound, but we also want to keep
things simple and concise to save you from drowning under the thousands of things that we
could say about Csound. At many points, this manual will link to other more detailed resources
like the Canonical Csound Reference Manual (which is the primary documentation provided by
the Csound developers and associated community over the years) and the Csound Journal
(edited by Steven Yi and James Hearon), which is a great collection of many different aspects
of Csound.

Good luck and happy Csounding! 

2. HOW TO USE THIS MANUAL
The goal of this manual is to give a readable introduction to Csound. In no way it is meant as a
replacement for the Canonical Csound Reference Manual. It is meant as an introduction-
tutorial-reference hybrid, gathering the most important information you need for working with
Csound in a variety of situations. At many points links are provided to other resources, such
as the official manual, the Csound Journal, example collections, and more. 

It is not necessary to read each chapter in sequence, feel free to jump to any chapter,
although occasionally a chapter will make reference to a previous one.

If you are new to Csound, the QUICK START chapter will be the best place to go to get started
with Csound. BASICS provides a general introduction to key concepts about digital sound vital
in the understanding of how Csound deals with audio. CSOUND LANGUAGE chapter provides
greater detail about how Csound works and how to work with Csound.

SOUND SYNTHESIS introduces various methods of creating sound from scratch and SOUND
MODIFICATION describes various methods of transforming sound that already exists within
Csound. SAMPLES outlines ways in which to record and play audio samples in Csound, an area
that might of particular interest to those intent on using Csound as a real-time performance
instrument. The MIDI and OSC AND WII chapters focus on different methods of controlling
Csound using external software or hardware. The final chapters introduce various frontends
that can be used to interface with the Csound engine and Csound's communication with other
applications (either audio applications like PD or Max, or general tools like Python or the
Terminal).

If you would like to know more about a topic, and in particular about the use of any opcode,
refer first to the Canonical Csound Reference Manual.

All files - examples and audio files - can be downloaded at www.csound-tutorial.net . If you use
QuteCsound, you can find all the examples in QuteCsound's Example Menu under "Floss Manual
Examples".   

Like other Audio Tools, Csound can produce extreme dynamic range. Be careful when you run
the examples! Start with a low volume setting on your amplifier and take special care when
using headphones. 
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You can help to improve this manual either in reporting bugs or requests, or in joining as a
writer. Just contact one of the maintainers (see the list in ON THIS RELEASE).

3. ON THIS RELEASE
In spring 2010 a group of Csounders decided to start this project. The outline has been
suggested by Joachim Heintz and has been discussed and improved by Richard Boulanger,
Oeyvind Brandtsegg, Andrés Cabrera, Alex Hofmann, Jacob Joaquin, Iain McCurdy, Rory Walsh
and others. Rory also pointed us to the FLOSS Manuals platform as a possible environment for
writing and publishing. Stefano Bonetti, François Pinot, Davis Pyon and Steven Yi joined later
and wrote chapters. 

For a volunteer project like this, it is not easy to "hold the line". So we decided to meet for
some days for a "book sprint" to finish what we can, and publish a first release.

We are happy and proud to do it now, with smoking heads and squared eyes ... But we do also
know that this is just a first release, with a lot of potential for further improvements. Some
few chapter are simply empty. Others are not as complete as we wished them to be.
Individual differences between the authors are perhaps larger as they should.

This is, hopefully, a beginning. Everyone is invited to improve this book. You can write a still
empty chapter or contribute to an exsting one. You can insert new examples. You just need to
create an account at http://booki.flossmanuals.net.  Or let us know your suggestions.

We had fun writing this book and hope you have fun using it. Enjoy!

 

Berlin, march 31, 2011

                         Joachim Heintz     Alex Hofmann     Iain McCurdy 

                                

            jh at joachimheintz.de     alex at boomclicks.de     i_mccurdy at hotmail.com 

4. License
All chapters copyright of the authors (see below). Unless otherwise stated all chapters in this
manual licensed with GNU General Public License version 2

This documentation is free documentation; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
documentation; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301, USA.

AUTHORS
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Copyright (C) 1989, 1991 Free Software Foundation, Inc. 
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA 

Everyone is permitted to copy and distribute verbatim copies 
of this license document, but changing it is not allowed. 

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to
share and change free software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation's software and to any
other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get it if
you want it, that you can change the software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors'
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The "Program", below, refers to any such program or work, and a "work based on the
Program" means either the Program or any derivative work under copyright law: that is to
say, a work containing the Program or a portion of it, either verbatim or with modifications
and/or translated into another language. (Hereinafter, translation is included without limitation
in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends on
what the Program does.
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1. You may copy and distribute verbatim copies of the Program's source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer
to this License and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a notice
that there is no warranty (or else, saying that you provide a warranty) and that users
may redistribute the program under these conditions, and telling the user how to view a
copy of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print
an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of
derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution,
a complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,
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c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the operating system
on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled to
copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients' exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then as
a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License
would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply
in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system;
it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.
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8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published by
the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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5. DIGITAL AUDIO
At a purely physical level sound is simply a mechanical disturbance of a medium. The medium
in question may be air, solid, liquid, gas or a mixture of several of these. This disturbance to
the medium causes molecules to move to and fro in a spring-like manner. As one molecule
hits the next, the disturbance moves through the medium causing sound to travel. These so
called compression and rarefactions in the medium can be described as sound waves. The
simplest type of waveform, describing what is referred to as 'simple harmonic motion', is a
sine wave.

 

Each time the waveform signal goes above 0 the molecules are in a state of compression
meaning they are pushing towards each other. Every time the waveform signal drops below 0
the molecules are in a state of rarefaction meaning they are pulling away from each other.
When a waveform shows a clear repeating pattern, as in the case above, it is said to be
periodic. Periodic sounds give rise to the sensation of pitch. 

ELEMENTS OF A SOUND WAVE 

Periodic waves have four common parameters, and each of the four parameters affects the
way we perceive sound.

Period: This is the length of time it takes for a waveform to  complete one cycle. This
amount of time is referred to as t

Wavelength(λ): the distance it takes for a wave to complete one full period. This is 
usually measured in meters.

Frequency: the number of cycles or periods per second. Frequency is measured in
Hertz.  If a sound has  a frequency of 440Hz it completes 440 cycles every second.
Given a frequency, one can easily calculate the period of any sound. Mathematically, the
period is the reciprocal of the frequency (and vice versa). In equation form, this is
expressed as follows.

 Frequency = 1/Period         Period = 1/Frequency 

Therefore the frequency is the inverse of the period, so a wave of 100 Hz frequency has
a period of 1/100 or 0.01 secs, likewise a frequency of 256Hz has a period of 1/256, or
0.004 secs. To calculate the wavelength of a sound in any given medium we can use the
following equation:

λ = Velocity/Frequency 

Humans can hear in the region of between 20Hz and 20000Hz although this can differ
dramatically  between individuals. You can read more about frequency in the section of this
chapter.
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 Phase: This is the starting point of our waveform. The starting point along the Y-axis
of our plotted waveform is not always 0. This can be expressed in degrees or in radians.
A complete cycle of a waveform will cover 360 degrees or 2π(pi) radians.  

Amplitude: Amplitude is represented by the y-axis of a plotted pressure wave. The
strength at which the molecules pull or push away from each other will determine how
far above and below 0 the wave fluctuates.  The greater the y-values the greater the
amplitude of our wave. The greater the compressions and rarefactions the greater the
amplitude.

TRANSDUCTION 

The analogue sound waves we hear in the world around us need to be converted into an
electrical signal in order to be amplified or sent to a soundcard for recording. The process of
converting acoustical energy in the form of pressure waves into an electrical signal is carried
out by a device known as a a transducer.

A transducer, which is usually found in microphones, produces electrical pressure, i.e., voltage,
that changes constantly in sympathy with the vibrations of the sound wave in the air. The
continuous variation of pressure is therefore 'transduced' into continuous variation of voltage.
The greater the variation of pressure the greater the variation of voltage that is sent down
the cable of the recording device to the computer.  

Ideally, the transduction process should be as transparent and clean as possible: i.e., whatever
goes in comes in a perfect voltage representation. In real-world situations however, this is
never the case. Noise and distortion are always incorporated into the signal. Every time sound
passes through a transducer or is transmitted electrically a change in signal quality will result.
When we talk of noise we are talking specifically about any unwanted signal captured during
the transduction process. This normally manifests itself as an unwanted ‘hiss’. 

SAMPLING

The analogue voltage that corresponds to an acoustic signal changes continuously so that at
each instant in time it will have a different value. It is not possible for a computer to receive
the value of the voltage for every instant because of the physical limitations of both the
computer and the data converters (remember also that there are an infinite number of
instances between every two instances!).

What the soundcard can do however is to measure the power of the analogue voltage at
intervals of equal duration. This is how all digital recording works and is known as 'sampling'.
The result of this sampling process is a discrete or digital signal which is no more than a
sequence of numbers corresponding to the voltage at each successive sample time.

Below left is a diagram showing a sinusoidal waveform. The vertical lines that run through the
diagram represents the points in time when a snapshot is taken of the signal. After the
sampling has taken place we are left with what is known as a discrete signal consisting of a
collection of audio samples, as illustrated in the diagram on the right hand side below. If one is
recording using a typical audio editor the incoming samples will be stored in the computer RAM
(Random Access Memory). In Csound one can process the incoming audio samples in real time
and output a new stream of samples, or write them to disk in the form of a sound file.  
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It is important to remember that each sample represents the amount of voltage, positive or
negative, that was present in the signal at the point in time the sample or snapshot was
taken. 

The same principle applies to recording of live video. A video camera takes a sequence of
pictures of something in motion for example. Most video cameras will take between 30 and 60
still pictures a second. Each picture is called a frame. When these frames are played we no
longer perceive them as individual pictures. We perceive them instead as a continuous moving
image. 

ANALOGUE VERSUS DIGITAL

In general, analogue systems can be quite unreliable when it comes to noise and distortion.
Each time something is copied or transmitted, some noise and distortion is introduced into the
process. If this is done many times, the cumulative effect can deteriorate a signal quite
considerably. It is because of this,  the music industry has turned to digital technology, which
so far offers the best solution to this problem. As we saw above, in digital systems sound is
stored as numbers, so a signal can be effectively “cloned”. Mathematical routines can be
applied to prevent errors in transmission, which could otherwise introduce noise into the signal.
 

SAMPLE RATE AND THE SAMPLING THEOREM

The sample rate describes the number of samples (pictures/snapshots) taken each second. To
sample an audio signal correctly it is important to pay attention to the sampling theorem: 

"To represent digitally a signal containing frequencies up to  X Hz,  it is necessary to use a sampling rate of at least 2X samples per second"  

According to this theorem, a soundcard or any other digital recording device will not be able to
represent any frequency above 1/2 the sampling rate. Half the sampling rate is also referred
to as the Nyquist frequency, after the Swedish physicist Harry Nyquist who formalized the
theory in the 1920s. What it all means is that any signal with frequencies above the Nyquist
frequency will be misrepresented. Furthermore it will result in a frequency lower than the one
being sampled. When this happens it results in what is known as aliasing or foldover.

ALIASING 

Here is a graphical representation of aliasing.

The sinusoidal wave form in blue is being sampled at each arrow. The line that joins the red
circles together is the captured waveform. As you can see the captured wave form and the
original waveform are different frequencies. Here is another example: 
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We can see that if the sample rate is 40,000 there is no problem sampling a signal that is
10KHz. On the other hand, in the second example it can be seen that a 30kHz waveform is
not going to be correctly sampled. In fact we end up with a waveform that is 10kHz, rather
than 30kHz.

The following Csound instrument plays a 1000 Hz tone first directly, and then because the
frequency is 1000 Hz lower than the sample rate of 44100 Hz:

EXAMPLE 01A01.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
asig    oscils  .2, p4, 0
        outs    asig, asig
endin

</CsInstruments>
<CsScore>
i 1 0 2 1000 ;1000 Hz tone
i 1 3 2 43100 ;43100 Hz tone sounds like 1000 Hz because of aliasing
</CsScore>
</CsoundSynthesizer>

The same phenomenon takes places in film and video too. You may recall having seen wagon
wheels apparently move backwards in old Westerns. Let us say for example that a camera is
taking 60 frames per second of a wheel moving. If the wheel is completing one rotation in
exactly 1/60th of a second, then every picture looks the same. - as a result the wheel appears
to stand still. If the wheel speeds up, i.e., increases frequency,  it will appear as if the wheel is
slowly turning backwards. This is because the wheel will complete more than a full rotation
between each snapshot. This is the most ugly side-effect of aliasing - wrong information.

As an aside, it is worth observing that a lot of modern 'glitch' music intentionally makes a
feature of the spectral distortion that aliasing induces in digital audio. 

Audio-CD Quality uses a sample rate of 44100Kz (44.1 kHz). This means that CD quality can
only represent frequencies up to 22050Hz. Humans typically have an absolute upper limit of
hearing of about 20Khz thus making 44.1KHz a reasonable standard sampling rate. 
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BITS, BYTES AND WORDS. UNDERSTANDING BINARY. 

All digital computers represent data as a collection of bits (short for binary digit). A bit is
the smallest possible unit of information. One bit can only be one of two states - off or on, 0
or 1. The meaning of the bit, which can represent almost anything, is unimportant at this point.
The thing to remember is that all computer data - a text file on disk, a program in memory, a
packet on a network - is ultimately a collection of bits.

Bits in groups of eight are called bytes, and one byte usually represents a single character of
data in the computer. It's a little used term, but you might be interested in knowing that a
nibble is half a byte (usually 4 bits).

THE BINARY SYSTEM

All digital computers work in a environment that has only two variables, 0 and 1.  All numbers
in our decimal system therefore must be translated into 0's and 1's in the binary system. If
you think of  
binary numbers in terms of switches. With one switch you can represent up to two different
numbers.

0 (OFF) = Decimal 0 
1 (ON) = Decimal 1 

Thus, a single bit represents 2 numbers, two bits can represent 4 numbers, three bits
represent 8 numbers, four bits represent 16 numbers, and so on up to a byte, or eight bits,
which represents 256 numbers. Therefore each added bit doubles the amount of possible
numbers that can be represented. Put simply, the more bits you have at your disposal the
more information you can store.

BIT-DEPTH RESOLUTION

Apart from the sample rate, another important parameter which can affect the fidelity of a
digital signal is the accuracy with which each sample is known, in other words knowing how
strong each voltage is. Every sample obtained is set to a specific amplitude (the measure of
strength for each voltage) level. The number of levels depends on the precision of the
measurement in bits, i.e., how many binary digits are used to store the samples. The number
of bits that a system can use is normally referred to as the bit-depth resolution.

If the bit-depth resolution is 3 then there are 8 possible levels of amplitude that we can use
for each sample. We can see this in the diagram below. At each sampling period the soundcard
plots an amplitude. As we are only using a 3-bit system the resolution is not good enough to
plot the correct amplitude or each sample. We can see in the diagram that some vertical lines
stop above or below the real signal. This is because our bit-depth is not high enough to plot
the amplitude levels with sufficient accuracy at each sampling period.  

example here for 4, 6, 8, 12, 16 bit of a sine signal ...
... coming in the next release   

20



The standard resolution for CDs is 16 bit, which allows for 65536 different possible amplitude
levels, 32767 either side of the zero axis. Using bit rates lower than 16 is not a good idea as it
will result in noise being added to the signal. This is referred to as quantization noise and is a
result of amplitude values being excessively rounded up or down when being digitized.
Quantization noise becomes most apparent when trying to represent low amplitude (quiet)
sounds. Frequently a tiny amount of noise, known as a dither signal, will be added to digital
audio before conversion back into an analogue signal. Adding this dither signal will actually
reduce the more noticeable noise created by quantization. As higher bit depth resolutions are
employed in the digitizing process the need for dithering is reduced. A general rule is to use
the highest bit rate available. 

Many electronic musicians make use of deliberately low bit depth quantization in order to add
noise to a signal. The effect is commonly known as 'bit-crunching' and is relatively easy to do
in Csound. 

ADC / DAC

The entire process, as described above, of taking an analogue signal and converting it into a
digital signal is referred to as analogue to digital conversion or ADC. Of course digital to
analogue conversion, DAC, is also possible. This is how we get to hear our music through our
PC’s headphones or speakers. For example, if one plays a sound from Media Player or iTunes
the software will send a series of numbers to the computer soundcard. In fact it will most
likely send 44100 numbers a second. If the audio that is playing is 16 bit then these numbers
will range from -32768 to +32767.

When the sound card receives these numbers from the audio stream it will output
corresponding voltages to a loudspeaker. When the voltages reach the loudspeaker they cause
the loudspeakers magnet to move inwards and outwards. This causes a disturbance in the air
around the speaker resulting in what we perceive as sound. 

6. FREQUENCIES
As mentioned in the previous section frequency is defined as the number of cycles or periods
per second. Frequency is measured in Hertz.  If a tone has a frequency of 440Hz it completes
440 cycles every second. Given a tone's frequency, one can easily calculate the period of any
sound. Mathematically, the period is the reciprocal of the frequency and vice versa. In equation
form, this is expressed as follows.

 Frequency = 1/Period         Period = 1/Frequency 

Therefore the frequency is the inverse of the period, so a wave of 100 Hz frequency has a
period of 1/100 or 0.01 sec’, likewise a frequency of 256Hz has a period of 1/256, or 0.004
seconds. To calculate the wavelength of a sound in any given medium we can use the following
equation:

λ = Velocity/Frequency

For instance, a wave of 1000 Hz in air (velocity of diffusion about 340 m/s) has a length of
approximately 340/1000 m = 34 cm. 

LOWER AND HIGHER BORDERS FOR HEARING

The human ear can generally hear sounds in the range 20Hz to 20,000 Hz (20 kHz). This
upper limit tends to decrease with age due to a condition known as presbyacusis, or age
related hearing loss. Most adults can hear to about 16 kHz while most children can hear
beyond this. At the lower end of the spectrum the human ear does not respond to
frequencies below 20 Hz, with 40 of 50Hz being the lowest most people can perceive. 

So, in the following example, you will not hear the first (10 Hz) tone, and probably not the last
(20 kHz) one, but hopefully the other ones (100 Hz, 1000 Hz, 10000 Hz):
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EXAMPLE 01B01.csd 

<CsoundSynthesizer>
<CsOptions>
-odac -m0
</CsOptions>
<CsInstruments>
;example by joachim heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
        prints  "Playing %d Hertz!\n", p4
asig    oscils  .2, p4, 0
        outs    asig, asig
endin

</CsInstruments>
<CsScore>
i 1 0 2 10
i . + . 100
i . + . 1000
i . + . 10000
i . + . 20000
</CsScore>
</CsoundSynthesizer>

LOGARITHMS, FREQUENCY RATIOS AND INTERVALS

A lot of basic maths is about simplification of complex equations. Shortcuts are taken all the
time to make things easier to read and equate. Multiplication can be seen as a shorthand of
addition, for example, 5x10 = 5+5+5+5+5+5+5+5+5+5. Exponents are shorthand for
multiplication, 35 = 3x3x3x3x3. Logarithms are shorthand for exponents and are used in many
areas of science and engineering in which quantities vary over a large range. Examples of
logarithmic scales include the decibel scale, the Richter scale for measuring earthquake
magnitudes and the astronomical scale of stellar brightnesses. Musical frequencies also work
on a logarithmic scale, more on this later. 

Intervals in music describe the distance between two notes. When dealing with standard
musical notation it is easy to determine an interval between two adjacent notes. For example
a perfect 5th is always made up of 7 semitones. When dealing with Hz values things are
different. A difference of say 100Hz does not always equate to the same musical interval. This
is because musical intervals as we hear them are represented in Hz as frequency ratios. An
octave for example is always 2:1. That is to say every time you double a Hz value you will
jump up by a musical interval of an octave.

Consider the following. A flute can play the note A at 440Hz. If the player plays another A an
octave above it at 880Hz the difference in Hz is 440. Now consider the a piccolo, the highest
pitched instrument of the orchestra. It can play a frequency of 2000Hz but it can also play an
octave above this at 4000Hz(2 x 2000Hz). While the difference in hertz between the two
notes on the flute is only 440Hz, the difference between the two high pitched notes on a
piccolo is 1000Hz yet they are both only playing notes one octave apart.

What all this demonstrates is that the higher two pitches become the greater the difference in
Hertz needs to be for us to recognize the difference as the same musical interval. The most
common ratios found in the equal temperament scale are the unison: (1:1), the octave: (2:1),
the perfect fifth(3:2), the perfect fourth (4:3), the major third (5:4) and the minor third (6:5).

The following example shows the difference between adding a certain frequency and applying a
ratio. First, the frequencies of 100, 400 and 800 Hz all get an addition of 100 Hz. This sounds
very different, though the added frequency is the same. Second, the ratio 3/2 (perfect fifth) is
applied to the same frequencies. This sounds always the same, though the frequency
displacement is different each time.

EXAMPLE 01B02.csd  

<CsoundSynthesizer>
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<CsOptions>
-odac -m0
</CsOptions>
<CsInstruments>
;example by joachim heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
        prints  "Playing %d Hertz!\n", p4
asig    oscils  .2, p4, 0
        outs    asig, asig
endin

instr 2
        prints  "Adding %d Hertz to %d Hertz!\n", p5, p4
asig    oscils  .2, p4+p5, 0
        outs    asig, asig
endin

instr 3
        prints  "Applying the ratio of %f (adding %d Hertz) to %d Hertz!\n", p5, p4*p5, p4
asig    oscils  .2, p4*p5, 0
        outs    asig, asig
endin

</CsInstruments>
<CsScore>
;adding a certain frequency (instr 2)
i 1 0 1 100
i 2 1 1 100 100
i 1 3 1 400
i 2 4 1 400 100
i 1 6 1 800
i 2 7 1 800 100
;applying a certain ratio (instr 3)
i 1 10 1 100
i 3 11 1 100 [3/2]
i 1 13 1 400
i 3 14 1 400 [3/2]
i 1 16 1 800
i 3 17 1 800 [3/2]
</CsScore>
</CsoundSynthesizer>

So what of the algorithms mentioned above. As some readers will know the current preferred
method of tuning western instruments is based on equal temperament. Essentially this means
that all octaves are split into 12 equal intervals. Therefore a semitone has a ratio of 2(1/12),
which is approximately 1.059463.

So what about the reference to logarithms in the heading above? As stated previously,
logarithms are shorthand for exponents. 2(1/12)= 1.059463 can also between written as
log2(1.059463)= 1/12. Therefore musical frequency works on a logarithmic scale. 

MIDI NOTES

Csound can easily deal with MIDI notes and comes with functions that will convert MIDI notes
to hertz values and back again. In MIDI speak A440 is equal to A4. You can think of A4 as
being the fourth A from the lowest A we can hear, well almost hear.

caution: like many 'standards' there is occasional disagreement about the mapping between
frequency and octave number. You may occasionally encounter A440 being described as A3.

7. INTENSITIES

REAL WORLD INTENSITIES AND AMPLITUDES
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There are many ways to describe a sound physically. One of the most common is the Sound
Intensity Level (SIL). It describes the amount of power on a certain surface, so its unit is Watt
per square meter (  ). The range of human hearing is about     at the
threshold of hearing to   at the threshold of pain. For ordering this immense range,
and to facilitate to measurement of one sound intensity based upon its ratio with another, a
logarithmic scale is used. The unit Bel describes the relation of one intensity I to a reference
intensity I0 as follows:

   Sound Intensity Level in Bel

If, for instance, the ratio     is 10, this is 1 Bel. If the ratio is 100, this is 2 Bel.

For real world sounds, it makes sense to set the reference value   to the threshold of
hearing which has been fixed as   at 1000 Hertz. So the range of hearing
covers about 12 Bel. Usually 1 Bel is divided into 10 deci Bel, so the common formula for
measuring a sound intensity is:

 

   Sound Intensity Level (SIL) in Decibel (dB) with  

 

While the sound intensity level is useful to describe the way in which the human hearing
works, the measurement of sound is more closely related to the sound pressure deviations.
Sound waves compress and expand the air particles and by this they increase and decrease
the localized air pressure. These deviations are measured and transformed by a microphone.
So the question arises: What is the relationship between the sound pressure deviations and
the sound intensity? The answer is: Sound intensity changes  are proportional to the square
of the sound pressure changes  . As a formula:

   Relation between Sound Intensity and Sound Pressure 

Let us take an example to see what this means. The sound pressure at the threshold of
hearing can be fixed at    . This value is the reference value of the Sound Pressure
Level (SPL). If we have now a value of     , the corresponding sound intensity
relation can be calculated as:

 

So, a factor of 10 at the pressure relation yields a factor of 100 at the intensity relation. In
general, the dB scale for the pressure P related to the pressure P0 is:

 

Sound Pressure Level (SPL) in Decibel (dB) with  

 

Working with Digital Audio basically means working with amplitudes. What we are dealing with
microphones are amplitudes. Any audio file is a sequence of amplitudes. What you generate in
Csound and write either to the DAC in realtime or to a sound file, are again nothing but a
sequence of amplitudes. As amplitudes are directly related to the sound pressure deviations,
all the relations between sound intensity and sound pressure can be transferred to relations
between sound intensity and amplitudes:

 

   Relation between Intensity and Ampltitudes
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   Decibel (dB) Scale of Amplitudes with any amplitude   related to an other

amplitude  

 

If you drive an oscillator with the amplitude 1, and another oscillator with the amplitude 0.5,
and you want to know the difference in dB, you calculate:

  

So, the most useful thing to keep in mind is: When you double the amplitude, you get +6 dB;
when you have half of the amplitude as before, you get -6 dB.

WHAT IS 0 DB?

As described in the last section, any dB scale - for intensities, pressures or amplitudes - is just
a way to describe a relationship. To have any sort of quantitative measurement you will need
to know the reference value referred to as "0 dB". For real world sounds, it makes sense to
set this level to the threshold of hearing. This is done, as we saw, by setting the SIL to  

  and the SPL to   .

But for working with digital sound in the computer, this does not make any sense. What you
will hear from the sound you produce in the computer, just depends on the amplification, the
speakers, and so on. It has nothing, per se, to do with the level in your audio editor or in
Csound. Nevertheless, there is a rational reference level for the amplitudes. In a digital
system, there is a strict limit for the maximum number you can store as amplitude. This
maximum possible level is called 0 dB.

Each program connects this maximum possible amplitude with a number. Usually it is '1' which
is a good choice, because you know that everything above 1 is clipping, and you have a handy
relation for lower values. But actually this value is nothing but a setting, and in Csound you are
free to set it to any value you like via the 0dbfs opcode. Usually you should use this
statement in the orchestra header:

0dbfs = 1

This means: "Set the level for zero dB as full scale to 1 as reference value." Note that because
of historical reasons the default value in Csound is not 1 but 32768. So you must have this
0dbfs = 1 statement in your header if you want to set Csound to the value probably all other
audio applications have.

DB SCALE VERSUS LINEAR AMPLITUDE

Let's see some practical consequences now of what we have discussed so far. One major
point is: for getting smooth transitions between intensity levels you must not use a simple
linear transition of the amplitudes, but a linear transition of the dB equivalent. The following
example shows a linear rise of the amplitudes from 0 to 1, and then a linear rise of the dB's
from -80 to 0 dB, both over 10 seconds. 

   EXAMPLE 01C01.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example by joachim heintz
sr = 44100
ksmps = 32
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nchnls = 2
0dbfs = 1

instr 1 ;linear amplitude rise
kamp      line    0, p3, 1 ;amp rise 0->1
asig      oscils  1, 1000, 0 ;1000 Hz sine
aout      =       asig * kamp
          outs    aout, aout
endin

instr 2 ;linear rise of dB
kdb       line    -80, p3, 0 ;dB rise -60 -> 0
asig      oscils  1, 1000, 0 ;1000 Hz sine
kamp      =       ampdb(kdb) ;transformation db -> amp
aout      =       asig * kamp
          outs    aout, aout
endin

</CsInstruments>
<CsScore>
i 1 0 10
i 2 11 10
</CsScore>
</CsoundSynthesizer>

You will hear how fast the sound intensity increases at the first note with direct amplitude
rise, and then stays nearly constant. At the second note you should hear a very smooth and
constant increment of intensity.

RMS MEASUREMENT

Sound intensity depends on many factors. One of the most important is the effective mean of
the amplitudes in a certain time span. This is called the Root Mean Square (RMS) value. To
calculate it, you have (1) to calculate the squared amplitudes of number N samples. Then you
(2) divide the result by N to calculate the mean of it. Finally (3) take the square root.

Let's see a simple example, and then have a look how getting the rms value works in Csound.
Assumeing we have a sine wave which consists of 16 samples, we get these amplitudes:

 

These are the squared amplitudes:
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The mean of these values is:

(0+0.146+0.5+0.854+1+0.854+0.5+0.146+0+0.146+0.5+0.854+1+0.854+0.5+0.146)/16=8/16=0.5

And the resulting RMS value is 0.5=0.707 . 

The rms opcode in Csound calculates the RMS power in a certain time span, and smoothes the
values in time according to the ihp parameter: the higher this value (the default is 10 Hz), the
snappier the measurement, and vice versa. This opcode can be used to implement a self-
regulating system, in which the rms opcode prevents the system from exploding. Each time
the rms value exceeds a certain value, the amount of feedback is reduced. This is an
example1 :

   EXAMPLE 01C02.csd   

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example by Martin Neukom, adapted by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1 ;table with a sine wave

instr 1
a3        init      0
kamp      linseg    0, 1.5, 0.2, 1.5, 0 ;envelope for initial input
asnd      poscil    kamp, 440, giSine ;initial input
 if p4 == 1 then ;choose between two sines ...
adel1     poscil    0.0523, 0.023, giSine
adel2     poscil    0.073, 0.023, giSine,.5
 else ;or a random movement for the delay lines
adel1     randi     0.05, 0.1, 2
adel2     randi     0.08, 0.2, 2
 endif
a0        delayr    1 ;delay line of 1 second
a1        deltapi   adel1 + 0.1 ;first reading
a2        deltapi   adel2 + 0.1 ;second reading
krms      rms       a3 ;rms measurement
          delayw    asnd + exp(-krms) * a3 ;feedback depending on rms
a3        reson     -(a1+a2), 3000, 7000, 2 ;calculate a3
aout      linen     a1/3, 1, p3, 1 ;apply fade in and fade out
          outs      aout, aout
endin
</CsInstruments>
<CsScore>
i 1 0 60 1 ;two sine movements of delay with feedback
i 1 61 . 2 ;two random movements of delay with feedback
</CsScore>
</CsoundSynthesizer>
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FLETCHER-MUNSON CURVES

Human hearing is roughly in a range between 20 and 20000 Hz. But inside this range, the
hearing is not equally sensitive. The most sensitive region is around 3000 Hz. If you come to
the upper or lower border of the range, you need more intensity to perceive a sound as
"equally loud". 

These curves of equal loudness are mostly called "Fletcher-Munson Curves" because of the
paper of H. Fletcher and W. A. Munson in 1933. They look like this:

 

Try the following test. In the first 5 seconds you will hear a tone of 3000 Hz. Adjust the level
of your amplifier to the lowest possible point at which you still can hear the tone. - Then you
hear a tone whose frequency starts at 20 Hertz and ends at 20000 Hertz, over 20 seconds.
Try to move the fader or knob of your amplification exactly in a way that you still can hear
anything, but as soft as possible. The movement of your fader should roughly be similar to the
lowest Fletcher-Munson-Curve: starting relatively high, going down and down until 3000 Hertz,
and then up again. (As always, this test depends on your speaker hardware. If your speaker
do not provide proper lower frequencies, you will not hear anything in the bass region.)

   EXAMPLE 01C03.csd   

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1 ;table with a sine wave

instr 1
kfreq     expseg    p4, p3, p5
          printk    1, kfreq ;prints the frequencies once a second
asin      poscil    .2, kfreq, giSine
aout      linen     asin, .01, p3, .01
          outs      aout, aout
endin
</CsInstruments>
<CsScore>
i 1 0 5 1000 1000
i 1 6 20 20  20000
</CsScore>
</CsoundSynthesizer>
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It is very important to bear in mind that the perceived loudness depends much on the
frequencies. You must know that putting out a sine of 30 Hz with a certain amplitude is totally
different from a sine of 3000 Hz with the same amplitude - the latter will sound much louder.
 

1. cf Martin Neukom, Signale Systeme Klangsynthese, Zürich 2003, p. 383^
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8. MAKE CSOUND RUN

CSOUND AND FRONTENDS

The core element of Csound is an audio engine for the Csound language. It has no graphical
elements and it is designed to take Csound text files (like ".csd" files) and produce audio, either
in realtime, or by writing to a file. It can still be used in this way, but most users nowadays
prefer to use Csound via a frontend. A frontend is an application which assists you in writing
code and running Csound. Beyond the functions of a simple text editor, a frontend
environment will offer colour coded highlighting of language specific keywords and quick access
to an integrated help system. A frontend can also expand possibilities by providing tools to
build interactive interfaces as well, sometimes, as advanced compositional tools.

In 2009 the Csound developers decided to include QuteCsound as the standard frontend to be
included with the Csound distribution, so you will already have this frontend if you have
installed any of the recent pre-built versions of Csound. Conversely if you install a frontend
you will require a separate installation of Csound in order for it to function.

HOW TO DOWNLOAD AND INSTALL CSOUND

To get Csound you first need to download the package for your system from the SourceForge
page: http://sourceforge.net/projects/csound/files/csound5/

There are many files here, so here are some guidelines to help you choose the appropriate
version.

WINDOWS

Windows installers are the ones ending in .exe. Look for the latest version of Csound, and find
a file which should be called something like: Csound5.11.1-gnu-win32-f.exe. The important thing
to note is the final letter of the installer name, which can be "d" or "f". This specifies the
computation precision of the Csound engine. Float precision (32-bit float) is marked with "f"
and double precision (64-bit float) is marked "d". This is important to bear in mind, as a
frontend which works with the "floats" version, will not run if you have the "doubles" version
installed. You should usually install the "floats" version as that is the one most frontends are
currently using.

(Note: more recent versions of the pre-built Windows installer have only been released in the
'doubles' version.) 

After you have downloaded the installer, just run it and follow the instructions. When you are
finished, you will find a Csound folder in your start menu containing Csound utilities and the
QuteCsound frontend. 

MAC OS X

The Mac OS X installers are the files ending in .dmg. Look for the latest version of Csound for
your particular system, for example a Universal binary for 10.5 will be called something like:
csound5.12.4-OSX10.5-Universal.dmg. When you double click the downloaded file, you will have a
disk image on your desktop, with the Csound installer, QuteCsound and a readme file. Double-
click the installer and follow the instructions. Csound and the basic Csound utilities will be
installed. To install the QuteCsound frontend, you only need to move it to your Applications
folder.

LINUX AND OTHERS
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Csound is available from the official package repositories for many distributions like Debian,
Ubuntu, Fedora, Archlinux and Gentoo. If there are no binary packages for your platform, or
you need a more recent version, you can get the source package from the SourceForge page
and build from source. You can find detailed information in the Building Csound Manual Page.

INSTALL PROBLEMS?

If, for any reason, you can't find the QuteCsound frontend on your system after install, or if
you want to install the most recent version of QuteCsound, or if you prefer another frontend
altogether: see the CSOUND FRONTENDS section of this manual for further information. If you
have any install problems, consider joining the Csound Mailing List to report your issues, or
write a mail to one of the maintainers (see ON THIS RELEASE). 

THE CSOUND REFERENCE MANUAL

The Csound Reference Manual is an indispensable companion to Csound. It is available in
various formats from the same place as the Csound installers, and it is installed with the
packages for OS X and Windows. It can also be browsed online at The Csound Manual Section
at Csounds.com. Many frontends will provide you with direct and easy access to it.

HOW TO EXECUTE A SIMPLE EXAMPLE

USING QUTECSOUND

Run QuteCsound. Go into the QuteCsound menubar and choose: Examples->Getting started...-
> Basics-> HelloWorld

You will see a very basic Csound file (.csd) with a lot of comments in green.

Click on the "RUN" icon in the QuteCsound control bar to start the realtime Csound engine.
You should hear a 440 Hz sine wave.

You can also run the Csound engine in the terminal from within QuteCsound. Just click on "Run
in Term". A console will pop up and Csound will be executed as an independent process. The
result should be the same - the 440 Hz "beep".

USING THE TERMINAL / CONSOLE

1. Save the following code in any plain text editor as HelloWorld.csd.

   EXAMPLE 02A01.csd  

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Alex Hofmann
instr 1
aSin      oscils    0dbfs/4, 440, 0
          out       aSin
endin
</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>

2. Open the Terminal / Prompt / Console

3. Type: csound /full/path/HelloWorld.csd

where /full/path/HelloWorld.csd is the complete path to your file. You also execute this file by
just typing csound then dragging the file into the terminal window and then hitting return. 
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You should hear a 440 Hz tone. 

9. CSOUND SYNTAX

ORCHESTRA AND SCORE 

In Csound, you must define "instruments", which are units which "do things", for instance
playing a sine wave. These instruments must be called or "turned on" by a "score". The
Csound "score" is a list of events which describe how the instruments are to be played in
time. It can be thought of as a timeline in text.

A Csound instrument is contained within an Instrument Block, which starts with the keyword
instr and ends with the keyword endin. All instruments are given a number (or a name) to
identify them. 

instr 1
... instrument instructions come here...
endin

Score events in Csound are individual text lines, which can turn on instruments for a certain
time. For example, to turn on instrument 1, at time 0, for 2 seconds you will use:

i 1 0 2

THE CSOUND DOCUMENT STRUCTURE 

A Csound document is structured into three main sections:

CsOptions: Contains the configuration options for Csound. For example using "-o dac" in
this section will make Csound run in real-time instead of writing a sound file. 
CsInstruments: Contains the instrument definitions and optionally some global settings
and definitions like sample rate, etc. 
CsScore: Contains the score events which trigger the instruments. 

Each of these sections is opened with a <xyz> tag and closed with a </xyz> tag. Every Csound
file starts with the <CsoundSynthesizer> tag, and ends with </CsoundSynthesizer>. Only the
text in-between will be used by Csound.

   EXAMPLE 02B01.csd  

<CsoundSynthesizer>; START OF A CSOUND FILE

<CsOptions> ; CSOUND CONFIGURATION
-odac
</CsOptions>

<CsInstruments> ; INSTRUMENT DEFINITIONS GO HERE
;Example by Alex Hofmann, Andrés Cabrera and Joachim Heintz
; Set the audio sample rate to 44100 Hz
sr = 44100

instr 1
; a 440 Hz Sine Wave
aSin      oscils    0dbfs/4, 440, 0
          out       aSin
endin
</CsInstruments>

<CsScore> ; SCORE EVENTS GO HERE
i 1 0 1
</CsScore>

</CsoundSynthesizer> ; END OF THE CSOUND FILE
; Anything after is ignored by Csound

Comments, which are lines of text that Csound will ignore, are started with the ";" character.
Multi-line comments can be made by encasing them between "/*" and  "*/".
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OPCODES

"Opcodes" or "Unit generators" are the basic building blocks of Csound. Opcodes can do many
things like produce oscillating signals, filter signals, perform mathematical functions or even
turn on and off instruments. Opcodes, depending on their function, will take inputs and
outputs. Each input or output is called, in programming terms, an "argument". Opcodes always
take input arguments on the right and output their results on the left, like this: 

output    OPCODE    input1, input2, input3, .., inputN

For example the oscils opcode has three inputs: amplitude, frequency and phase, and
produces a sine wave signal:

aSin      oscils    0dbfs/4, 440, 0

In this case, a 440 Hertz oscillation starting at phase 0 radians, with an amplitude of 0dbfs/4
(a quarter of 0 dB as full scale) will be created and its output will be stored in a container
called aSin. The order of the arguments is important: the first input to oscils will always be
amplitude, the second, frequency and the third, phase.

Many opcodes include optional input arguments and occasionally optional output arguments.
These will always be placed after the essential arguments. In the Csound Manual
documentation they are indicated using square brackets "[]". If optional input arguments are
omitted they are replaced with the default values indicated in the Csound Manual. The addition
of optional output arguments normally initiates a different mode of that opcode: for example,
a stereo as opposed to mono version of the opcode. 

VARIABLES

A "variable" is a named container. It is a place to store things like signals or values from where
they can be recalled by using their name. In Csound there are various types of variables. The
easiest way to deal with variables when getting to know Csound is to imagine them as cables.

If you want to patch this together: Oscillator->Filter->Output,

you need two cables, one going out from the oscillator into the filter and one from the filter to
the output. The cables carry audio signals, which are variables beginning with the letter "a". 

aSource    buzz       0.8, 200, 10, 1
aFiltered  moogladder aSource, 400, 0.8
           out        aFiltered

In the example above, the buzz opcode produces a complex waveform as signal aSource. This
signal is fed into the moogladder opcode, which in turn produces the signal aFiltered. The out
opcode takes this signal, and sends it to the output whether that be to the speakers or to a
rendered file.

Other common variable types are "k" variables which store control signals, which are updated
less frequently than audio signals, and "i" variables which are constants within each instrument
note.

You can find more information about variable types here in this manual. 

USING THE MANUAL

The Csound Reference Manual is a comprehensive source regarding Csound's syntax and
opcodes. All opcodes have their own manual entry describing their syntax and behavior, and
the manual contains a detailed reference on the Csound language and options.

QUTECSOUND
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In QuteCsound you can find the Csound Manual in the Help Menu. You can quickly go to a
particular opcode entry in the manual by putting the cursor on the opcode and pressing
Shift+F1. 

10. CONFIGURING MIDI
Csound can receive MIDI events (like MIDI notes and MIDI control changes) from an external
MIDI interface or from another program via a virtual MIDI cable. This information can be used
to control any aspect of synthesis or performance.

Csound receives MIDI data through MIDI Realtime Modules. These are special Csound plugins
which enable MIDI input using different methods according to platform. They are enabled using
the -+rtmidi command line flag in the <CsOptions> section of your .csd file, but can also be
set interactively on some front-ends. 

There is the universal "portmidi" module. PortMidi is a cross-platform module for MIDI I/O and
should be available on all platforms. To enable the "portmidi" module, you can use the flag:

-+rtmidi=portmidi

After selecting the RT MIDI module from a front-end or the command line, you need to select
the MIDI devices for input and output. These are set using the flags -M and -Q respectively
followed by the number of the interface. You can usually use:

-M999

To get a performance error with a listing of available interfaces.

For the PortMidi module (and others like ALSA), you can specify no number to use the default
MIDI interface or the 'a' character to use all devices. This will even work when no MIDI devices
are present.

-Ma

So if you want MIDI input using the portmidi module, using device 2 for input and device 1 for
output, your <CsOptions> section should contain:

-+rtmidi=portmidi -M2 -Q1

There is a special "virtual" RT MIDI module which enables MIDI input from a virtual keyboard.
To enable it, you can use:

 -+rtmidi=virtual -M0

PLATFORM SPECIFIC MODULES

If the "portmidi" module is not working properly for some reason, you can try other platform
specific modules. 

LINUX 

On Linux systems, you might also have an "alsa" module to use the alsa raw MIDI interface.
This is different from the more common alsa sequencer interface and will typically require the
snd-virmidi module to be loaded.

OS X

On OS X you may have a "coremidi" module available.

WINDOWS

On Windows, you may have a "winmme" MIDI module.
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MIDI I/O IN QUTECSOUND

As with Audio I/O, you can set the MIDI preferences in the configuration dialog. In it you will
find a selection box for the RT MIDI module, and text boxes for MIDI input and output devices.

HOW TO USE A MIDI KEYBOARD

Once you've set up the hardware, you are ready to receive MIDI information and interpret it in
Csound. By default, when a MIDI note is received, it turns on the Csound instrument
corresponding to its channel number, so if a note is received on channel 3, it will turn on
instrument 3, if it is received on channel 10, it will turn on instrument 10 and so on.

If you want to change this routing of MIDI channels to instruments, you can use the massign
opcode. For instance, this statement lets you route your MIDI channel 1 to instrument 10:

 massign 1, 10

On the following example, a simple instrument, which plays a sine wave, is defined in
instrument 1. There are no score note events, so no sound will be produced unless a MIDI note
is received on channel 1.

   EXAMPLE 02C01.csd 

<CsoundSynthesizer>
<CsOptions>
-+rtmidi=portmidi -Ma -odac
</CsOptions>
<CsInstruments>
;Example by Andrés Cabrera

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

        massign   0, 1 ;assign all MIDI channels to instrument 1
giSine  ftgen     0,0,2^10,10,1 ;a function table with a sine wave
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instr 1
iCps    cpsmidi   ;get the frequency from the key pressed
iAmp    ampmidi   0dbfs * 0.3 ;get the amplitude
aOut    poscil    iAmp, iCps, giSine ;generate a sine tone
        outs      aOut, aOut ;write it to the output
endin

</CsInstruments>
<CsScore>
e 3600
</CsScore>
</CsoundSynthesizer>

Note that Csound has an unlimited polyphony in this way: each key pressed starts a new
instance of instrument 1, and you can have any number of instrument instances at the same
time. 

HOW TO USE A MIDI CONTROLLER

To receive MIDI controller events, opcodes like ctrl7 can be used.  In the following example
instrument 1 is turned on for 60 seconds, it will receive controller #1 (modulation wheel) on
channel 1 and convert MIDI range (0-127) to a range between 220 and 440. This value is used
to set the frequency of a simple sine oscillator.

   EXAMPLE 02C02.csd

<CsoundSynthesizer>
<CsOptions>
-+rtmidi=virtual -M1 -odac
</CsOptions>
<CsInstruments>
;Example by Andrés Cabrera

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0,0,2^10,10,1

instr 1
kFreq ctrl7  1, 1, 220, 440 ;receive controller number 1 on channel 1 and scale from 220 to 440
aOut  poscil 0.2, kFreq, giSine ;use this value as varying frequency for a sine wave
      outs   aOut, aOut
endin
</CsInstruments>
<CsScore>
i 1 0 60
e
</CsScore>
</CsoundSynthesizer>

OTHER TYPE OF MIDI DATA

Csound can receive other type of MIDI, like pitch bend, and aftertouch through the usage of
specific opcodes. Generic MIDI Data can be received using the midiin opcode. The example
below prints to the console the data received via MIDI.

   EXAMPLE 02C03.csd 

<CsoundSynthesizer>
<CsOptions>
-+rtmidi=portmidi -Ma -odac
</CsOptions>
<CsInstruments>
;Example by Andrés Cabrera

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
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instr 1
kStatus, kChan, kData1, kData2 midiin

if kStatus != 0 then ;print if any new MIDI message has been received
    printk 0, kStatus
    printk 0, kChan
    printk 0, kData1
    printk 0, kData2
endif

endin

</CsInstruments>
<CsScore>
i1 0 3600
e
</CsScore>
</CsoundSynthesizer>

11. LIVE AUDIO

CONFIGURING AUDIO & TUNING AUDIO PERFORMANCE

SELECTING AUDIO DEVICES AND DRIVERS 

Csound relates to the various inputs and outputs of sound devices installed on your computer
as a numbered list. If you are using a multichannel interface then each stereo pair will most
likely be assigned a different number. If you wish to send or receive audio to or from a specific
audio connection you will need to know the number by which Csound knows it. If you are not
sure of what that is you can trick Csound into providing you with a list of available devices by
trying to run Csound using an obviously out of range device number, like this:

   EXAMPLE 02D01.csd

<CsoundSynthesizer>
<CsOptions>
-iadc999 -odac999
</CsOptions>
<CsInstruments>
;Example by Andrés Cabrera
instr 1
endin
</CsInstruments>
<CsScore>
e
</CsScore>
</CsoundSynthesizer>

The input and output devices will be listed seperately. Specify your input device with the -iadc
flag and the number of your input device, and your output device with the -odac flag and the
number of your output device. For instance, if you select the "XYZ" device from the list above
both, for input and output, you include:

 -iadc2 -odac3

in the <CsOptions> section of you .csd file. 

The RT output module can be set with the -+rtaudio flag. If you don't use this flag, the
PortAudio driver will be used. Other possible drivers are jack and alsa (Linux), mme (Windows)
or CoreAudio (Mac). So, this sets your audio driver to mme instead of Port Audio: 

-+rtaudio=mme

TUNING PERFORMANCE AND LATENCY 
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Live performance and latency depend mainly on the sizes of the software and the hardware
buffers. They can be set in the <CsOptions> using the -B flag for the hardware buffer, and the
-b flag for the software buffer. For instance, this statement sets the hardware buffer size to
512 samples and the software buffer size to 128 sample: 

-B512 -b128

The other factor which affects Csound's live performance is the ksmps value which is set in
the header of the <CsInstruments> section. By this value, you define how many samples are
processed every Csound control cycle. 

Try your realtime performance with -B512, -b128 and ksmps=32. With a software buffer of
128 samples, a hardware buffer of 512 and a sample rate of 44100 you will have around 12ms
latency, which is usable for live keyboard playing. If you have problems with either the latency
or the performance, tweak the values as described here. 

QUTECSOUND

To define the audio hardware used for realtime performance, open the configuration dialog. In
the "Run" Tab, you can choose your audio interface, and the preferred driver. You can select
input and output devices from a list if you press the buttons to the right of the text boxes for
input and output names. Software and hardware buffer sizes can be set at the top of this
dialogue box. 

  

CSOUND CAN PRODUCE EXTREME DYNAMIC RANGE!

Csound can Produce Extreme Dynamic Range, so keep an eye on the level you are sending
to your output. The number which describes the level of 0 dB, can be set in Csound by the
0dbfs assignment in the <CsInstruments> header. There is no limitation, if you set 0dbfs = 1
and send a value of 32000, this can damage your ears and speakers! 

USING LIVE AUDIO INPUT AND OUTPUT
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To process audio from an external source (for example a microphone), use the inch opcode to
access any of the inputs of your audio input device. For the output, outch gives you all
necessary flexibility. The following example takes a live audio input and transforms its sound
using ring modulation. The Csound Console should output five times per second the input
amplitude level.

   EXAMPLE 02D02.csd

<CsoundSynthesizer>
<CsOptions>
;CHANGE YOUR INPUT AND OUTPUT DEVICE NUMBER HERE IF NECESSARY!
-iadc0 -odac0 -B512 -b128
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100 ;set sample rate to 44100 Hz
ksmps = 32 ;number of samples per control cycle
nchnls = 2 ;use two audio channels
0dbfs = 1 ;set maximum level as 1

giSine    ftgen     0, 0, 2^10, 10, 1 ;table with sine wave

instr 1
aIn       inch      1 ;take input from channel 1
kInLev    downsamp  aIn ;convert audio input to control signal
          printk    .2, abs(kInLev)
;make modulator frequency oscillate 200 to 1000 Hz
kModFreq  poscil    400, 1/2, giSine
kModFreq  =         kModFreq+600
aMod      poscil    1, kModFreq, giSine ;modulator signal
aRM       =         aIn * aMod ;ring modulation
          outch     1, aRM, 2, aRM ;output tochannel 1 and 2
endin
</CsInstruments>
<CsScore>
i 1 0 3600
</CsScore>
</CsoundSynthesizer>

Live Audio is frequently used with live devices like widgets or MIDI. In QuteCsound, you can find
several examples in Examples -> Getting Started -> Realtime Interaction. 

12. RENDERING TO FILE

WHEN TO RENDER TO FILE

Csound can also render audio straight to a sound file stored on your hard drive instead of as
live audio sent to the audio hardware. This gives you the possibility to hear the results of very
complex processes which your computer can't produce in realtime.

Csound can render to formats like wav, aiff or ogg (and other less popular ones), but not mp3
due to its patent and licencing problems.

RENDERING TO FILE

Save the following code as Render.csd:

   EXAMPLE 02E01.csd  

<CsoundSynthesizer>
<CsOptions>
-o Render.wav
</CsOptions>
<CsInstruments>
;Example by Alex Hofmann
instr 1
aSin      oscils    0dbfs/4, 440, 0
          out       aSin
endin
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</CsInstruments>
<CsScore>
i 1 0 1
e
</CsScore>
</CsoundSynthesizer>

Open the Terminal / Prompt / Console and type:

csound /path/to/Render.csd

Now, because you changed the -o flag in the <CsOptions> from "-o dac" to "-o filename", the
audio output is no longer written in realtime to your audio device, but instead to a file. The file
will be rendered to the default directory (usually the user home directory). This file can be
opened and played in any audio player or editor, e.g. Audacity. (By default, csound is a non-
realtime program. So if no command line options are given, it will always render the csd to a
file called test.wav, and you will hear nothing in realtime.) 

The -o flag can also be used to write the output file to a certain directory. Something like this
for Windows ... 

<CsOptions>
-o c:/music/samples/Render.wav
</CsOptions>

... and this for Linux or Mac OSX:

<CsOptions>
-o /Users/JSB/organ/tatata.wav
</CsOptions>  

RENDERING OPTIONS

The internal rendering of audio data in Csound is done with 32-bit floating point numbers (or
even with 64-bit numbers for the "double" version). Depending on your needs, you should
decide the precision of your rendered output file:

If you want to render 32-bit floats, use the option flag -f.
If you want to render 24-bit, use the flag -3.
If you want to render 16-bit, use the flag -s (or nothing, because this is also the default
in Csound).

For making sure that the header of your soundfile will be written correctly, you should use the
-W flag for a WAV file, or the -A flag for a AIFF file. So these options will render the file
"Wow.wav" as WAV file with 24-bit accuracy:

<CsOptions>
-o Wow.wav -W -3
</CsOptions>  

REALTIME AND RENDER-TO-FILE AT THE SAME TIME 

Sometimes you may want to simultaneously have realtime output and file rendering to disk,
like recording your live performance. This can be achieved by using the fout opcode. You just
have to specify your output file name. File type and format are given by a number, for
instance 18 specifies "wav 24 bit" (see the manual page for more information). The following
example creates a random frequency and panning movement of a sine wave, and writes it to
the file "live_record.wav" (in the same directory as your .csd file):

   EXAMPLE 02E02.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32

41

http://www.csounds.com/manual/html/fout.html


nchnls = 2
0dbfs = 1

          seed      0 ;each time different seed for random
giSine    ftgen     0, 0, 2^10, 10, 1 ;a sine wave

  instr 1
kFreq     randomi   400, 800, 1 ;random frequency
aSig      poscil    .2, kFreq, giSine ;sine with this frequency
kPan      randomi   0, 1, 1 ;random panning
aL, aR    pan2      aSig, kPan ;stereo output signal
          outs      aL, aR ;live output
          fout      "live_record.wav", 18, aL, aR ;write to soundfile
  endin

</CsInstruments>
<CsScore>
i 1 0 10
e
</CsScore>
</CsoundSynthesizer>

QUTECSOUND

All the options which are described in this chapter can be handled very easily in QuteCsound:

Rendering to file is simply done by clicking the "Render" button, or choosing "Control-
>Render to File" in the Menu.

To set file-destination and file-type, you can make your own settings in "QuteCsound
Configuration" under the tab "Run -> File (offline render)". The default is a 16-Bit .wav-
file.
To record a live performance, just click the "Record" button. You will find a file with the
same name as your .csd file, and a number appended for each record task, in the same
folder as your .csd file. 
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13. INITIALIZATION AND PERFORMANCE
PASS

WHAT'S THE DIFFERENCE

A Csound instrument is defined in the <CsInstruments> section of a .csd file. An instrument
definition starts with the keyword instr (followed by a number or name to identify the
instrument), and ends with the line endin. Each instrument can be called by a score event
which starts with the character "i". For instance, this score line

i 1 0 3

calls instrument 1, starting at time 0, for 3 seconds. It is very important to understand that
such a call consists of two different stages: the initialization and the performance pass. 

At first, Csound initializes all the variables which begin with a i or a gi. This initialization pass is
done just once.

After this, the actual performance begins. During this performance, Csound calculates all the
time-varying values in the orchestra again and again. This is called the performance pass, and
each of these calculations is called a control cycle (also abbreviated as k-cycle or k-loop). The
time for each control cycle depends on the ksmps constant in the orchestra header. If
ksmps=10 (which is the default), the performance pass consists of 10 samples. If your sample
rate is 44100, with ksmps=10 you will have 4410 control cycles per second (kr=4410), and each
of them has a duration of 1/4410 = 0.000227 seconds. On each control cycle, all the variables
starting with k, gk, a and ga are updated (see the next chapter about variables for more
explanations).

This is an example instrument, containing i-, k- and a-variables:

   EXAMPLE 03A01.csd  

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 441
nchnls = 2
0dbfs = 1
instr 1
iAmp      =         p4 ;amplitude taken from the 4th parameter of the score line
iFreq     =         p5 ;frequency taken from the 5th parameter
kPan      line      0, p3, 1 ;move from 0 to 1 in the duration of this instrument call (p3)
aNote     oscils    iAmp, iFreq, 0 ;create an audio signal
aL, aR    pan2      aNote, kPan ;let the signal move from left to right
          outs      aL, aR ;write it to the output
endin
</CsInstruments>
<CsScore>
i 1 0 3 0.2 443
</CsScore>
</CsoundSynthesizer>

As ksmps=441, each control cycle is 0.01 seconds long (441/44100). So this happens when the
instrument call is performed:
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Here is another simple example which shows the internal loop at each k-cycle. As we print out
the value at each control cycle, ksmps is very high here, so that each k-pass takes 0.1
seconds. The init opcode can be used to set a k-variable to a certain value first (at the init-
pass), otherwise it will have the default value of zero until it is assigned something else during
the first k-cycle.

   EXAMPLE 03A02.csd   

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 4410

instr 1
kcount    init      0; set kcount to 0 first
kcount    =         kcount + 1; increase at each k-pass
          printk    0, kcount; print the value
endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>

Your output should contain the lines:

i   1 time     0.10000:     1.00000 
i   1 time     0.20000:     2.00000 
i   1 time     0.30000:     3.00000 
i   1 time     0.40000:     4.00000 
i   1 time     0.50000:     5.00000 
i   1 time     0.60000:     6.00000 
i   1 time     0.70000:     7.00000 
i   1 time     0.80000:     8.00000 
i   1 time     0.90000:     9.00000 
i   1 time     1.00000:    10.00000 

Try changing the ksmps value from 4410 to 44100 and to 2205 and observe the difference. 

REINITIALIZATION

If you try the example above with i-variables, you will have no success, because the i-variable
is calculated just once:
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   EXAMPLE 03A03.csd   

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 4410

instr 1
icount    init      0; set icount to 0 first
icount    =         icount + 1; increase
          print     icount; print the value
endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>

The printout is:

instr 1:  icount = 1.000 

Nevertheless it is possible to refresh even an i-rate variable in Csound. This is done with the
reinit opcode. You must mark a section by a label (any name followed by a colon). Then the
reinit statement will cause the i-variable to refresh. Use rireturn to end the reinit section.

   EXAMPLE 03A04.csd   

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 4410

instr 1
icount    init      0; set icount to 0 first
new:
icount    =         icount + 1; increase
          print     icount; print the value
          reinit    new; reinit the section each k-pass
          rireturn
endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>

This prints now:

instr 1:  icount = 1.000 
instr 1:  icount = 2.000 
instr 1:  icount = 3.000 
instr 1:  icount = 4.000 
instr 1:  icount = 5.000 
instr 1:  icount = 6.000 
instr 1:  icount = 7.000 
instr 1:  icount = 8.000 
instr 1:  icount = 9.000 
instr 1:  icount = 10.000 
instr 1:  icount = 11.000 

ORDER OF CALCULATION
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Sometimes it is very important to observe the order in which the instruments of a Csound
orchestra are evaluated. This order is given by the instrument numbers. So, if you want to
use during the same performance pass a value in instrument 10 which is generated by another
instrument, you must not give this instrument the number 11 or higher. In the following
example, first instrument 10 uses a value of instrument 1, then a value of instrument 100.

   EXAMPLE 03A05.csd  

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 4410

instr 1
gkcount   init      0 ;set gkcount to 0 first
gkcount   =         gkcount + 1 ;increase
endin

instr 10
          printk    0, gkcount ;print the value
endin

instr 100
gkcount   init      0 ;set gkcount to 0 first
gkcount   =         gkcount + 1 ;increase
endin

</CsInstruments>
<CsScore>
;first i1 and i10
i 1 0 1
i 10 0 1
;then i100 and i10
i 100 1 1
i 10 1 1
</CsScore>
</CsoundSynthesizer>

The output shows the difference:

new alloc for instr 1: 
new alloc for instr 10: 
 i  10 time     0.10000:     1.00000 
 i  10 time     0.20000:     2.00000 
 i  10 time     0.30000:     3.00000 
 i  10 time     0.40000:     4.00000 
 i  10 time     0.50000:     5.00000 
 i  10 time     0.60000:     6.00000 
 i  10 time     0.70000:     7.00000 
 i  10 time     0.80000:     8.00000 
 i  10 time     0.90000:     9.00000 
 i  10 time     1.00000:    10.00000 
B  0.000 ..  1.000 T  1.000 TT  1.000 M:      0.0 
new alloc for instr 100: 
 i  10 time     1.10000:     0.00000 
 i  10 time     1.20000:     1.00000 
 i  10 time     1.30000:     2.00000 
 i  10 time     1.50000:     4.00000 
 i  10 time     1.60000:     5.00000 
 i  10 time     1.70000:     6.00000 
 i  10 time     1.80000:     7.00000 
 i  10 time     1.90000:     8.00000 
 i  10 time     2.00000:     9.00000 
B  1.000 ..  2.000 T  2.000 TT  2.000 M:      0.0 

ABOUT "I-TIME" AND "K-RATE" OPCODES
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It is often confusing for the beginner that there are some opcodes which only work at "i-time"
or "i-rate", and others which only work at "k-rate" or "k-time". For instance, if the user wants
to print the value of any variable, he thinks: "OK - print it out." But Csound replies: "Please,
tell me first if you want to print an i- or a k-variable" (see the following section about the
variable types).

For instance, the print opcode just prints variables which are updated at each initialization pass
("i-time" or "i-rate"). If you want to print a variable which is updated at each control cycle ("k-
rate" or "k-time"), you need its counterpart printk. (As the performance pass is usually
updated some thousands times per second, you have an additional parameter in printk, telling
Csound how often you want to print out the k-values.)

So, some opcodes are just for i-rate variables, like filelen or ftgen. Others are just for k-rate
variables like metro or max_k. Many opcodes have variants for either i-rate-variables or k-
rate-variables, like printf_i and printf, sprintf and sprintfk, strindex and strindexk.

Most of the Csound opcodes are able to work either at i-time or at k-time or at audio-rate,
but you have to think carefully what you need, as the behaviour will be very different if you
choose the i-, k- or a-variante of an opcode. For example, the random opcode can work at all
three rates:

ires      random    imin, imax : works at "i-time"
kres      random    kmin, kmax : works at "k-rate"
ares      random    kmin, kmax : works at "audio-rate"

If you use the i-rate random generator, you will get one value for each note. For instance, if
you want to have a different pitch for each note you are generating, you will use this one.

If you use the k-rate random generator, you will get one new value on every control cycle. If
your sample rate is 44100 and your ksmps=10, you will get 4410 new values per second! If you
take this as pitch value for a note, you will hear nothing but a noisy jumping. If you want to
have a moving pitch, you can use the randomi variant of the k-rate random generator, which
can reduce the number of new values per second, and interpolate between them.

If you use the a-rate random generator, you will get as many new values per second as your
sample rate is. If you use it in the range of your 0 dB amplitude, you produce white noise.

   EXAMPLE 03A06.csd  

 
<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
0dbfs = 1
nchnls = 2

          seed      0 ;each time different seed
giSine    ftgen     0, 0, 2^10, 10, 1 ;sine table

instr 1 ;i-rate random
iPch      random    300, 600
aAmp      linseg    .5, p3, 0
aSine     poscil    aAmp, iPch, giSine
          outs      aSine, aSine
endin

instr 2 ;k-rate random: noisy
kPch      random    300, 600
aAmp      linseg    .5, p3, 0
aSine     poscil    aAmp, kPch, giSine
          outs      aSine, aSine
endin

instr 3 ;k-rate random with interpolation: sliding pitch
kPch      randomi   300, 600, 3
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aAmp      linseg    .5, p3, 0
aSine     poscil    aAmp, kPch, giSine
          outs      aSine, aSine
endin

instr 4 ;a-rate random: white noise
aNoise    random    -.1, .1
          outs      aNoise, aNoise
endin

</CsInstruments>
<CsScore>
i 1 0   .5
i 1 .25 .5
i 1 .5  .5
i 1 .75 .5
i 2 2   1
i 3 4   2
i 3 5   2
i 3 6   2
i 4 9   1
</CsScore>
</CsoundSynthesizer>

TIMELESSNESS AND TICK SIZE IN CSOUND 

In a way it is confusing to speak from "i-time". For Csound, "time" actually begins with the first
performance pass. The initalization time is actually the "time zero". Regardless how much
human time or CPU time is needed for the initialization pass, the Csound clock does not move
at all. This is the reason why you can use any i-time opcode with a zero duration (p3) in the
score:

   EXAMPLE 03A07.csd   

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz
instr 1
prints "%nHello Eternity!%n%n"
endin
</CsInstruments>
<CsScore>
i 1 0 0 ;let instrument 1 play for zero seconds ...
</CsScore>
</CsoundSynthesizer>

Csound's clock is the control cycle. The number of samples in one control cycle - given by the
ksmps value - is the smallest possible "tick" in Csound at k-rate. If your sample rate is 44100,
and you have 4410 samples in one control cycle (ksmps=4410), you will not be able to start a
k-event faster than each 1/10 second, because there is no k-time for Csound "between" two
control cycles. Try the following example with larger and smaller ksmps values:

   EXAMPLE 03A08.csd    

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 4410; try 44100 or 2205 instead

instr 1; prints the time once in each control cycle
kTimek   timek
kTimes   times
         printks    "Number of control cycles = %d%n", 0, kTimek
         printks    "Time = %f%n%n", 0, kTimes
endin
</CsInstruments>
<CsScore>
i 1 0 10
</CsScore>
</CsoundSynthesizer>
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Consider typical size of 32 for ksmps. When sample rate is 44100, a single tick will be less than
a millisecond. This should be sufficient for in most situations. If you need a more accurate time
resolution, just decrease the ksmps value. The cost of this smaller tick size is a smaller
computational efficiency. So your choice depends on the situation, and usually a ksmps of 32
represents a good tradeoff.

Of course the precision of writing samples (at a-rate) is in no way affected by the size of the
internal k-ticks. Samples are indeed written "in between" control cycles, because they are
vectors. So it can be necessary to use a-time variables instead of k-time variables in certain
situations. In the following example, the ksmps value is rather high (128). If you use a k-rate
variable for a fast moving envelope, you will hear a certain roughness (instrument 1) sometime
referred to as 'zipper' noise. If you use an a-rate variable instead, you will have a much
cleaner sound (instr 2).

   EXAMPLE 03A09.csd    

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 128 ;increase or decrease to hear the difference more or less evident
nchnls = 2
0dbfs = 1

instr 1 ;envelope at k-time
aSine     oscils    .5, 800, 0
kEnv      transeg   0, .1, 5, 1, .1, -5, 0
aOut      =         aSine * kEnv
          outs      aOut, aOut
endin

instr 2 ;envelope at a-time
aSine     oscils    .5, 800, 0
aEnv      transeg   0, .1, 5, 1, .1, -5, 0
aOut      =         aSine * aEnv
          outs      aOut, aOut
endin

</CsInstruments>
<CsScore>
r 5 ;repeat the following line 5 times
i 1 0 1
s ;end of section
r 5
i 2 0 1
e
</CsScore>
</CsoundSynthesizer>

14. LOCAL AND GLOBAL VARIABLES

VARIABLE TYPES

In Csound, there are several types of variables. It is important to understand the differences
of these types. There are
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initialization variables, which are updated at each initialization pass, i.e. at the beginning
of each note or score event. They start with the character i. To this group count also
the score parameter fields, which always starts with a p, followed by any number: p1
refers to the first parameter field in the score, p2 to the second one, and so on. 
control variables, which are updated at each control cycle (performance pass). They
start with the character k.
audio variables, which are also updated at each control cycle, but instead of a single
number (like control variables) they consist of a vector (a collection of numbers), having
in this way one number for each sample. They start with the character a.
string variables, which are updated either at i-time or at k-time (depending on the
opcode which produces a string). They start with the character S.

Except these four standard types, there are two other variable types which are used for
spectral processing:

f-variables are used for the streaming phase vocoder opcodes (all starting with the
characters pvs), which are very important for doing realtime FFT (Fast Fourier
Transformation) in Csound. They are updated at k-time, but their values depend also on
the FFT parameters like frame size and overlap. 
w-variables are used in some older spectral processing opcodes.

The following example exemplifies all the variable types (except the w-type):

   EXAMPLE 03B01.csd    

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
0dbfs = 1
nchnls = 2

          seed      0; random seed each time different

  instr 1; i-time variables
iVar1     =         p2; second parameter in the score
iVar2     random    0, 10; random value between 0 and 10
iVar      =         iVar1 + iVar2; do any math at i-rate
          print     iVar1, iVar2, iVar
  endin

  instr 2; k-time variables
kVar1     line       0, p3, 10; moves from 0 to 10 in p3
kVar2     random     0, 10; new random value each control-cycle
kVar      =          kVar1 + kVar2; do any math at k-rate
printks   "kVar1 = %.3f, kVar2 = %.3f, kVar = %.3f%n", 0.1, kVar1, kVar2, kVar ;print each 0.1 seconds
  endin

  instr 3; a-variables
aVar1     oscils     .2, 400, 0; first audio signal: sine
aVar2     rand       1; second audio signal: noise
aVar3     butbp      aVar2, 1200, 12; third audio signal: noise filtered
aVar      =          aVar1 + aVar3; audio variables can also be added
          outs       aVar, aVar; write to sound card
  endin

  instr 4; S-variables
iMyVar    random     0, 10; one random value per note
kMyVar    random     0, 10; one random value per each control-cycle
 ;S-variable updated just at init-time
SMyVar1   sprintf   "This string is updated just at init-time: kMyVar = %d\n", iMyVar
          printf_i  "%s", 1, SMyVar1
 ;S-variable updates at each control-cycle
          printks   "This string is updated at k-time: kMyVar = %.3f\n", .1, kMyVar
  endin

  instr 5; f-variables
aSig      rand       .2; audio signal (noise)
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; f-signal by FFT-analyzing the audio-signal
fSig1     pvsanal    aSig, 1024, 256, 1024, 1
; second f-signal (spectral bandpass filter)
fSig2     pvsbandp   fSig1, 350, 400, 400, 450
aOut      pvsynth    fSig2; change back to audio signal
          outs       aOut*20, aOut*20
  endin

</CsInstruments>
<CsScore>
; p1    p2    p3
i 1     0     0.1
i 1     0.1   0.1
i 2     1     1
i 3     2     1
i 4     3     1
i 5     4     1
</CsScore>
</CsoundSynthesizer>

You can think of variables as named connectors between opcodes. You can connect the
output from an opcode to the input of another. The type of connector (audio, control, etc.) can
be known from the first letter of its name.

For a more detailed discussion, see the article An overview Of Csound Variable Types by
Andrés Cabrera in the Csound Journal, and the page about Types, Constants and Variables in
the Canonical Csound Manual. 

LOCAL SCOPE 

The scope of these variables is usually the instrument in which they are defined. They are
local variables. In the following example, the variables in instrument 1 and instrument 2 have
the same names, but different values.

   EXAMPLE 03B02.csd     

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 4410; very high because of printing
nchnls = 2
0dbfs = 1

  instr 1
;i-variable
iMyVar    init      0
iMyVar    =         iMyVar + 1
          print     iMyVar
;k-variable
kMyVar    init      0
kMyVar    =         kMyVar + 1
          printk    0, kMyVar
;a-variable
aMyVar    oscils    .2, 400, 0
          outs      aMyVar, aMyVar
;S-variable updated just at init-time
SMyVar1   sprintf   "This string is updated just at init-time: kMyVar = %d\n", i(kMyVar)
          printf    "%s", kMyVar, SMyVar1
;S-variable updated at each control-cycle
SMyVar2   sprintfk  "This string is updated at k-time: kMyVar = %d\n", kMyVar
          printf    "%s", kMyVar, SMyVar2
  endin

  instr 2
;i-variable
iMyVar    init      100
iMyVar    =         iMyVar + 1
          print     iMyVar
;k-variable
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kMyVar    init      100
kMyVar    =         kMyVar + 1
          printk    0, kMyVar
;a-variable
aMyVar    oscils    .3, 600, 0
          outs      aMyVar, aMyVar
;S-variable updated just at init-time
SMyVar1   sprintf   "This string is updated just at init-time: kMyVar = %d\n", i(kMyVar)
          printf    "%s", kMyVar, SMyVar1
;S-variable updated at each control-cycle
SMyVar2   sprintfk  "This string is updated at k-time: kMyVar = %d\n", kMyVar
          printf    "%s", kMyVar, SMyVar2
  endin

</CsInstruments>
<CsScore>
i 1 0 .3
i 2 1 .3
</CsScore>
</CsoundSynthesizer>

 This is the output (first the output at init-time by the print opcode, then at each k-cycle the
output of printk and the two printf opcodes): 

new alloc for instr 1: 
instr 1:  iMyVar = 1.000 
 i   1 time     0.10000:     1.00000 
This string is updated just at init-time: kMyVar = 0 
This string is updated at k-time: kMyVar = 1 
 i   1 time     0.20000:     2.00000 
This string is updated just at init-time: kMyVar = 0 
This string is updated at k-time: kMyVar = 2 
 i   1 time     0.30000:     3.00000 
This string is updated just at init-time: kMyVar = 0 
This string is updated at k-time: kMyVar = 3 
 B  0.000 ..  1.000 T  1.000 TT  1.000 M:  0.20000  0.20000 
new alloc for instr 2: 
instr 2:  iMyVar = 101.000 
 i   2 time     1.10000:   101.00000 
This string is updated just at init-time: kMyVar = 100 
This string is updated at k-time: kMyVar = 101 
 i   2 time     1.20000:   102.00000 
This string is updated just at init-time: kMyVar = 100 
This string is updated at k-time: kMyVar = 102 
 i   2 time     1.30000:   103.00000 
This string is updated just at init-time: kMyVar = 100 
This string is updated at k-time: kMyVar = 103 
B  1.000 ..  1.300 T  1.300 TT  1.300 M:  0.29998  0.29998

GLOBAL SCOPE

If you need variables which are recognized beyond the scope of an instrument, you must
define them as global. This is done by prefixing the character g before the types i, k, a or S.
See the following example:

   EXAMPLE 03B03.csd     

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 4410; very high because of printing
nchnls = 2
0dbfs = 1

 ;global scalar variables can now be inititalized in the header
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giMyVar   init      0
gkMyVar   init      0

  instr 1
 ;global i-variable
giMyVar   =         giMyVar + 1
          print     giMyVar
 ;global k-variable
gkMyVar   =         gkMyVar + 1
          printk    0, gkMyVar
 ;global S-variable updated just at init-time
gSMyVar1  sprintf   "This string is updated just at init-time: gkMyVar = %d\n", i(gkMyVar)
          printf    "%s", gkMyVar, gSMyVar1
 ;global S-variable updated at each control-cycle
gSMyVar2  sprintfk  "This string is updated at k-time: gkMyVar = %d\n", gkMyVar
          printf    "%s", gkMyVar, gSMyVar2
  endin

  instr 2
 ;global i-variable, gets value from instr 1
giMyVar   =         giMyVar + 1
          print     giMyVar
 ;global k-variable, gets value from instr 1
gkMyVar   =         gkMyVar + 1
          printk    0, gkMyVar
 ;global S-variable updated just at init-time, gets value from instr 1
          printf    "Instr 1 tells: '%s'\n", gkMyVar, gSMyVar1
 ;global S-variable updated at each control-cycle, gets value from instr 1
          printf    "Instr 1 tells: '%s'\n\n", gkMyVar, gSMyVar2
  endin

</CsInstruments>
<CsScore>
i 1 0 .3
i 2 0 .3
</CsScore>
</CsoundSynthesizer>

The output shows the global scope, as instrument 2 uses the values which have been changed
by instrument 1 in the same control cycle:

new alloc for instr 1: 
instr 1:  giMyVar = 1.000 
new alloc for instr 2: 
instr 2:  giMyVar = 2.000 
 i   1 time     0.10000:     1.00000 
This string is updated just at init-time: gkMyVar = 0 
This string is updated at k-time: gkMyVar = 1 
 i   2 time     0.10000:     2.00000 
Instr 1 tells: 'This string is updated just at init-time: gkMyVar = 0' 
Instr 1 tells: 'This string is updated at k-time: gkMyVar = 1' 

 i   1 time     0.20000:     3.00000 
This string is updated just at init-time: gkMyVar = 0 
This string is updated at k-time: gkMyVar = 3 
 i   2 time     0.20000:     4.00000 
Instr 1 tells: 'This string is updated just at init-time: gkMyVar = 0' 
Instr 1 tells: 'This string is updated at k-time: gkMyVar = 3' 

 i   1 time     0.30000:     5.00000 
This string is updated just at init-time: gkMyVar = 0 
This string is updated at k-time: gkMyVar = 5 
 i   2 time     0.30000:     6.00000 
Instr 1 tells: 'This string is updated just at init-time: gkMyVar = 0' 
Instr 1 tells: 'This string is updated at k-time: gkMyVar = 5' 

HOW TO WORK WITH GLOBAL AUDIO VARIABLES
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Some special considerations must be taken if you work with global audio variables. Actually,
Csound behaves basically the same whether you work with a local or a global audio variable.
But usually you work with global audio variables if you want to add several audio signals to a
global signal, and that makes a difference.

The next few examples are going into a bit more detail. If you just want to see the result (=
global audio usually must be cleared), you can skip the next examples and just go to the last
one of this section.

It should be understood first that a global audio variable is treated the same by Csound if it is
applied like a local audio signal:

   EXAMPLE 03B04.csd      

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

  instr 1; produces a 400 Hz sine
gaSig     oscils    .1, 400, 0
  endin

  instr 2; outputs gaSig
          outs      gaSig, gaSig
  endin

</CsInstruments>
<CsScore>
i 1 0 3
i 2 0 3
</CsScore>
</CsoundSynthesizer>

Of course, there is absolutely no need to use a global variable in this case. If you do it, you
risk that your audio will be overwritten by an instrument with a higher number that uses the
same variable name. In the following example, you will just hear a 600 Hz sine tone, because
the 400 Hz sine of instrument 1 is overwritten by the 600 Hz sine of instrument 2:

   EXAMPLE 03B05.csd       

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

  instr 1; produces a 400 Hz sine
gaSig     oscils    .1, 400, 0
  endin

  instr 2; overwrites gaSig with 600 Hz sine
gaSig     oscils    .1, 600, 0
  endin

  instr 3; outputs gaSig
          outs      gaSig, gaSig
  endin

</CsInstruments>
<CsScore>
i 1 0 3
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i 2 0 3
i 3 0 3
</CsScore>
</CsoundSynthesizer>

In general, you will use a global audio variable like a bus to which several local audio signal can
be added. It's this addition of a global audio signal to its previous state which can cause some
trouble. Let's first see a simple example of a control signal to understand what is happening:

   EXAMPLE 03B06.csd        

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 4410; very high because of printing
nchnls = 2
0dbfs = 1

  instr 1
kSum      init      0; sum is zero at init pass
kAdd      =         1; control signal to add
kSum      =         kSum + kAdd; new sum in each k-cycle
          printk    0, kSum; print the sum
  endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>

In this case, the "sum bus" kSum increases at each control cycle by 1, because it adds the
kAdd signal (which is always 1) in each k-pass to its previous state. It is no different if this is
done by a local k-signal, like here, or by a global k-signal, like in the next example:

   EXAMPLE 03B07.csd         

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 4410; very high because of printing
nchnls = 2
0dbfs = 1

gkSum     init      0; sum is zero at init

  instr 1
gkAdd     =         1; control signal to add
  endin

  instr 2
gkSum     =         gkSum + gkAdd; new sum in each k-cycle
          printk    0, gkSum; print the sum
  endin

</CsInstruments>
<CsScore>
i 1 0 1
i 2 0 1
</CsScore>
</CsoundSynthesizer>

What is happening now when we work with audio signals instead of control signals in this way,
repeatedly adding a signal to its previous state? Audio signals in Csound are a collection of
numbers (a vector). The size of this vector is given by the ksmps constant. If your sample rate
is 44100, and ksmps=100, you will calculate 441 times in one second a vector which consists of
100 numbers, indicating the amplitude of each sample.
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So, if you add an audio signal to its previous state, different things can happen, depending on
what is the present state of the vector and what was its previous state. If the previous state
(with ksmps=9) has been [0 0.1 0.2 0.1 0 -0.1 -0.2 -0.1 0], and the present state is the same,
you will get a signal which is twice as strong: [0 0.2 0.4 0.2 0 -0.2 -0.4 -0.2 0]. But if the
present state is [0 -0.1 -0.2 -0.1 0 0.1 0.2 0.1 0], you wil just get zero's if you add it. This is
shown in the next example with a local audio variable, and then in the following example with
a global audio variable.

   EXAMPLE 03B08.csd          

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 4410; very high because of printing (change to 441 to see the difference)
nchnls = 2
0dbfs = 1

  instr 1
 ;initialize a general audio variable
aSum      init      0
 ;produce a sine signal (change frequency to 401 to see the difference)
aAdd      oscils    .1, 400, 0
 ;add it to the general audio (= the previous vector)
aSum      =         aSum + aAdd
kmax      max_k     aSum, 1, 1; calculate maximum
          printk    0, kmax; print it out
          outs      aSum, aSum
  endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>

   EXAMPLE 03B09.csd         

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 4410; very high because of printing (change to 441 to see the difference)
nchnls = 2
0dbfs = 1

 ;initialize a general audio variable
gaSum     init      0

  instr 1
 ;produce a sine signal (change frequency to 401 to see the difference)
aAdd      oscils    .1, 400, 0
 ;add it to the general audio (= the previous vector)
gaSum     =         gaSum + aAdd
  endin

  instr 2
kmax      max_k     gaSum, 1, 1; calculate maximum
          printk    0, kmax; print it out
          outs      gaSum, gaSum
  endin

</CsInstruments>
<CsScore>
i 1 0 1
i 2 0 1
</CsScore>
</CsoundSynthesizer>
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In both cases, you get a signal which increases each 1/10 second, because you have 10 control
cycles per second (ksmps=4410), and the frequency of 400 Hz can evenly be divided by this. If
you change the ksmps value to 441, you will get a signal which increases much faster and is
out of range after 1/10 second. If you change the frequency to 401 Hz, you will get a signal
which increases first, and then decreases, because each audio vector has 40.1 cycles of the
sine wave. So the phases are shifting; first getting stronger and then weaker. If you change
the frequency to 10 Hz, and then to 15 Hz (at ksmps=44100), you cannot hear anything, but if
you render to file, you can see the whole process of either enforcing or erasing quite clear:

Self-reinforcing global audio signal on account of its state in one control cycle being the same as
in the previous one 

Partly self-erasing global audio signal because of phase inversions in two subsequent control
cycles 

 

So the result of all is: If you work with global audio variables in a way that you add several
local audio signals to a global audio variable (which works like a bus), you must clear this global
bus at each control cycle. As in Csound all the instruments are calculated in ascending order, it
should be done either at the beginning of the first, or at the end of the last instrument.
Perhaps it is the best idea to declare all global audio variables in the orchestra header first,
and then clear them in an "always on" instrument with the highest number of all the
instruments used. This is an example of a typical situation:

   EXAMPLE 03B10.csd 

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
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 ;initialize the global audio variables
gaBusL    init      0
gaBusR    init      0
 ;make the seed for random values each time different
          seed      0

  instr 1; produces short signals
 loop:
iDur      random    .3, 1.5
          timout    0, iDur, makenote
          reinit    loop
 makenote:
iFreq     random    300, 1000
iVol      random    -12, -3; dB
iPan      random    0, 1; random panning for each signal
aSin      oscil3    ampdb(iVol), iFreq, 1
aEnv      transeg   1, iDur, -10, 0; env in a-rate is cleaner
aAdd      =         aSin * aEnv
aL, aR    pan2      aAdd, iPan
gaBusL    =         gaBusL + aL; add to the global audio signals
gaBusR    =         gaBusR + aR
  endin

  instr 2; produces short filtered noise signals (4 partials)
 loop:
iDur      random    .1, .7
          timout    0, iDur, makenote
          reinit    loop
 makenote:
iFreq     random    100, 500
iVol      random    -24, -12; dB
iPan      random    0, 1
aNois     rand      ampdb(iVol)
aFilt     reson     aNois, iFreq, iFreq/10
aRes      balance   aFilt, aNois
aEnv      transeg   1, iDur, -10, 0
aAdd      =         aRes * aEnv
aL, aR    pan2      aAdd, iPan
gaBusL    =         gaBusL + aL; add to the global audio signals
gaBusR    =         gaBusR + aR
  endin

  instr 3; reverb of gaBus and output
aL, aR    freeverb  gaBusL, gaBusR, .8, .5
          outs      aL, aR
  endin

  instr 100; clear global audios at the end
          clear     gaBusL, gaBusR
  endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1 .5 .3 .1
i 1 0 20
i 2 0 20
i 3 0 20
i 100 0 20
</CsScore>
</CsoundSynthesizer>

THE CHN OPCODES FOR GLOBAL VARIABLES

Instead of using the traditional g-variables for any values or signals which are to transfer
between several instruments, it is also possible to use the chn opcodes. An i-, k-, a- or S-
value or signal can be set by chnset and received by chnget. One advantage is to have strings
as names, so that you can choose intuitive names.

For audio variables, instead of performing an addition, you can use the chnmix opcode. For
clearing an audio variable, the chnclear opcode can be used.

   EXAMPLE 03B11.csd  
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<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

  instr 1; send i-values
          chnset    1, "sio"
          chnset    -1, "non"
  endin

  instr 2; send k-values
kfreq     randomi   100, 300, 1
          chnset    kfreq, "cntrfreq"
kbw       =         kfreq/10
          chnset    kbw, "bandw"
  endin

  instr 3; send a-values
anois     rand      .1
          chnset    anois, "noise"
 loop:
idur      random    .3, 1.5
          timout    0, idur, do
          reinit    loop
 do:
ifreq     random    400, 1200
iamp      random    .1, .3
asig      oscils    iamp, ifreq, 0
aenv      transeg   1, idur, -10, 0
asine     =         asig * aenv
          chnset    asine, "sine"
  endin

  instr 11; receive some chn values and send again
ival1     chnget    "sio"
ival2     chnget    "non"
          print     ival1, ival2
kcntfreq  chnget    "cntrfreq"
kbandw    chnget    "bandw"
anoise    chnget    "noise"
afilt     reson     anoise, kcntfreq, kbandw
afilt     balance   afilt, anoise
          chnset    afilt, "filtered"
  endin

  instr 12; mix the two audio signals
amix1     chnget     "sine"
amix2     chnget     "filtered"
          chnmix     amix1, "mix"
          chnmix     amix2, "mix"
  endin

  instr 20; receive and reverb
amix      chnget     "mix"
aL, aR    freeverb   amix, amix, .8, .5
          outs       aL, aR
  endin

  instr 100; clear
          chnclear   "mix"
  endin

</CsInstruments>
<CsScore>
i 1 0 20
i 2 0 20
i 3 0 20
i 11 0 20
i 12 0 20
i 20 0 20
i 100 0 20
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</CsScore>
</CsoundSynthesizer>

15. CONTROL STRUCTURES
In a way, control structures are the core of a programming language. The fundamental
element in each language is the conditional if branch. Actually all other control structures like
for-, until- or while-loops can be traced back to if-statements.

So, Csound provides mainly the if-statement; either in the usual if-then-else form, or in the
older way of an if-goto statement. These ones will be covered first. Though all necessary loops
can be built just by if-statements, Csound's loop facility offers a more comfortable way of
performing loops. They will be introduced in the Loop section of this chapter. At least, time
loops are shown, which are particulary important in audio programming languages.

IF I-TIME THEN NOT K-TIME!

The fundamental difference in Csound between i-time and k-time which has been explained in
a previous chapter, must be regarded very carefully when you work with control structures. If
you make a conditional branch at i-time, the condition will be tested just once for each
note, at the initialization pass. If you make a conditional branch at k-time, the condition will
be tested again and again in each control-cycle.

For instance, if you test a soundfile whether it is mono or stereo, this is done at init-time. If
you test an amplitude value to be below a certain threshold, it is done at performance time
(k-time). If you get user-input by a scroll number, this is also a k-value, so you need a k-
condition.

Thus, all if and loop opcodes have an "i" and a "k" descendant. In the next few sections, a
general introduction into the different control tools is given, followed by examples both at i-
time and at k-time for each tool.

IF - THEN - [ELSEIF - THEN -] ELSE

The use of the if-then-else statement is very similar to other programming languages. Note
that in Csound, "then " must be written in the same line as "if" and the expression to be
tested, and that you must close the if-block with an "endif" statement on a new line:

if <condition> then
...
else
...
endif

It is also possible to have no "else" statement:

if <condition> then
...
endif

Or you can have one or more "elseif-then" statements in between:

if <condition1> then
...
elseif <condition2> then
...
else
...
endif

If statements can also be nested. Each level must be closed with an "endif". This is an
example with three levels:

if <condition1> then; first condition opened
 if <condition2> then; second condition openend
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  if <condition3> then; third condition openend
  ...
  else
  ...
  endif; third condition closed
 elseif <condition2a> then
 ...
 endif; second condition closed
else
...
endif; first condition closed

I-RATE EXAMPLES

A typical problem in Csound: You have either mono or stereo files, and want to read both with
a stereo output. For the real stereo ones that means: use soundin (diskin / diskin2) with two
output arguments. For the mono ones it means: use soundin / diskin / diskin2 with one output
argument, and throw it to both output channels:

   EXAMPLE 03C01.csd 

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

  instr 1
Sfile     =          "/Joachim/Materialien/SamplesKlangbearbeitung/Kontrabass.aif" ;your soundfile path here
ifilchnls filenchnls Sfile
 if ifilchnls == 1 then ;mono
aL        soundin    Sfile
aR        =          aL
 else ;stereo
aL, aR    soundin    Sfile
 endif
          outs       aL, aR
  endin

</CsInstruments>
<CsScore>
i 1 0 5
</CsScore>
</CsoundSynthesizer>

If you use QuteCsound, you can browse in the widget panel for the soundfile. See the
corresponding example in the QuteCsound Example menu.

K-RATE EXAMPLES

The following example establishes a moving gate between 0 and 1. If the gate is above 0.5, the
gate opens and you hear a tone.  If the gate is equal or below 0.5, the gate closes, and you
hear nothing.

   EXAMPLE 03C02.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

          seed      0; random values each time different
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giTone    ftgen     0, 0, 2^10, 10, 1, .5, .3, .1

  instr 1
kGate     randomi   0, 1, 3; moves between 0 and 1 (3 new values per second)
kFreq     randomi   300, 800, 1; moves between 300 and 800 hz (1 new value per sec)
kdB       randomi   -12, 0, 5; moves between -12 and 0 dB (5 new values per sec)
aSig      oscil3    1, kFreq, giTone
kVol      init      0
 if kGate > 0.5 then; if kGate is larger than 0.5
kVol      =         ampdb(kdB); open gate
 else
kVol      =         0; otherwise close gate
 endif
kVol      port      kVol, .02; smooth volume curve to avoid clicks
aOut      =         aSig * kVol
          outs      aOut, aOut
  endin

</CsInstruments>
<CsScore>
i 1 0 30
</CsScore>
</CsoundSynthesizer>

SHORT FORM: (A V B ? X : Y)

If you need an if-statement to give a value to an (i- or k-) variable, you can also use a
traditional short form in parentheses: (a v b ? x : y). It asks whether the condition a or b is
true. If a, the value is set to x; if b, to y. For instance, the last example could be written in
this way:

   EXAMPLE 03C03.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

          seed      0
giTone    ftgen     0, 0, 2^10, 10, 1, .5, .3, .1

  instr 1
kGate     randomi   0, 1, 3; moves between 0 and 1 (3 new values per second)
kFreq     randomi   300, 800, 1; moves between 300 and 800 hz (1 new value per sec)
kdB       randomi   -12, 0, 5; moves between -12 and 0 dB (5 new values per sec)
aSig      oscil3    1, kFreq, giTone
kVol      init      0
kVol      =         (kGate > 0.5 ? ampdb(kdB) : 0); short form of condition
kVol      port      kVol, .02; smooth volume curve to avoid clicks
aOut      =         aSig * kVol
          outs      aOut, aOut
  endin

</CsInstruments>
<CsScore>
i 1 0 20
</CsScore>
</CsoundSynthesizer>

IF - GOTO
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An older way of performing a conditional branch - but still useful in certain cases - is an "if"
statement which is not followed by a "then", but by a label name. The "else" construction
follows (or doesn't follow) in the next line. Like the if-then-else statement, the if-goto works
either at i-time or at k-time. You should declare the type by either using igoto or kgoto.
Usually you need an additional igoto/kgoto statement for omitting the "else" block if the first
condition is true. This is the general syntax:

i-time

if <condition> igoto this; same as if-then
 igoto that; same as else
this: ;the label "this" ...
...
igoto continue ;skip the "that" block
that: ; ... and the label "that" must be found
...
continue: ;go on after the conditional branch
...

k-time

if <condition> kgoto this; same as if-then
 kgoto that; same as else
this: ;the label "this" ...
...
kgoto continue ;skip the "that" block
that: ; ... and the label "that" must be found
...
continue: ;go on after the conditional branch
...

I-RATE EXAMPLES

This is the same example as above in the if-then-else syntax for a branch depending on a
mono or stereo file. If you just want to know whether a file is mono or stereo, you can use
the "pure" if-igoto statement:

   EXAMPLE 03C04.csd 

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

  instr 1
Sfile     =          "/Joachim/Materialien/SamplesKlangbearbeitung/Kontrabass.aif"
ifilchnls filenchnls Sfile
if ifilchnls == 1 igoto mono; condition if true
 igoto stereo; else condition
mono:
          prints     "The file is mono!%n"
          igoto      continue
stereo:
          prints     "The file is stereo!%n"
continue:
  endin

</CsInstruments>
<CsScore>
i 1 0 0
</CsScore>
</CsoundSynthesizer>

But if you want to play the file, you must also use a k-rate if-kgoto, because you have not
just an action at i-time (initializing the soundin opcode) but also at k-time (producing an audio
signal). So the code in this case is much more cumbersome than with the if-then-else facility
shown previously.

   EXAMPLE 03C05.csd 
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<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

  instr 1
Sfile     =          "/Joachim/Materialien/SamplesKlangbearbeitung/Kontrabass.aif"
ifilchnls filenchnls Sfile
 if ifilchnls == 1 kgoto mono
  kgoto stereo
 if ifilchnls == 1 igoto mono; condition if true
  igoto stereo; else condition
mono:
aL        soundin    Sfile
aR        =          aL
          igoto      continue
          kgoto      continue
stereo:
aL, aR    soundin    Sfile
continue:
          outs       aL, aR
  endin

</CsInstruments>
<CsScore>
i 1 0 5
</CsScore>
</CsoundSynthesizer>

K-RATE EXAMPLES

This is the same example as above in the if-then-else syntax for a moving gate between 0
and 1:

   EXAMPLE 03C06.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

          seed      0
giTone    ftgen     0, 0, 2^10, 10, 1, .5, .3, .1

  instr 1
kGate     randomi   0, 1, 3; moves between 0 and 1 (3 new values per second)
kFreq     randomi   300, 800, 1; moves between 300 and 800 hz (1 new value per sec)
kdB       randomi   -12, 0, 5; moves between -12 and 0 dB (5 new values per sec)
aSig      oscil3    1, kFreq, giTone
kVol      init      0
 if kGate > 0.5 kgoto open; if condition is true
  kgoto close; "else" condition
open:
kVol      =         ampdb(kdB)
kgoto continue
close:
kVol      =         0
continue:
kVol      port      kVol, .02; smooth volume curve to avoid clicks
aOut      =         aSig * kVol
          outs      aOut, aOut
  endin
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</CsInstruments>
<CsScore>
i 1 0 30
</CsScore>
</CsoundSynthesizer>

LOOPS

Loops can be built either at i-time or at k-time just with the "if" facility. The following example
shows an i-rate and a k-rate loop created using the if-i/kgoto facility:

   EXAMPLE 03C07.csd 

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

  instr 1 ;i-time loop: counts from 1 until 10 has been reached
icount    =         1
count:
          print     icount
icount    =         icount + 1
 if icount < 11 igoto count
          prints    "i-END!%n"
  endin

  instr 2 ;k-rate loop: counts in the 100th k-cycle from 1 to 11
kcount    init      0
ktimek    timeinstk ;counts k-cycle from the start of this instrument
 if ktimek == 100 kgoto loop
  kgoto noloop
loop:
          printks   "k-cycle %d reached!%n", 0, ktimek
kcount    =         kcount + 1
          printk2   kcount
 if kcount < 11 kgoto loop
          printks   "k-END!%n", 0
noloop:
  endin

</CsInstruments>
<CsScore>
i 1 0 0
i 2 0 1
</CsScore>
</CsoundSynthesizer>

But Csound offers a slightly simpler syntax for this kind of i-rate or k-rate loops. There are
four variants of the loop opcode. All four refer to a label as the starting point of the loop, an
index variable as a counter, an increment or decrement, and finally a reference value (maximum
or minimum) as comparision:

loop_lt counts upwards and looks if the index variable is lower than the reference value;
loop_le also counts upwards and looks if the index is lower than or equal to the
reference value;
loop_gt counts downwards and looks if the index is greater than the reference value;
loop_ge also counts downwards and looks if the index is greater than or equal to the
reference value.

As always, all four opcodes can be applied either at i-time or at k-time. Here are some
examples, first for i-time loops, and then for k-time loops.

I-RATE EXAMPLES

The following .csd provides a simple example for all four loop opcodes:

   EXAMPLE 03C08.csd 

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz
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  instr 1 ;loop_lt: counts from 1 upwards and checks if < 10
icount    =         1
loop:
          print     icount
          loop_lt   icount, 1, 10, loop
          prints    "Instr 1 terminated!%n"
  endin

  instr 2 ;loop_le: counts from 1 upwards and checks if <= 10
icount    =         1
loop:
          print     icount
          loop_le   icount, 1, 10, loop
          prints    "Instr 2 terminated!%n"
  endin

  instr 3 ;loop_gt: counts from 10 downwards and checks if > 0
icount    =         10
loop:
          print     icount
          loop_gt   icount, 1, 0, loop
          prints    "Instr 3 terminated!%n"
  endin

  instr 4 ;loop_ge: counts from 10 downwards and checks if >= 0
icount    =         10
loop:
          print     icount
          loop_ge   icount, 1, 0, loop
          prints    "Instr 4 terminated!%n"
  endin

</CsInstruments>
<CsScore>
i 1 0 0
i 2 0 0
i 3 0 0
i 4 0 0
</CsScore>
</CsoundSynthesizer>

The next example produces a random string of 10 characters and prints it out:

   EXAMPLE 03C09.csd 

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

  instr 1
icount    =         0
Sname     =         ""; starts with an empty string
loop:
ichar     random    65, 90.999
Schar     sprintf   "%c", int(ichar); new character
Sname     strcat    Sname, Schar; append to Sname
          loop_lt   icount, 1, 10, loop; loop construction
          printf_i  "My name is '%s'!\n", 1, Sname; print result
  endin

</CsInstruments>
<CsScore>
; call instr 1 ten times
r 10
i 1 0 0
</CsScore>
</CsoundSynthesizer>

You can also use an i-rate loop to fill a function table (= buffer) with any kind of values. In the
next example, a function table with 20 positions (indices) is filled with random integers
between 0 and 10 by instrument 1. Nearly the same loop construction is used afterwards to
read these values by instrument 2.

   EXAMPLE 03C10.csd 
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<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

giTable   ftgen     0, 0, -20, -2, 0; empty function table with 20 points
          seed      0; each time different seed

  instr 1 ; writes in the table
icount    =         0
loop:
ival      random    0, 10.999 ;random value
          tableiw   int(ival), icount, giTable ;writes in giTable at first, second, third ... position
          loop_lt   icount, 1, 20, loop; loop construction
  endin

  instr 2; reads from the table
icount    =         0
loop:
ival      tablei    icount, giTable ;reads from giTable at first, second, third ... position
          print     ival; prints the content
          loop_lt   icount, 1, 20, loop; loop construction
  endin

</CsInstruments>
<CsScore>
i 1 0 0
i 2 0 0
</CsScore>
</CsoundSynthesizer>

K-RATE EXAMPLES

The next example performs a loop at k-time. Once per second, every value of an existing
function table is changed by a random deviation of 10%. Though there are special opcodes for
this task, it can also be done by a k-rate loop like the one shown here:

   EXAMPLE 03C11.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 441
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 256, 10, 1; sine wave
          seed      0; each time different seed

  instr 1
ktiminstk timeinstk ;time in control-cycles
kcount    init      1
 if ktiminstk == kcount * kr then; once per second table values manipulation:
kndx      =         0
loop:
krand     random    -.1, .1;random factor for deviations
kval      table     kndx, giSine; read old value
knewval   =         kval + (kval * krand); calculate new value
          tablew    knewval, kndx, giSine; write new value
          loop_lt   kndx, 1, 256, loop; loop construction
kcount    =         kcount + 1; increase counter
 endif
asig      poscil    .2, 400, giSine
          outs      asig, asig
  endin

</CsInstruments>
<CsScore>
i 1 0 10
</CsScore>
</CsoundSynthesizer>
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TIME LOOPS

Until now, we have just discussed loops which are executed "as fast as possible", either at i-
time or at k-time. But, in an audio programming language, time loops are of particular interest
and importance. A time loop means, repeating any action after a certain amount of time. This
amount of time can be equal to or different to the previous time loop. The action can be, for
instance: playing a tone, or triggering an instrument, or calculating a new value for the
movement of an envelope.

In Csound, the usual way of performing time loops, is the timout facility. The use of timout is a
bit intricate, so some examples are given, starting from very simple to more complex ones.

Another way of performing time loops is by using a measurement of time or k-cycles. This
method is also discussed and similar examples to those used for the timout opcode are given
so that both methods can be compared.

TIMOUT BASICS

The timout opcode refers to the fact that in the traditional way of working with Csound, each
"note" (an "i" score event) has its own time. This is the duration of the note, given in the score
by the duration parameter, abbreviated as "p3". A timout statement says: "I am now jumping
out of this p3 duration and establishing my own time." This time will be repeated as long as
the duration of the note allows it.

Let's see an example. This is a sine tone with a moving frequency, starting at 400 Hz and
ending at 600 Hz. The duration of this movement is 3 seconds for the first note, and 5
seconds for the second note:

   EXAMPLE 03C12.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1

  instr 1
kFreq     expseg    400, p3, 600
aTone     poscil    .2, kFreq, giSine
          outs      aTone, aTone
  endin

</CsInstruments>
<CsScore>
i 1 0 3
i 1 4 5
</CsScore>
</CsoundSynthesizer>

Now we perform a time loop with timout which is 1 second long. So, for the first note, it will be
repeated three times, and for the second note five times:

   EXAMPLE 03C13.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
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nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1

  instr 1
loop:
          timout    0, 1, play
          reinit    loop
play:
kFreq     expseg    400, 1, 600
aTone     poscil    .2, kFreq, giSine
          outs      aTone, aTone
  endin

</CsInstruments>
<CsScore>
i 1 0 3
i 1 4 5
</CsScore>
</CsoundSynthesizer>

This is the general syntax of timout:

first_label:
          timout    istart, idur, second_label
          reinit    first_label
second_label:
... <any action you want to have here>

The first_label is an arbitrary word (followed by a colon) for marking the beginning of the time
loop section. The istart argument for timout tells Csound, when the second_label section is
to be executed. Usually istart is zero, telling Csound: execute the second_label section
immediately, without any delay. The idur argument for timout defines how many seconds the
second_label section is to be executed before the time loop begins again. Note that the "reinit
first_label" is necessary to start the second loop after idur seconds with a resetting of all the
values. (See the explanations about reinitialization in the chapter Initilalization And
Performance Pass.)

As usual when you work with the reinit opcode, you can use a rireturn statement to constrain
the reinit-pass. In this way you can have both, the timeloop section and the non-timeloop
section in the body of an instrument:

   EXAMPLE 03C14.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1

  instr 1
loop:
          timout    0, 1, play
          reinit    loop
play:
kFreq1    expseg    400, 1, 600
aTone1    oscil3    .2, kFreq1, giSine
          rireturn  ;end of the time loop
kFreq2    expseg    400, p3, 600
aTone2    poscil    .2, kFreq2, giSine

          outs      aTone1+aTone2, aTone1+aTone2
  endin

</CsInstruments>
<CsScore>
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i 1 0 3
i 1 4 5
</CsScore>
</CsoundSynthesizer>

TIMOUT APPLICATIONS

In a time loop, it is very important to change the duration of the loop. This can be done either
by referring to the duration of this note (p3) ...

   EXAMPLE 03C15.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1

  instr 1
loop:
          timout    0, p3/5, play
          reinit    loop
play:
kFreq     expseg    400, p3/5, 600
aTone     poscil    .2, kFreq, giSine
          outs      aTone, aTone
  endin

</CsInstruments>
<CsScore>
i 1 0 3
i 1 4 5
</CsScore>
</CsoundSynthesizer>

... or by calculating new values for the loop duration on each reinit pass, for instance by
random values:

   EXAMPLE 03C16.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1

  instr 1
loop:
idur      random    .5, 3 ;new value between 0.5 and 3 seconds each time
          timout    0, idur, play
          reinit    loop
play:
kFreq     expseg    400, idur, 600
aTone     poscil    .2, kFreq, giSine
          outs      aTone, aTone
  endin

</CsInstruments>
<CsScore>
i 1 0 20
</CsScore>
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</CsoundSynthesizer>

The applications discussed so far have the disadvantage that all the signals inside the time
loop must definitely be finished or interrupted, when the next loop begins. In this way it is not
possible to have any overlapping of events. For achieving this, the time loop can be used just
to trigger an event. This can be done with event_i or scoreline_i. In the following example, the
time loop in instrument 1 triggers each half to two seconds an instance of instrument 2 for a
duration of 1 to 5 seconds. So usually the previous instance of instrument 2 will still play when
the new instance is triggered. In instrument 2, some random calculations are executed to
make each note different, though having a descending pitch (glissando):

   EXAMPLE 03C17.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1

  instr 1
loop:
idurloop  random    .5, 2 ;duration of each loop
          timout    0, idurloop, play
          reinit    loop
play:
idurins   random    1, 5 ;duration of the triggered instrument
          event_i   "i", 2, 0, idurins ;triggers instrument 2
  endin

  instr 2
ifreq1    random    600, 1000 ;starting frequency
idiff     random    100, 300 ;difference to final frequency
ifreq2    =         ifreq1 - idiff ;final frequency
kFreq     expseg    ifreq1, p3, ifreq2 ;glissando
iMaxdb    random    -12, 0 ;peak randomly between -12 and 0 dB
kAmp      transeg   ampdb(iMaxdb), p3, -10, 0 ;envelope
aTone     poscil    kAmp, kFreq, giSine
          outs      aTone, aTone
  endin

</CsInstruments>
<CsScore>
i 1 0 30
</CsScore>
</CsoundSynthesizer>

The last application of a time loop with the timout opcode which is shown here, is a randomly
moving envelope. If you want to create an envelope in Csound which moves between a lower
and an upper limit, and has one new random value in a certain time span (for instance, once a
second), the time loop with timout is one way to achieve it. A line movement must be
performed in each time loop, from a given starting value to a new evaluated final value. Then,
in the next loop, the previous final value must be set as the new starting value, and so on.
This is a possible solution:

   EXAMPLE 03C18.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
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giSine    ftgen     0, 0, 2^10, 10, 1
          seed      0

  instr 1
iupper    =         0; upper and ...
ilower    =         -24; ... lower limit in dB
ival1     random    ilower, iupper; starting value
loop:
idurloop  random    .5, 2; duration of each loop
          timout    0, idurloop, play
          reinit    loop
play:
ival2     random    ilower, iupper; final value
kdb       linseg    ival1, idurloop, ival2
ival1     =         ival2; let ival2 be ival1 for next loop
          rireturn  ;end reinit section
aTone     poscil    ampdb(kdb), 400, giSine
          outs      aTone, aTone
  endin

</CsInstruments>
<CsScore>
i 1 0 30
</CsScore>
</CsoundSynthesizer>

Note that in this case the oscillator has been put after the time loop section (which is
terminated by the rireturn statement. Otherwise the oscillator would start afresh with zero
phase in each time loop, thus producing clicks.

TIME LOOPS BY USING THE METRO OPCODE

The metro opcode outputs a "1" at distinct times, otherwise it outputs a "0". The frequency of
this "banging" (which is in some way similar to the metro objects in PD or Max) is given by the
kfreq input argument. So the output of metro offers a simple and intuitive method for
controlling time loops, if you use it to trigger a separate instrument which then carries out
another job. Below is a simple example for calling a subinstrument twice a second:

   EXAMPLE 03C19.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

  instr 1; triggering instrument
kTrig     metro     2; outputs "1" twice a second
 if kTrig == 1 then
          event     "i", 2, 0, 1
 endif
  endin

  instr 2; triggered instrument
aSig      oscils    .2, 400, 0
aEnv      transeg   1, p3, -10, 0
          outs      aSig*aEnv, aSig*aEnv
  endin

</CsInstruments>
<CsScore>
i 1 0 10
</CsScore>
</CsoundSynthesizer>

The example which is given above (0337.csd) as a flexible time loop by timout, can be done
with the metro opcode in this way:
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   EXAMPLE 03C20.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1
          seed      0

  instr 1
kfreq     init      1; give a start value for the trigger frequency
kTrig     metro     kfreq
 if kTrig == 1 then ;if trigger impulse:
kdur      random    1, 5; random duration for instr 2
          event     "i", 2, 0, kdur; call instr 2
kfreq     random    .5, 2; set new value for trigger frequency
 endif
  endin

  instr 2
ifreq1    random    600, 1000; starting frequency
idiff     random    100, 300; difference to final frequency
ifreq2    =         ifreq1 - idiff; final frequency
kFreq     expseg    ifreq1, p3, ifreq2; glissando
iMaxdb    random    -12, 0; peak randomly between -12 and 0 dB
kAmp      transeg   ampdb(iMaxdb), p3, -10, 0; envelope
aTone     poscil    kAmp, kFreq, giSine
          outs      aTone, aTone
  endin

</CsInstruments>
<CsScore>
i 1 0 30
</CsScore>
</CsoundSynthesizer>  

Note the differences in working with the metro opcode compared to the timout feature:

As metro works at k-time, you must use the k-variants of event or scoreline to call the
subinstrument. With timout you must use the i-variants of event or scoreline (event_i
and scoreline_i), because it uses reinitialization for performing the time loops.
You must select the one k-cycle where the metro opcode sends a "1". This is done with
an if-statement. The rest of the instrument is not affected. If you use timout, you
usually must seperate the reinitialized from the not reinitialized section by a rireturn
statement.

LINKS

Steven Yi: Control Flow (Part I = Csound Journal Spring 2006, Part 2 = Csound Journal Summer
2006)

16. FUNCTION TABLES
A function table is essentially the same as what other audio programming languages call a
buffer, a table, a list or an array. It is a place where data can be stored in an ordered way.
Each function table has a size: how much data (in Csound just numbers) can be stored in it.
Each value in the table can be accessed by an index, counting from 0 to size-1. For instance, if
you have a function table with a size of 10, and the numbers [1.1 2.2 3.3 5.5 8.8 13.13 21.21
34.34 55.55 89.89] in it, this is the relation of value and index:

74

http://www.csounds.com/manual/html/event.html
http://www.csounds.com/manual/html/scoreline.html
http://www.csounds.com/manual/html/event_i.html
http://www.csounds.com/manual/html/scoreline_i.html
http://www.csounds.com/journal/2006spring/controlFlow.html
http://www.csounds.com/journal/2006summer/controlFlow_part2.html


 VALUE  1.1  2.2  3.3  5.5  8.8  13.13  21.21  34.34  55.55  89.89

 INDEX  0  1  2  3  4  5  6  7  8  9

So, if you want to retrieve the value 13.13, you must point to the value stored under index 5.

The use of function tables is manifold. A function table can contain pitch values to which you
may refer using the input of a MIDI keyboard. A function table can contain a model of a
waveform which is read periodically by an oscillator. You can record live audio input in a
function table, and then play it back. There are many more applications, all using the fast
access (because a function table is part of the RAM) and flexible use of function tables. 

HOW TO GENERATE A FUNCTION TABLE

Each function table must be created before it can be used. Even if you want to write values
later, you must first create an empty table, because you must initially reserve some space in
memory for it.

Each creation of a function table in Csound is performed by one of the so-called GEN
Routines. Each GEN Routine generates a function table in a particular way: GEN01 transfers
audio samples from a soundfile into a table, with GEN02 we can write values in "by hand" one
by one, GEN10 calculates a waveform using information determining a sum of sinusoids, GEN20
generates window functions typically used for granular synthesis, and so on. There is a good
overview in the Csound Manual of all existing GEN Routines. Here we will explain the general
use and give simple examples for some frequent cases.

GEN02 AND GENERAL PARAMETERS FOR GEN ROUTINES

Let's start with our example above and write the 10 numbers into a function table of the
same size. For this, use of a GEN02 function table is required. A short description of GEN02
from the manual reads as follows:

f # time size 2 v1 v2 v3 ...

This is the traditional way of creating a function table by an "f statement" or an "f score
event" (in comparision for instance to "i score events" which call instrument instances). The
input parameters after the "f" are the following:

#: a number (as positive integer) for this function table;
time: at which time to be the function table available (usually 0 = from the beginning);
size: the size of the function table. This is a bit tricky, because in the early days of
Csound just power-of-two sizes for function tables were possible (2, 4, 8, 16, ...).
Nowadays nearly every GEN Routine accepts other sizes, but these non-power-of-two
sizes must be declared as a negative number! 
2: the number of the GEN Routine which is used to generate the table. And here is
another important point which must be regarded. By default, Csound normalizes the
table values. This means that the maximum is scaled to +1 if positive, and to -1 if
negative. To prevent Csound from normalizing, a negative number must be given as
GEN number (here -2 instead of 2).
v1 v2 v3 ...: the values which are written into the function table.

So this is the way to put the values [1.1 2.2 3.3 5.5 8.8 13.13 21.21 34.34 55.55 89.89] in a
function table with the number 1:

   EXAMPLE 03D01.csd 

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz
  instr 1 ;prints the values of table 1 or 2
          prints    "%nFunction Table %d:%n", p4
indx      init      0
loop:
ival      table     indx, p4
          prints    "Index %d = %f%n", indx, ival
          loop_lt   indx, 1, 10, loop
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  endin
</CsInstruments>
<CsScore>
f 1 0 -10 -2 1.1 2.2 3.3 5.5 8.8 13.13 21.21 34.34 55.55 89.89; not normalized
f 2 0 -10 2 1.1 2.2 3.3 5.5 8.8 13.13 21.21 34.34 55.55 89.89; normalized
i 1 0 0 1; prints function table 1
i 1 0 0 2; prints function table 2
</CsScore>
</CsoundSynthesizer>

Instrument 1 just serves to print the values of the table (the tablei opcode will be explained
later). See the difference whether the table is normalized (positive GEN number) or not
normalized (negative GEN number). 

Using the ftgen opcode is a more modern way of creating a function table, which is in some
ways preferable to the old way of writing an f-statement in the score. The syntax is explained
below:

giVar     ftgen     ifn, itime, isize, igen, iarg1 [, iarg2 [, ...]]

giVar: a variable name. Each function is stored in an i-variable. Usually you want to have
access to it from every instrument, so a gi-variable (global initialization variable) is given.
ifn: a number for the function table. If you type in 0, you give Csound the job to choose
a number, which is mostly preferable.

The other parameters (size, GEN number, individual arguments) are the same as in the f-
statement in the score. As this GEN call is now a part of the orchestra, each argument is
separated from the next by a comma (not by a space or tab like in the score).

So this is the same example as above, but now with the function tables being generated in the
orchestra header:

   EXAMPLE 03D02.csd  

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

giFt1     ftgen     1, 0, -10, -2, 1.1, 2.2, 3.3, 5.5, 8.8, 13.13, 21.21, 34.34, 55.55, 89.89
giFt2     ftgen     2, 0, -10, 2, 1.1, 2.2, 3.3, 5.5, 8.8, 13.13, 21.21, 34.34, 55.55, 89.89

  instr 1; prints the values of table 1 or 2
          prints    "%nFunction Table %d:%n", p4
indx      init      0
loop:
ival      table     indx, p4
          prints    "Index %d = %f%n", indx, ival
          loop_lt   indx, 1, 10, loop
  endin

</CsInstruments>
<CsScore>
i 1 0 0 1; prints function table 1
i 1 0 0 2; prints function table 2
</CsScore>
</CsoundSynthesizer>

GEN01: IMPORTING A SOUNDFILE

GEN01 is used for importing soundfiles stored on disk into the computer's RAM, ready for for
use by a number of Csound's opcodes in the orchestra. A typical ftgen statement for this
import might be the following:

varname             ifn itime isize igen Sfilnam       iskip iformat ichn
giFile    ftgen     0,  0,    0,    1,   "myfile.wav", 0,    0,      0
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varname, ifn, itime: These arguments have the same meaning as explained above in
reference to GEN02.
isize: Usually you won't know the length of your soundfile in samples, and want to have
a table length which includes exactly all the samples. This is done by setting isize=0.
(Note that some opcodes may need a power-of-two table. In this case you can not use
this option, but must calculate the next larger power-of-two value as size for the
function table.)
igen: As explained in the previous subchapter, this is always the place for indicating the
number of the GEN Routine which must be used. As always, a positive number means
normalizing, which is usually convenient for audio samples.
Sfilnam: The name of the soundfile in double quotes. Similar to other audio
programming languages, Csound recognizes just the name if your .csd and the soundfile
are in the same folder. Otherwise, give the full path. (You can also include the folder via
the "SSDIR" variable, or add the folder via the "--env:NAME+=VALUE" option.)
iskip: The time in seconds you want to skip at the beginning of the soundfile. 0 means
reading from the beginning of the file.
iformat: Usually 0, which means: read the sample format from the soundfile header.
ichn: 1 = read the first channel of the soundfile into the table, 2 = read the second
channel, etc. 0 means that all channels are read. 

The next example plays a short sample. You can download it here. Copy the text below, save
it to the same location as the "fox.wav" soundfile, and it should work. Reading the function
table is done here with the poscil3 opcode which can deal with non-power-of-two tables.

   EXAMPLE 03D03.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSample  ftgen     0, 0, 0, 1, "fox.wav", 0, 0, 1

  instr 1
itablen   =         ftlen(giSample) ;length of the table
idur      =         itablen / sr ;duration
aSamp     poscil3   .5, 1/idur, giSample
          outs      aSamp, aSamp
  endin

</CsInstruments>
<CsScore>
i 1 0 2.757
</CsScore>
</CsoundSynthesizer>

GEN10: CREATING A WAVEFORM

The third example for generating a function table covers one classical case: building a function
table which stores one cycle of a waveform. This waveform is then read by an oscillator to
produce a sound.

There are many GEN Routines to achieve this. The simplest one is GEN10. It produces a
waveform by adding sine waves which have the "harmonic" frequency relations 1 : 2 : 3  : 4 ...
After the usual arguments for function table number, start, size and gen routine number,
which are the first four arguments in ftgen for all GEN Routines, you must specify for GEN10
the relative strengths of the harmonics. So, if you just provide one argument, you will end up
with a sine wave (1st harmonic). The next argument is the strength of the 2nd harmonic, then
the 3rd, and so on. In this way, you can build the standard harmonic waveforms by sums of
sinoids. This is done in the next example by instruments 1-5. Instrument 6 uses the sine
wavetable twice: for generating both the sound and the envelope.
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   EXAMPLE 03D04.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1
giSaw     ftgen     0, 0, 2^10, 10, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9
giSquare  ftgen     0, 0, 2^10, 10, 1, 0, 1/3, 0, 1/5, 0, 1/7, 0, 1/9
giTri     ftgen     0, 0, 2^10, 10, 1, 0, -1/9, 0, 1/25, 0, -1/49, 0, 1/81
giImp     ftgen     0, 0, 2^10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1

  instr 1 ;plays the sine wavetable
aSine     poscil    .2, 400, giSine
aEnv      linen     aSine, .01, p3, .05
          outs      aEnv, aEnv
  endin

  instr 2 ;plays the saw wavetable
aSaw      poscil    .2, 400, giSaw
aEnv      linen     aSaw, .01, p3, .05
          outs      aEnv, aEnv
  endin

  instr 3 ;plays the square wavetable
aSqu      poscil    .2, 400, giSquare
aEnv      linen     aSqu, .01, p3, .05
          outs      aEnv, aEnv
  endin

  instr 4 ;plays the triangular wavetable
aTri      poscil    .2, 400, giTri
aEnv      linen     aTri, .01, p3, .05
          outs      aEnv, aEnv
  endin

  instr 5 ;plays the impulse wavetable
aImp      poscil    .2, 400, giImp
aEnv      linen     aImp, .01, p3, .05
          outs      aEnv, aEnv
  endin

  instr 6 ;plays a sine and uses the first half of its shape as envelope
aEnv      poscil    .2, 1/6, giSine
aSine     poscil    aEnv, 400, giSine
          outs      aSine, aSine
  endin

</CsInstruments>
<CsScore>
i 1 0 3
i 2 4 3
i 3 8 3
i 4 12 3
i 5 16 3
i 6 20 3
</CsScore>
</CsoundSynthesizer>

HOW TO WRITE VALUES TO A FUNCTION TABLE

As we saw, each GEN Routine generates a function table, and by doing this, it writes values
into it. But in certain cases you might first want to create an empty table, and then write the
values into it later. This section is about how to do this.
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Actually it is not correct to speak of an "empty table". If Csound creates an "empty" table, in
fact it writes zeros to the indices which are not specified. This is perhaps the easiest method
of creating an "empty" table for 100 values:

giEmpty   ftgen     0, 0, -100, 2, 0

The basic opcode which writes values to existing function tables is tablew and its i-time
descendant tableiw. Note that you may have problems with some features if your table is not
a power-of-two size . In this case, you can also use tabw / tabw_i, but they don't have the
offset- and the wraparound-feature. As usual, you must differentiate if your signal (variable) is
i-rate, k-rate or a-rate. The usage is simple and differs just in the class of values you want to
write to the table (i-, k- or a-variables):

          tableiw   isig, indx, ifn [, ixmode] [, ixoff] [, iwgmode]
          tablew    ksig, kndx, ifn [, ixmode] [, ixoff] [, iwgmode]
          tablew    asig, andx, ifn [, ixmode] [, ixoff] [, iwgmode]

isig, ksig, asig is the value (variable) you want to write into specified locations of the
table;
indx, kndx, andx is the location (index) where you write the value;
ifn is the function table you want to write in;
ixmode gives the choice to write by raw indices (counting from 0 to size-1), or by a
normalized writing mode in which the start and end of each table are always referred as
0 and 1 (not depending on the length of the table). The default is ixmode=0 which means
the raw index mode. A value not equal to zero for ixmode changes to the normalized
index mode.
ixoff (default=0) gives an index offset. So, if indx=0 and ixoff=5, you will write at index
5.
iwgmode tells what you want to do if your index is larger than the size of the table. If
iwgmode=0 (default), any index larger than possible is written at the last possible index.
If iwgmode=1, the indices are wrapped around. For instance, if your table size is 8, and
your index is 10, in the wraparound mode the value will be written at index 2.

Here are some examples for i-, k- and a-rate values.

I-RATE EXAMPLE

The following example calculates the first 12 values of a Fibonacci series and writes it to a
table. This table has been created first in the header (filled with zeros). Then instrument 1
calculates the values in an i-time loop and writes them to the table with tableiw. Instrument 2
just serves to print the values.

   EXAMPLE 03D05.csd  

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

giFt      ftgen     0, 0, -12, -2, 0

  instr 1; calculates first 12 fibonacci values and writes them to giFt
istart    =         1
inext     =         2
indx      =         0
loop:
          tableiw   istart, indx, giFt ;writes istart to table
istartold =         istart ;keep previous value of istart
istart    =         inext ;reset istart for next loop
inext     =         istartold + inext ;reset inext for next loop
          loop_lt   indx, 1, 12, loop
  endin

  instr 2; prints the values of the table
          prints    "%nContent of Function Table:%n"
indx      init      0
loop:
ival      table     indx, giFt
          prints    "Index %d = %f%n", indx, ival
          loop_lt   indx, 1, ftlen(giFt), loop
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  endin

</CsInstruments>
<CsScore>
i 1 0 0
i 2 0 0
</CsScore>
</CsoundSynthesizer>

K-RATE EXAMPLE

The next example writes a k-signal continuously into a table. This can be used to record any
kind of user input, for instance by MIDI or widgets. It can also be used to record random
movements of k-signals, like here:

   EXAMPLE 03D06.csd   

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giFt      ftgen     0, 0, -5*kr, 2, 0; size for 5 seconds of recording
giWave    ftgen     0, 0, 2^10, 10, 1, .5, .3, .1; waveform for oscillator
          seed      0

  instr 1 ;recording of a random frequency movement for 5 seconds, and playing it
kFreq     randomi   400, 1000, 1 ;random frequency
aSnd      poscil    .2, kFreq, giWave ;play it
          outs      aSnd, aSnd
;;record the k-signal
          prints    "RECORDING!%n"
 ;create a writing pointer in the table, moving in 5 seconds from index 0 to the end
kindx     linseg    0, 5, ftlen(giFt)
 ;write the k-signal
          tablew    kFreq, kindx, giFt
  endin

  instr 2; read the values of the table and play it again
;;read the k-signal
          prints    "PLAYING!%n"
 ;create a reading pointer in the table, moving in 5 seconds from index 0 to the end
kindx     linseg    0, 5, ftlen(giFt)
 ;read the k-signal
kFreq     table     kindx, giFt
aSnd      oscil3    .2, kFreq, giWave; play it
          outs      aSnd, aSnd
  endin

</CsInstruments>
<CsScore>
i 1 0 5
i 2 6 5
</CsScore>
</CsoundSynthesizer>

As you see, in this typical case of writing k-values to a table you need a moving signal for the
index. This can be done using the line or linseg opcode like here, or by using a phasor. The
phasor always moves from 0 to 1 in a certain frequency. So, if you want the phasor to move
from 0 to 1 in 5 seconds, you must set the frequency to 1/5. By setting the ixmode argument
of tablew to 1, you can use the phasor output directly as writing pointer. So this is an
alternative version of instrument 1 taken from the previous example:

instr 1; recording of a random frequency movement for 5 seconds, and playing it
kFreq     randomi   400, 1000, 1; random frequency
aSnd      oscil3    .2, kFreq, giWave; play it
          outs      aSnd, aSnd
;;record the k-signal with a phasor as index
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          prints    "RECORDING!%n"
 ;create a writing pointer in the table, moving in 5 seconds from index 0 to the end
kindx     phasor    1/5
 ;write the k-signal
          tablew    kFreq, kindx, giFt, 1
endin

A-RATE EXAMPLE

Recording an audio signal is quite similar to recording a control signal. You just need an a-signal
as input and also as index. The first example shows first the recording of a random audio
signal. If you have live audio input, you can then record your input for 5 seconds.

   EXAMPLE 03D07.csd    

<CsoundSynthesizer>
<CsOptions>
-iadc -odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giFt      ftgen     0, 0, -5*sr, 2, 0; size for 5 seconds of recording audio
          seed      0

  instr 1 ;generating a band filtered noise for 5 seconds, and recording it
aNois     rand      .2
kCfreq    randomi   200, 2000, 3; random center frequency
aFilt     butbp     aNois, kCfreq, kCfreq/10; filtered noise
aBal      balance   aFilt, aNois, 1; balance amplitude
          outs      aBal, aBal
;;record the audiosignal with a phasor as index
          prints    "RECORDING FILTERED NOISE!%n"
 ;create a writing pointer in the table, moving in 5 seconds from index 0 to the end
aindx     phasor    1/5
 ;write the k-signal
          tablew    aBal, aindx, giFt, 1
  endin

  instr 2 ;read the values of the table and play it
          prints    "PLAYING FILTERED NOISE!%n"
aindx     phasor    1/5
aSnd      table3    aindx, giFt, 1
          outs      aSnd, aSnd
  endin

  instr 3 ;record live input
ktim      timeinsts ; playing time of the instrument in seconds
          prints    "PLEASE GIVE YOUR LIVE INPUT AFTER THE BEEP!%n"
kBeepEnv  linseg    0, 1, 0, .01, 1, .5, 1, .01, 0
aBeep     oscils    .2, 600, 0
          outs      aBeep*kBeepEnv, aBeep*kBeepEnv
;;record the audiosignal after 2 seconds
 if ktim > 2 then
ain       inch      1
          printks   "RECORDING LIVE INPUT!%n", 10
 ;create a writing pointer in the table, moving in 5 seconds from index 0 to the end
aindx     phasor    1/5
 ;write the k-signal
          tablew    ain, aindx, giFt, 1
 endif
  endin

  instr 4 ;read the values from the table and play it
          prints    "PLAYING LIVE INPUT!%n"
aindx     phasor    1/5
aSnd      table3    aindx, giFt, 1
          outs      aSnd, aSnd
  endin

</CsInstruments>
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<CsScore>
i 1 0 5
i 2 6 5
i 3 12 7
i 4 20 5
</CsScore>
</CsoundSynthesizer>

HOW TO RETREIVE VALUES FROM A FUNCTION TABLE

There are two methods of reading table values. You can either use the table / tab opcodes,
which are universally usable, but need an index; or you can use an oscillator for reading a table
at k-rate or a-rate. 

THE TABLE OPCODE

The table opcode is quite similar in syntax to the tableiw/tablew opcode (which are explained
above). It's just its counterpart in reading values from a function table (instead of writing
values to it). So its output is either an i-, k- or a-signal. The main input is an index of the
appropriate rate (i-index for i-output, k-index for k-output, a-index for a-output). The other
arguments are as explained above for tableiw/tablew: 

ires      table    indx, ifn [, ixmode] [, ixoff] [, iwrap]
kres      table    kndx, ifn [, ixmode] [, ixoff] [, iwrap]
ares      table    andx, ifn [, ixmode] [, ixoff] [, iwrap]

As table reading often requires interpolation between the table values - for instance if you
read k or a-values faster or slower than they have been written in the table - Csound offers
two descendants of table for interpolation: tablei interpolates linearly, whilst table3 performs
cubic interpolation (which is generally preferable but is computationally slightly more
expensive). 
Another variant is the tab_i / tab opcode which misses some features but may be preferable
in some situations. If you have any problems in reading non-power-of-two tables, give them a
try. They should also be faster than the table opcode, but you must take care: they include
fewer built-in protection measures than table, tablei and table3 and if they are given index
values that exceed the table size Csound will stop and report a performance error. 
Examples of the use of the table opcodes can be found in the earlier examples in the How-To-
Write-Values... section. 

OSCILLATORS

Reading table values using an oscillator is standard if you read tables which contain one cycle
of a waveform at audio-rate. But actually you can read any table using an oscillator, either at
a- or at k-rate. The advantage is that you needn't create an index signal. You can simply
specify the frequency of the oscillator. 
You should bear in mind that many of the oscillators in Csound will work only with power-of-
two table sizes. The poscil/poscil3 opcodes do not have this restriction and offer a high
precision, because they work with floating point indices, so in general it is recommended to use
them. Below is an example that demonstrates both reading a k-rate and an a-rate signal from
a buffer with poscil3 (an oscillator with a cubic interpolation):

   EXAMPLE 03D08.csd   

<CsoundSynthesizer>
<CsOptions>
-iadc -odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giControl ftgen     0, 0, -5*kr, 2, 0; size for 5 seconds of recording control data
giAudio   ftgen     0, 0, -5*sr, 2, 0; size for 5 seconds of recording audio data
giWave    ftgen     0, 0, 2^10, 10, 1, .5, .3, .1; waveform for oscillator
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          seed      0

  instr 1 ;recording of a random frequency movement for 5 seconds, and playing it
kFreq     randomi   400, 1000, 1; random frequency
aSnd      poscil    .2, kFreq, giWave; play it
          outs      aSnd, aSnd
;;record the k-signal with a phasor as index
          prints    "RECORDING RANDOM CONTROL SIGNAL!%n"
 ;create a writing pointer in the table, moving in 5 seconds from index 0 to the end
kindx     phasor    1/5
 ;write the k-signal
          tablew    kFreq, kindx, giControl, 1
  endin

  instr 2; read the values of the table and play it with poscil
          prints    "PLAYING CONTROL SIGNAL!%n"
kFreq     poscil    1, 1/5, giControl
aSnd      poscil    .2, kFreq, giWave; play it
          outs      aSnd, aSnd
  endin

  instr 3; record live input
ktim      timeinsts ; playing time of the instrument in seconds
          prints    "PLEASE GIVE YOUR LIVE INPUT AFTER THE BEEP!%n"
kBeepEnv  linseg    0, 1, 0, .01, 1, .5, 1, .01, 0
aBeep     oscils    .2, 600, 0
          outs      aBeep*kBeepEnv, aBeep*kBeepEnv
;;record the audiosignal after 2 seconds
 if ktim > 2 then
ain       inch      1
          printks   "RECORDING LIVE INPUT!%n", 10
 ;create a writing pointer in the table, moving in 5 seconds from index 0 to the end
aindx     phasor    1/5
 ;write the k-signal
          tablew    ain, aindx, giAudio, 1
 endif
  endin

  instr 4; read the values from the table and play it with poscil
          prints    "PLAYING LIVE INPUT!%n"
aSnd      poscil    .5, 1/5, giAudio
          outs      aSnd, aSnd
  endin

</CsInstruments>
<CsScore>
i 1 0 5
i 2 6 5
i 3 12 7
i 4 20 5
</CsScore>
</CsoundSynthesizer>

SAVING THE CONTENT OF FUNCTION TABLES TO A FILE 

A function table exists just as long as you run the Csound instance which has created it. If
Csound terminates, all the data is lost. If you want to save the data for later use, you must
write them to a file. There are several cases, depending on firstly whether you write at i-time
or at k-time and secondly on what kind of file you want to write to. 

WRITING A FILE IN CSOUND'S FTSAVE FORMAT AT I-TIME OR K-TIME 

Any function table in Csound can easily be written to a file by the ftsave (i-time) or ftsavek (k-
time) opcode. The use is very simple. The first argument specifies the filename (in double
quotes), the second argument chooses between a text format (non zero) or a binary format
(zero) to write, then you just give the number of the function table(s) to save. 
For the following example you should end up with two textfiles in the same folder as your .csd:
"i-time_save.txt" saves function table 1 (a sine wave) at i-time; "k-time_save.txt" saves
function table 2 (a linear increment produced during the performance) at k-time.

   EXAMPLE 03D09.csd   
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<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giWave    ftgen     1, 0, 2^7, 10, 1; sine with 128 points
giControl ftgen     2, 0, -kr, 2, 0; size for 1 second of recording control data
          seed      0

  instr 1; saving giWave at i-time
          ftsave    "i-time_save.txt", 1, 1
  endin

  instr 2; recording of a line transition between 0 and 1 for one second
kline     linseg    0, 1, 1
          tabw      kline, kline, giControl, 1
  endin

  instr 3; saving giWave at k-time
          ftsave    "k-time_save.txt", 1, 2
  endin

</CsInstruments>
<CsScore>
i 1 0 0
i 2 0 1
i 3 1 .1
</CsScore>
</CsoundSynthesizer>

The counterpart to ftsave/ftsavek are the opcodes ftload/ftloadk. Using them you can load
the saved files into function tables. 

WRITING A SOUNDFILE FROM A RECORDED FUNCTION TABLE 

If you have recorded your live-input to a buffer, you may want to save your buffer as a
soundfile. There is no opcode in Csound which does that, but it can be done by using a k-rate
loop and the fout opcode. This is shown in the next example, in instrument 2. First instrument
1 records your live input. Then instrument 2 writes the file "testwrite.wav" into the same
folder as your .csd. This is done at the first k-cycle of instrument 2, by reading again and again
the table values and writing them as an audio signal to disk. After this is done, the instrument
is turned off by executing the turnoff statement.

   EXAMPLE 03D10.csd   

<CsoundSynthesizer>
<CsOptions>
-i adc
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giAudio   ftgen     0, 0, -5*sr, 2, 0; size for 5 seconds of recording audio data

  instr 1 ;record live input
ktim      timeinsts ; playing time of the instrument in seconds
          prints    "PLEASE GIVE YOUR LIVE INPUT AFTER THE BEEP!%n"
kBeepEnv  linseg    0, 1, 0, .01, 1, .5, 1, .01, 0
aBeep     oscils    .2, 600, 0
          outs      aBeep*kBeepEnv, aBeep*kBeepEnv
;;record the audiosignal after 2 seconds
 if ktim > 2 then
ain       inch      1
          printks   "RECORDING LIVE INPUT!%n", 10
 ;create a writing pointer in the table, moving in 5 seconds from index 0 to the end
aindx     phasor    1/5
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aindx     phasor    1/5
 ;write the k-signal
          tablew    ain, aindx, giAudio, 1
 endif
  endin

  instr 2; write the giAudio table to a soundfile
Soutname  =         "testwrite.wav"; name of the output file
iformat   =         14; write as 16 bit wav file
itablen   =         ftlen(giAudio); length of the table in samples

kcnt      init      0; set the counter to 0 at start
loop:
kcnt      =         kcnt+ksmps; next value (e.g. 10 if ksmps=10)
andx      interp    kcnt-1; calculate audio index (e.g. from 0 to 9)
asig      tab       andx, giAudio; read the table values as audio signal
          fout      Soutname, iformat, asig; write asig to a file
 if kcnt <= itablen-ksmps kgoto loop; go back as long there is something to do
          turnoff   ; terminate the instrument
  endin

</CsInstruments>
<CsScore>
i 1 0 7
i 2 7 .1
</CsScore>
</CsoundSynthesizer>

This code can also be transformed in a User Defined Opcode. It can be found here.

LINKS AND RELATED OPCODES

LINKS

OPCODES

ftgen: Creates a function table in the orchestra using any GEN Routine. 

table / tablei / table3: Read values from a function table at any rate, either by direct indexing
(table), or by linear (tablei) or cubic (table3) interpolation. These opcodes provide many options
and are safe because of boundary check, but you may have problems with non-power-of-two
tables.

tab_i / tab: Read values from a function table at i-rate (tab_i), k-rate or a-rate (tab). Offer no
interpolation and less options than the table opcodes, but they work also for non-power-of-
two tables. They do not provide a boundary check, which makes them fast but also give the
user the resposability not reading any value off the table boundaries.

tableiw / tablew: Write values to a function table at i-rate (tableiw), k-rate and a-rate (tablew).
These opcodes provide many options and are safe because of boundary check, but you may
have problems with non-power-of-two tables.

tabw_i / tabw: Write values to a function table at i-rate (tabw_i), k-rate or a-rate (tabw). Offer
less options than the tableiw/tablew opcodes, but work also for non-power-of-two tables.
They do not provide a boundary check, which makes them fast but also give the user the
resposability not writing any value off the table boundaries.

poscil / poscil3: Precise oscillators for reading function tables at k- or a-rate, with linear (poscil)
or cubic (poscil3) interpolation. They support also non-power-of-two tables, so it's usually
recommended to use them instead of the older oscili/oscil3 opcodes. Poscil has also a-rate
input for amplitude and frequency, while poscil3 has just k-rate input. 

oscili / oscil3: The standard oscillators in Csound for reading function tables at k- or a-rate,
with linear (oscili) or cubic (oscil3) interpolation. They support all rates for the amplitude and
frequency input, but are restricted to power-of-two tables. Particularily for long tables and low
frequencies they are not as precise as the poscil/poscil3 oscillators. 
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ftsave / ftsavek: Save a function table as a file, at i-time (ftsave) or k-time (ftsavek). This can
be a text file or a binary file, but not a soundfile. If you want to save a soundfile, use the User
Defined Opcode TableToSF.

ftload / ftloadk: Load a function table which has been written by ftsave/ftsavek.

line / linseg / phasor: Can be used to create index values which are needed to read/write k- or
a-signals with the table/tablew or tab/tabw opcodes. 

17. TRIGGERING INSTRUMENT EVENTS
The basic concept of Csound from the early days of the program is still valent and fertile
because it is a familiar musical one. You create a set of instruments and instruct them to play
at various times. These calls of instrument instances, and their execution, are called
"instrument events".

This scheme of instruments and events can be instigated in a number of ways. In the classical
approach you think of an "orchestra" with a number of musicians playing from a "score", but
you can also trigger instruments using any kind of live input: from MIDI, from OSC, from the
command line, from a GUI (such as Csound's FLTK widgets or QuteCsound's widgets), from the
API (also used in QuteCsound's Live Event Sheet). Or you can create a kind of "master
instrument", which is always on, and triggers other instruments using opcodes designed for
this task, perhaps under certain conditions: if the live audio input from a singer has been
detected to have a base frequency greater than 1043 Hz, then start an instrument which
plays a soundfile of broken glass...

This chapter is about the various ways to trigger instrument events whether that be from the
score, by using MIDI, by using widgets, through using conditionals or by using loops.

ORDER OF EXECUTION

Whatever you do in Csound with instrument events, you must bear in mind the order of
execution that has been explained in chapter 03 under the initialization and performance pass:
instruments are executed one by one, both in the initialization pass and in each control cycle,
and the order is determined by the instrument number. So if you have an instrument which
triggers another instrument, it should usually have the lower number. If, for instance,
instrument 10 calls instrument 20 in a certain control cycle, instrument 20 will execute the
event in the same control cycle. But if instrument 20 calls instrument 10, then instrument 10
will execute the event only in the next control cycle.

INSTRUMENT EVENTS FROM THE SCORE

This is the classical way of triggering instrument events: you write a list in the score section of
a .csd file. Each line which begins with an "i", is an instrument event. As this is very simple,
and examples can be found easily, let us focus instead on some additional features which can
be useful when you work in this way. Documentation for these features can be found in the
Score Statements section of the Canonical Csound Reference Manual. Here are some
examples:

   EXAMPLE 03E01.csd   

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
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giWav     ftgen     0, 0, 2^10, 10, 1, .5, .3, .1

  instr 1
kFadout   init      1
krel      release   ;returns "1" if last k-cycle
 if krel == 1 && p3 < 0 then ;if so, and negative p3:
          xtratim   .5       ;give 0.5 extra seconds
kFadout   linseg    1, .5, 0 ;and make fade out
 endif
kEnv      linseg    0, .01, p4, abs(p3)-.1, p4, .09, 0; normal fade out
aSig      poscil    kEnv*kFadout, p5, giWav
          outs      aSig, aSig
  endin

</CsInstruments>
<CsScore>
t 0 120                      ;set tempo to 120 beats per minute
i    1    0    1    .2   400 ;play instr 1 for one second
i    1    2   -10   .5   500 ;play instr 1 indefinetely (negative p3)
i   -1    5    0             ;turn it off (negative p1)
i    1.1  ^+1  -10  .2   600 ;turn on instance 1 of instr 1 one sec after the previous start
i    1.2  ^+2  -10  .2   700 ;another instance of instr 1
i   -1.2  ^+2  0             ;turn off 1.2
i   -1.1  ^+1  .             ;turn off 1.1 (dot = same as the same p-field above)
s                            ;end of a section, so time begins from new at zero
i    1    1    1    .2   800
r 5                          ;repeats the following line (until the next "s")
i    1   .25  .25   .2   900
s
v 2                          ;lets time be double as long
i    1    0    2    .2   1000
i    1    1    1    .2   1100
s
v 0.5                        ;lets time be half as long
i    1    0    2    .2   1200
i    1    1    1    .2   1300
s                            ;time is normal now again
i    1    0    2    .2   1000
i    1    1    1    .2   900
s
{4 LOOP                      ;make a score loop (4 times) with the variable "LOOP"
i    1    [0 + 4 * $LOOP.]    3    .2   [1200 - $LOOP. * 100]
i    1    [1 + 4 * $LOOP.]    2    .    [1200 - $LOOP. * 200]
i    1    [2 + 4 * $LOOP.]    1    .    [1200 - $LOOP. * 300]
}
e
</CsScore>
</CsoundSynthesizer>

Triggering an instrument with an indefinite duration by setting p3 to any negative value, and
stopping it by a negative p1 value, can be an important feature for live events. If you turn
instruments off in this way you may have to add a fade out segment. One method of doing
this is shown in the instrument above with a combination of the release and the xtratim
opcodes. Also note that you can start and stop certain instances of an instrument with a
floating point number as p1.

USING MIDI NOTEON EVENTS

Csound has a particular feature which makes it very simple to trigger instrument events from
a MIDI keyboard. Each MIDI Note-On event can trigger an instrument, and the related Note-Off
event of the same key stops the related instrument instance. This is explained more in detail
in chapter 07 in the MIDI section of this manual. Here, just a small example is shown. Simply
connect your MIDI keyboard and it should work.

   EXAMPLE 03E02.csd   

<CsoundSynthesizer>
<CsOptions>
-Ma -odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
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sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1
          massign   0, 1; assigns all midi channels to instr 1

  instr 1
iFreq     cpsmidi   ;gets frequency of a pressed key
iAmp      ampmidi   8 ;gets amplitude and scales 0-8
iRatio    random    .9, 1.1 ;ratio randomly between 0.9 and 1.1
aTone     foscili   .1, iFreq, 1, iRatio/5, iAmp+1, giSine ;fm
aEnv      linenr    aTone, 0, .01, .01 ;for avoiding clicks at the end of a note
          outs      aEnv, aEnv
  endin

</CsInstruments>
<CsScore>
f 0 36000; play for 10 hours
e
</CsScore>
</CsoundSynthesizer>

USING WIDGETS

If you want to trigger an instrument event in realtime with a Graphical User Interface, it is
usually a "Button" widget which will do this job. We will see here a simple example; first
implemented using Csound's FLTK widgets, and then using QuteCsound's widgets.

FLTK BUTTON

This is a very simple example demonstrating how to trigger an instrument using an FLTK
button. A more extended example can be found here.

   EXAMPLE 03E03.csd   

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

          FLpanel   "Trigger By FLTK Button", 300, 100, 100, 100; creates an FLTK panel
k1, ih1   FLbutton  "Push me!", 0, 0, 1, 150, 40, 10, 25, 0, 1, 0, 1; trigger instr 1 (equivalent to the score line "i 1 0 1")
k2, ih2   FLbutton  "Quit", 0, 0, 1, 80, 40, 200, 25, 0, 2, 0, 1; trigger instr 2
          FLpanelEnd; end of the FLTK panel section
          FLrun     ; run FLTK
          seed      0; random seed different each time

  instr 1
idur      random    .5, 3; recalculate instrument duration
p3        =         idur; reset instrument duration
ioct      random    8, 11; random values between 8th and 11th octave
idb       random    -18, -6; random values between -6 and -18 dB
aSig      oscils    ampdb(idb), cpsoct(ioct), 0
aEnv      transeg   1, p3, -10, 0
          outs      aSig*aEnv, aSig*aEnv
  endin

instr 2
          exitnow
endin

</CsInstruments>
<CsScore>
f 0 36000
e
</CsScore>
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</CsScore>
</CsoundSynthesizer>

Note that in this example the duration of an instrument event is recalculated when the
instrument is inititalized. This is done using the statement "p3 = i...". This can be a useful
technique if you want the duration that an instrument plays for to be different each time it is
called. In this example duration is the result of a random function'. The duration defined by the
FLTK button will be overwriten by any other calculation within the instrument itself at i-time.

QUTECSOUND BUTTON

In QuteCsound, a button can be created easily from the submenu in a widget panel:

 

In the Properties Dialog of the button widget, make sure you have selected "event" as Type.
Insert a Channel name, and at the bottom type in the event you want to trigger - as you
would if writing a line in the score.

In your Csound code, you need nothing more than the instrument you want to trigger:

 

For more information about QuteCsound, read chapter 11 (QuteCsound) in this manual.

USING A REALTIME SCORE (LIVE EVENT SHEET)

COMMAND LINE WITH THE -L STDIN OPTION

89



If you use any .csd with the option "-L stdin" (and the -odac option for realtime output), you
can type any score line in realtime (sorry, this does not work for Windows). For instance, save
this .csd anywhere and run it from the command line:

   EXAMPLE 03E04.csd   

<CsoundSynthesizer>
<CsOptions>
-L stdin -odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

          seed      0; random seed different each time

  instr 1
idur      random    .5, 3; calculate instrument duration
p3        =         idur; reset instrument duration
ioct      random    8, 11; random values between 8th and 11th octave
idb       random    -18, -6; random values between -6 and -18 dB
aSig      oscils    ampdb(idb), cpsoct(ioct), 0
aEnv      transeg   1, p3, -10, 0
          outs      aSig*aEnv, aSig*aEnv
  endin

</CsInstruments>
<CsScore>
f 0 36000
e
</CsScore>
</CsoundSynthesizer>

If you run it by typing and returning a commandline like this ...

... you should get a prompt at the end of the Csound messages:

 

If you now type the line "i 1 0 1" and press return, you should hear that instrument 1 has been
executed. After three times your messages may look like this:
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QUTECSOUND'S LIVE EVENT SHEET

In general, this is the method that QuteCsound uses and it is made available to the user in a
flexible environment called the Live Event Sheet. This is just a screenshot of the current
(QuteCsound 0.6.0) example of the Live Event Sheet in QuteCsound:

 

Have a look in the QuteCsound frontend to see more of the possibilities of "firing" live
instrument events using the Live Event Sheet.

BY CONDITIONS

We have discussed first the classical method of triggering instrument events from the score
section of a .csd file, then we went on to look at different methods of triggering real time
events using MIDI, by using widgets, and by using score lines inserted live. We will now look at
the Csound orchestra itself and to some methods by which an instrument can internally
trigger another instrument. The pattern of triggering could be governed by conditionals, or by
different kinds of loops. As this "master" instrument can itself be triggered by a realtime
event, you have unlimited options available for combining the different methods.

Let's start with conditionals. If we have a realtime input, we may want to define a threshold,
and trigger an event

1. if we cross the threshold from below to above;
2. if we cross the threshold from above to below.
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In Csound, this could be implemented using an orchestra of three instruments. The first
instrument is the master instrument. It receives the input signal and investigates whether that
signal is crossing the threshold and if it does whether it is crossing from low to high or from
high to low. If it crosses the threshold from low ot high the second instrument is triggered, if it
crosses from high to low the third instrument is triggered.

   EXAMPLE 03E05.csd   

<CsoundSynthesizer>
<CsOptions>
-iadc -odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

          seed      0; random seed different each time

  instr 1; master instrument
ichoose   =         p4; 1 = real time audio, 2 = random amplitude movement
ithresh   =         -12; threshold in dB
kstat     init      1; 1 = under the threshold, 2 = over the threshold
;;CHOOSE INPUT SIGNAL
 if ichoose == 1 then
ain       inch      1
 else
kdB       randomi   -18, -6, 1
ain       pinkish   ampdb(kdB)
 endif
;;MEASURE AMPLITUDE AND TRIGGER SUBINSTRUMENTS IF THRESHOLD IS CROSSED
afoll     follow    ain, .1; measure mean amplitude each 1/10 second
kfoll     downsamp  afoll
 if kstat == 1 && dbamp(kfoll) > ithresh then; transition down->up
          event     "i", 2, 0, 1; call instr 2
          printks   "Amplitude = %.3f dB%n", 0, dbamp(kfoll)
kstat     =         2; change status to "up"
 elseif kstat == 2 && dbamp(kfoll) < ithresh then; transition up->down
          event     "i", 3, 0, 1; call instr 3
          printks   "Amplitude = %.3f dB%n", 0, dbamp(kfoll)
kstat     =         1; change status to "down"
 endif
  endin

  instr 2; triggered if threshold has been crossed from down to up
asig      oscils    .2, 500, 0
aenv      transeg   1, p3, -10, 0
          outs      asig*aenv, asig*aenv
  endin

  instr 3; triggered if threshold has been crossed from up to down
asig      oscils    .2, 400, 0
aenv      transeg   1, p3, -10, 0
          outs      asig*aenv, asig*aenv
  endin

</CsInstruments>
<CsScore>
i 1 0 1000 2 ;change p4 to "1" for live input
e
</CsScore>
</CsoundSynthesizer>

USING I-RATE LOOPS FOR CALCULATING A POOL OF
INSTRUMENT EVENTS

You can perform a number of calculations at init-time which lead to a list of instrument
events. In this way you are producing a score, but inside an instrument. The score events are
then executed later.
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Using this opportunity we can introduce the scoreline / scoreline_i opcode. It is quite similar to
the event / event_i opcode but has two major benefits:

You can write more than one scoreline by using "{{" at the beginning and "}}" at the end.
You can send a string to the subinstrument (which is not possible with the event
opcode).

Let's look at a simple example for executing score events from an instrument using the
scoreline opcode:

   EXAMPLE 03E06.csd   

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

          seed      0; random seed different each time

  instr 1 ;master instrument with event pool
          scoreline_i {{i 2 0 2 7.09
                        i 2 2 2 8.04
                        i 2 4 2 8.03
                        i 2 6 1 8.04}}
  endin

  instr 2 ;plays the notes
asig      pluck     .2, cpspch(p4), cpspch(p4), 0, 1
aenv      transeg   1, p3, 0, 0
          outs      asig*aenv, asig*aenv
  endin

</CsInstruments>
<CsScore>
i 1 0 7
e
</CsScore>
</CsoundSynthesizer>

With good right, you might say: "OK, that's nice, but I can also write scorelines in the score
itself!" That's right, but the advantage with the scoreline_i method is that you can render the
score events in an instrument, and then send them out to one or more instruments to
execute them. This can be done with the sprintf opcode, which produces the string for
scoreline in an i-time loop (see the chapter about control structures).

   EXAMPLE 03E07.csd   

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giPch     ftgen     0, 0, 4, -2, 7.09, 8.04, 8.03, 8.04
          seed      0; random seed different each time

  instr 1 ; master instrument with event pool
itimes    =         7 ;number of events to produce
icnt      =         0 ;counter
istart    =         0
Slines    =         ""
loop:               ;start of the i-time loop
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idur      random    1, 2.9999 ;duration of each note:
idur      =         int(idur) ;either 1 or 2
itabndx   random    0, 3.9999 ;index for the giPch table:
itabndx   =         int(itabndx) ;0-3
ipch      table     itabndx, giPch ;random pitch value from the table
Sline     sprintf   "i 2 %d %d %.2f\n", istart, idur, ipch ;new scoreline
Slines    strcat    Slines, Sline ;append to previous scorelines
istart    =         istart + idur ;recalculate start for next scoreline
          loop_lt   icnt, 1, itimes, loop ;end of the i-time loop
          puts      Slines, 1 ;print the scorelines
          scoreline_i Slines ;execute them
iend      =         istart + idur ;calculate the total duration
p3        =         iend ;set p3 to the sum of all durations
          print     p3 ;print it
  endin

  instr 2 ;plays the notes
asig      pluck     .2, cpspch(p4), cpspch(p4), 0, 1
aenv      transeg   1, p3, 0, 0
          outs      asig*aenv, asig*aenv
  endin

</CsInstruments>
<CsScore>
i 1 0 1 ;p3 is automatically set to the total duration
e
</CsScore>
</CsoundSynthesizer>

In this example, seven events have been rendered in an i-time loop in instrument 1. The result
is stored in the string variable Slines. This string is given at i-time to scoreline_i, which
executes them then one by one according to their starting times (p2), durations (p3) and other
parameters.

If you have many scorelines which are added in this way, you may run to Csound's maximal
string length. By default, it is 255 characters. It can be extended by adding the option "-
+max_str_len=10000" to Csound's maximum string length of 9999 characters. Instead of
collecting all score lines in a single string, you can also execute them inside the i-time loop.
Also in this way all the single score lines are added to Csound's event pool. The next example
shows an alternative version of the previous one by adding the instrument events one by one
in the i-time loop, either with event_i (instr 1) or with scoreline_i (instr 2): 

   EXAMPLE 03E08.csd   

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giPch     ftgen     0, 0, 4, -2, 7.09, 8.04, 8.03, 8.04
          seed      0; random seed different each time

  instr 1; master instrument with event_i
itimes    =         7; number of events to produce
icnt      =         0; counter
istart    =         0
loop:               ;start of the i-time loop
idur      random    1, 2.9999; duration of each note:
idur      =         int(idur); either 1 or 2
itabndx   random    0, 3.9999; index for the giPch table:
itabndx   =         int(itabndx); 0-3
ipch      table     itabndx, giPch; random pitch value from the table
          event_i   "i", 3, istart, idur, ipch; new instrument event
istart    =         istart + idur; recalculate start for next scoreline
          loop_lt   icnt, 1, itimes, loop; end of the i-time loop
iend      =         istart + idur; calculate the total duration
p3        =         iend; set p3 to the sum of all durations
          print     p3; print it
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  endin

  instr 2; master instrument with scoreline_i
itimes    =         7; number of events to produce
icnt      =         0; counter
istart    =         0
loop:               ;start of the i-time loop
idur      random    1, 2.9999; duration of each note:
idur      =         int(idur); either 1 or 2
itabndx   random    0, 3.9999; index for the giPch table:
itabndx   =         int(itabndx); 0-3
ipch      table     itabndx, giPch; random pitch value from the table
Sline     sprintf   "i 3 %d %d %.2f", istart, idur, ipch; new scoreline
          scoreline_i Sline; execute it
          puts      Sline, 1; print it
istart    =         istart + idur; recalculate start for next scoreline
          loop_lt   icnt, 1, itimes, loop; end of the i-time loop
iend      =         istart + idur; calculate the total duration
p3        =         iend; set p3 to the sum of all durations
          print     p3; print it
  endin

  instr 3; plays the notes
asig      pluck     .2, cpspch(p4), cpspch(p4), 0, 1
aenv      transeg   1, p3, 0, 0
          outs      asig*aenv, asig*aenv
  endin

</CsInstruments>
<CsScore>
i 1 0 1
i 2 14 1
e
</CsScore>
</CsoundSynthesizer>

USING TIME LOOPS

As discussed above in the chapter about control structures, a time loop can be built in Csound
either with the timout opcode or with the metro opcode. There were also simple examples for
triggering instrument events using both methods. Here, a more complex example is given: A
master instrument performs a time loop (choose either instr 1 for the timout method or instr
2 for the metro method) and triggers once in a loop a subinstrument. The subinstrument itself
(instr 10) performs an i-time loop and triggers several instances of a sub-subinstrument (instr
100). Each instance performs a partial with an independent envelope for a bell-like additive
synthesis.

   EXAMPLE 03E09.csd   

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1
          seed      0

  instr 1; time loop with timout. events are triggered by event_i (i-rate)
loop:
idurloop  random    1, 4; duration of each loop
          timout    0, idurloop, play
          reinit    loop
play:
idurins   random    1, 5; duration of the triggered instrument
          event_i   "i", 10, 0, idurins; triggers instrument 10
  endin

  instr 2; time loop with metro. events are triggered by event (k-rate)
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  instr 2; time loop with metro. events are triggered by event (k-rate)
kfreq     init      1; give a start value for the trigger frequency
kTrig     metro     kfreq
 if kTrig == 1 then ;if trigger impulse:
kdur      random    1, 5; random duration for instr 10
          event     "i", 10, 0, kdur; call instr 10
kfreq     random    .25, 1; set new value for trigger frequency
 endif
  endin

  instr 10; triggers 8-13 partials
inumparts random    8, 14
inumparts =         int(inumparts); 8-13 as integer
ibasoct   random    5, 10; base pitch in octave values
ibasfreq  =         cpsoct(ibasoct)
ipan      random    .2, .8; random panning between left (0) and right (1)
icnt      =         0; counter
loop:
          event_i   "i", 100, 0, p3, ibasfreq, icnt+1, inumparts, ipan
          loop_lt   icnt, 1, inumparts, loop
  endin

  instr 100; plays one partial
ibasfreq  =         p4; base frequency of sound mixture
ipartnum  =         p5; which partial is this (1 - N)
inumparts =         p6; total number of partials
ipan      =         p7; panning
ifreqgen  =         ibasfreq * ipartnum; general frequency of this partial
ifreqdev  random    -10, 10; frequency deviation between -10% and +10%
ifreq     =         ifreqgen + (ifreqdev*ifreqgen)/100; real frequency regarding deviation
ixtratim  random    0, p3; calculate additional time for this partial
p3        =         p3 + ixtratim; new duration of this partial
imaxamp   =         1/inumparts; maximum amplitude
idbdev    random    -6, 0; random deviation in dB for this partial
iamp      =         imaxamp * ampdb(idbdev-ipartnum); higher partials are softer
ipandev   random    -.1, .1; panning deviation
ipan      =         ipan + ipandev
aEnv      transeg   0, .005, 0, iamp, p3-.005, -10, 0
aSine     poscil    aEnv, ifreq, giSine
aL, aR    pan2      aSine, ipan
          outs      aL, aR
          prints    "ibasfreq = %d, ipartial = %d, ifreq = %d%n", ibasfreq, ipartnum, ifreq
  endin

</CsInstruments>
<CsScore>
i 1 0 300 ;try this, or the next line (or both)
;i 2 0 300
</CsScore>
</CsoundSynthesizer>
  

LINKS AND RELATED OPCODES

LINKS

A great collection of interactive examples with FLTK widgets by Iain McCurdy can be found
here. See particularily the "Realtime Score Generation" section.

An extended example for calculating score events at i-time can be found in the Re-Generation
of Stockhausen's "Studie II" by Joachim Heintz (also included in the QuteCsound Examples
menu).

RELATED OPCODES

event_i / event: Generate an instrument event at i-time (event_i) or at k-time (event). Easy to
use, but you cannot send a string to the subinstrument.

scoreline_i / scoreline: Generate an instrument at i-time (scoreline_i) or at k-time (scoreline).
Like event_i/event, but you can send to more than one instrument but unlike event_i/event
you can send strings. On the other hand, you must usually preformat your scoreline-string
using sprintf.
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sprintf / sprintfk: Generate a formatted string at i-time (sprintf) or k-time (sprintfk), and store
it as a string-variable.

-+max_str_len=10000: Option in the "CsOptions" tag of a .csd file which extend the maximum
string length to 9999 characters.

massign: Assigns the incoming MIDI events to a particular instrument. It is also possible to
prevent any assigment by this opcode.

cpsmidi / ampmidi: Returns the frequency / velocity of a pressed MIDI key.

release: Returns "1" if the last k-cycle of an instrument has begun.

xtratim: Adds an additional time to the duration (p3) of an instrument.

turnoff / turnoff2: Turns an instrument off; either by the instrument itself (turnoff), or from
another instrument and with several options (turnoff2).

-p3 / -p1: A negative duration (p3) turns an instrument on "indefinitely"; a negative instrument
number (p1) turns this instrument off. See the examples at the beginning of this chapter.

-L stdin: Option in the "CsOptions" tag of a .csd file which lets you type in realtime score
events.

timout: Allows you to perform time loops at i-time with reinitalization passes.

metro: Outputs momentary 1s with a definable (and variable) frequency. Can be used to
perform a time loop at k-rate.

follow: Envelope follower.

18. USER DEFINED OPCODES
Opcodes are the core units of everything that Csound does. They are like little machines that
do a job, and programming is akin to connecting these little machines to perform a larger job.
An opcode usually has something which goes into it - the inputs or arguments -, and usually it
has something which comes out of it: the output which is stored in one or several variables.
Opcodes are written in the programming language C (that's where the name "Csound" comes
from). If you want to create a new opcode in Csound, you must write it in C. How to do this is
described in the Extending Csound chapter of this manual, and is also described in the relevant
chapter of the Canonical Csound Reference Manual.

There is a way, however, of writing your own opcodes in the Csound Language itself. The
opcodes which are written in this way, are called User Defined Opcodes or "UDO"s. A UDO
behaves in the same way as a standard opcode: it has input arguments, and usually one or
more output variables. They run at i-time or at k-time. You use them as part of the Csound
Language after you have defined and loaded them.

User Defined Opcodes have many valuable properties. They make your code clearer because
they push you to a general formulation of tasks which can be abstracted. They make your
code more readable because they give you the ability to express a complex procedure in one
function (one line in Csound), instead of having code scattered by he need to perform many
smaller tasks. UDOs allow you to build up your own library of functions you need and return to
frequently in your work. In this way, you build your own Csound dialect within the Csound
Language.

This chapter explains, starting from a basic example, how you can build your own UDOs, and
what options you have to design them. Then the practice of loading UDOs in your .csd file is
shown, followed by some hints to special abilities of UDOs. Before the "Links And Related
Opcodes" section at the end, some examples are shown for different User Defined Opcode
definitions and applications. 

TRANSFORMING CSOUND INSTRUMENT CODE TO A USER
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DEFINED OPCODE 

Writing a User Defined Opcode is actually very easy and straightforward. It mainly means to
extract a portion of usual Csound instrument code, and put it in the frame of a UDO. So, let's
start with the instrument code:

   EXAMPLE 03F01.csd    

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1
          seed      0

  instr 1
aDel      init      0; initialize delay signal
iFb       =         .7; feedback multiplier
aSnd      rand      .2; white noise
kdB       randomi   -18, -6, .4; random movement between -18 and -6
aSnd      =         aSnd * ampdb(kdB); applied as dB to noise
kFiltFq   randomi   100, 1000, 1; random movement between 100 and 1000
aFilt     reson     aSnd, kFiltFq, kFiltFq/5; applied as filter center frequency
aFilt     balance   aFilt, aSnd; bring aFilt to the volume of aSnd
aDelTm    randomi   .1, .8, .2; random movement between .1 and .8 as delay time
aDel      vdelayx   aFilt + iFb*aDel, aDelTm, 1, 128; variable delay
kdbFilt   randomi   -12, 0, 1; two random movements between -12 and 0 (dB) ...
kdbDel    randomi   -12, 0, 1; ... for the filtered and the delayed signal
aOut      =         aFilt*ampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it
          outs      aOut, aOut
  endin

</CsInstruments>
<CsScore>
i 1 0 60
</CsScore>
</CsoundSynthesizer>

This is a filtered noise, and its delay, which is feeded back again into the delay line at a certain
ratio iFb. The filter is moving as kFiltFq randomly between 100 and 1000 Hz. The volume of the
filtered noise is moving as kdB randomly between -18 dB and -6 dB. The delay time moves
between 0.1 and 0.8 seconds, and then both parts are mixed in varying volume portions.

BASIC EXAMPLE 

If this signal processing unit is to be transformed into a User Defined Opcode, the main
question is about its borders: Which portion of the code should be transformed into an own
new function? The first solution could be a "radical" (and bad) solution: to transform the whole
instrument into a UDO.

   EXAMPLE 03F02.csd     

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1
          seed      0
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  opcode FiltFb, 0, 0
aDel      init      0; initialize delay signal
iFb       =         .7; feedback multiplier
aSnd      rand      .2; white noise
kdB       randomi   -18, -6, .4; random movement between -18 and -6
aSnd      =         aSnd * ampdb(kdB); applied as dB to noise
kFiltFq   randomi   100, 1000, 1; random movement between 100 and 1000
aFilt     reson     aSnd, kFiltFq, kFiltFq/5; applied as filter center frequency
aFilt     balance   aFilt, aSnd; bring aFilt to the volume of aSnd
aDelTm    randomi   .1, .8, .2; random movement between .1 and .8 as delay time
aDel      vdelayx   aFilt + iFb*aDel, aDelTm, 1, 128; variable delay
kdbFilt   randomi   -12, 0, 1; two random movements between -12 and 0 (dB) ...
kdbDel    randomi   -12, 0, 1; ... for the filtered and the delayed signal
aOut      =         aFilt*ampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it
          outs      aOut, aOut
  endop

instr 1
          FiltFb
endin

</CsInstruments>
<CsScore>
i 1 0 60
</CsScore>
</CsoundSynthesizer> 

Before we continue the discussion about the quality of this transormation, we should have a
look at the syntax first. The general syntax for a User Defined Opcode is:

opcode name, outtypes, intypes
...
endop

Here, the name of the UDO is FiltFb. You are free to give any name, but it is strongly
recommended to begin the name with a capital letter. By this, you avoid duplicates with usual
opcodes which always starts with a lower case letter. As we have no input arguments and no
output arguments for this first version of FiltFb, both outtypes and intypes are set to zero.
Similar to the instr ... endin block of a usual instrument definition, for a UDO the opcode ...
endop keywords start and end the definition block. In the instrument, the UDO is called like a
usual opcode by its name, and in the same line the input arguments to the right side and the
output arguments to the left side. As in this case the FiltFb has no input and output
arguments, it is just called by its name:

instr 1
          FiltFb
endin

Now - why is this UDO more or less senseless? It gains nothing, compared to the usual
instrument definition, and looses some benefits of the instrument definition. First, it is not
advisable to include this line into the UDO: 

          outs      aOut, aOut

This statement writes the audio signal aOut from inside the UDO to the output device.
Imagine you want to change the output channels, or you want to add any signal modifier after
the opcode. This would be impossible with this statement. So instead of including the outs
opcode, we give the FiltFb UDO an audio output:

          xout      aOut

The xout statement of a UDO definition works like the "outlets" in PD or Max, giving the result
of an opcode to the "outer world". 

Now let's go to the input side, and find out what should be done inside the FiltFb unit, and
what should be made flexible and controllable from outside. First, the aSnd parameter should
not be restricted to a white noise with amplitude 0.2, but should be an input (like a "signal
inlet" in PD/Max). This is done with the line:

aSnd      xin
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Both, the output and the input type must be declared in the first line of the UDO definition,
whether they are i-, k- or a-variables. So instead of "opcode FiltFb, 0, 0" the statement has
changed now to "opcode FiltFb, a, a", because we have both input and output as a-variable.

The UDO is now much more flexible and logical: it takes any audio input, it performs the
filtered delay and feedback processing, and returns the result as another audio signal. In the
next example, instrument 1 does exactly the same as before. Instrument 2 has live input
instead. 

   EXAMPLE 03F03.csd   

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1
          seed      0

  opcode FiltFb, a, a
aSnd      xin
aDel      init      0; initialize delay signal
iFb       =         .7; feedback multiplier
kdB       randomi   -18, -6, .4; random movement between -18 and -6
aSnd      =         aSnd * ampdb(kdB); applied as dB to noise
kFiltFq   randomi   100, 1000, 1; random movement between 100 and 1000
aFilt     reson     aSnd, kFiltFq, kFiltFq/5; applied as filter center frequency
aFilt     balance   aFilt, aSnd; bring aFilt to the volume of aSnd
aDelTm    randomi   .1, .8, .2; random movement between .1 and .8 as delay time
aDel      vdelayx   aFilt + iFb*aDel, aDelTm, 1, 128; variable dealy
kdbFilt   randomi   -12, 0, 1; two random movements between -12 and 0 (dB) ...
kdbDel    randomi   -12, 0, 1; ... for the filtered and the delayed signal
aOut      =         aFilt*ampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it
          xout      aOut
  endop

  instr 1; white noise input
aSnd      rand      .2
aOut      FiltFb    aSnd
          outs      aOut, aOut
  endin

  instr 2; live audio input
aSnd      inch      1; input from channel 1
aOut      FiltFb    aSnd
          outs      aOut, aOut
  endin

</CsInstruments>
<CsScore>
i 1 0 60 ;change to i 2 for live audio input
</CsScore>
</CsoundSynthesizer>

IS THERE AN OPTIMAL DESIGN FOR A USER DEFINED OPCODE?

Is this now the optimal formulation of the FiltFb User Defined Opcode? Obviously there are
parts of the opcode definiton which could be outside: the feedback multiplier iFb, the random
movement of the input signal kdB, the random movement of the filter frequency kFiltFq, and
the random movements of the output mix kdbSnd and kdbDel. Is it better to put them out
of the opcode definition, or is it better to leave them inside?
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There is no general answer. It depends on the degree of abstraction you want to have or you
do not want to have. If you are working on a piece, and you know that all the parameters are
exactly as you need in this piece, let it as it is. The advantage is the clear arrangement: just
one input and one output. The more flexibility you give to your UDO, the more input
arguments you get. This is better for a later reuse, but may be too complicated for the
concrete piece you are working on.

Perhaps it is the best solution to have one abstract definition which performs one task "once
for all", and to make a concretization - also as UDO - for the purpose you are working on in a
certain case. The final example shows the definition of a general and more abstract UDO
FiltFb, and its different applications: instrument 1 defines the specifications in the instrumnent
itself; instrument 2 uses a second UDO Opus123_FiltFb for this purpose; instrument 3 sets the
general FiltFb in a new context of two varying delay lines and a buzzer as input signal.

   EXAMPLE 03F04.csd   

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1
          seed      0

  opcode FiltFb, aa, akkkia
;;DELAY AND FEEDBACK OF A BAND FILTERED INPUT SIGNAL
;input: aSnd = input sound; kFb = feedback multiplier (0-1); kFiltFq: center frequency for the reson band filter (Hz); kQ = band width of reson filter as kFiltFq/kQ; iMaxDel = maximum delay time in seconds; aDelTm = delay time
;output: aFilt = filtered and balanced aSnd; aDel = delay and feedback of aFilt
aSnd, kFb, kFiltFq, kQ, iMaxDel, aDelTm xin
aDel      init      0
aFilt     reson     aSnd, kFiltFq, kFiltFq/kQ
aFilt     balance   aFilt, aSnd
aDel      vdelayx   aFilt + kFb*aDel, aDelTm, iMaxDel, 128; variable delay
          xout      aFilt, aDel
  endop

  opcode Opus123_FiltFb, a, a
;;the udo FiltFb here in my opus 123 :)
;input = aSnd
;output = filtered and delayed aSnd in different mixtures
aSnd      xin
kdB       randomi   -18, -6, .4; random movement between -18 and -6
aSnd      =         aSnd * ampdb(kdB); applied as dB to noise
kFiltFq   randomi   100, 1000, 1; random movement between 100 and 1000
iQ        =         5
iFb       =         .7; feedback multiplier
aDelTm    randomi   .1, .8, .2; random movement between .1 and .8 as delay time
aFilt, aDel FiltFb    aSnd, iFb, kFiltFq, iQ, 1, aDelTm
kdbFilt   randomi   -12, 0, 1; two random movements between -12 and 0 (dB) ...
kdbDel    randomi   -12, 0, 1; ... for the noise and the delay signal
aOut      =         aFilt*ampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it
          xout      aOut
  endop

  instr 1; well known context as instrument
aSnd      rand      .2
kdB       randomi   -18, -6, .4; random movement between -18 and -6
aSnd      =         aSnd * ampdb(kdB); applied as dB to noise
kFiltFq   randomi   100, 1000, 1; random movement between 100 and 1000
iQ        =         5
iFb       =         .7; feedback multiplier
aDelTm    randomi   .1, .8, .2; random movement between .1 and .8 as delay time
aFilt, aDel FiltFb    aSnd, iFb, kFiltFq, iQ, 1, aDelTm
kdbFilt   randomi   -12, 0, 1; two random movements between -12 and 0 (dB) ...
kdbDel    randomi   -12, 0, 1; ... for the noise and the delay signal
aOut      =         aFilt*ampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it
aOut      linen     aOut, .1, p3, 3
          outs      aOut, aOut
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  endin

  instr 2; well known context UDO which embedds another UDO
aSnd      rand      .2
aOut      Opus123_FiltFb aSnd
aOut      linen     aOut, .1, p3, 3
          outs      aOut, aOut
  endin

  instr 3; other context: two delay lines with buzz
kFreq     randomh   200, 400, .08; frequency for buzzer
aSnd      buzz      .2, kFreq, 100, giSine; buzzer as aSnd
kFiltFq   randomi   100, 1000, .2; center frequency
aDelTm1   randomi   .1, .8, .2; time for first delay line
aDelTm2   randomi   .1, .8, .2; time for second delay line
kFb1      randomi   .8, 1, .1; feedback for first delay line
kFb2      randomi   .8, 1, .1; feedback for second delay line
a0, aDel1 FiltFb    aSnd, kFb1, kFiltFq, 1, 1, aDelTm1; delay signal 1
a0, aDel2 FiltFb    aSnd, kFb2, kFiltFq, 1, 1, aDelTm2; delay signal 2
aDel1     linen     aDel1, .1, p3, 3
aDel2     linen     aDel2, .1, p3, 3
          outs      aDel1, aDel2
  endin

</CsInstruments>
<CsScore>
i 1 0 30
i 2 31 30
i 3 62 120
</CsScore>
</CsoundSynthesizer>

The good thing about the different possibilities of writing a more specified UDO, or a more
generalized: You needn't decide this at the beginning of your work. Just start with any
formulation you find useful at a certain situation. If you continue and see that you should have
some more parameters accessible, it should be easy to rewrite the UDO. Just be careful not
to confuse the different versions. Give names like Faulty1, Faulty2 etc. instead of overwriting
Faulty. And be generous to yourself in commenting: What is this UDO supposed to do? What
are the inputs (included the measurement units like Hertz or seconds)? What are the outputs
exactly? - How you do this, is up to you and depends on your style and your favour, but you
should do it in any way if you do not want to become headache later when you try to
understand what the hell this UDO actually does ...

HOW TO USE THE USER DEFINED OPCODE FACILITY IN
PRACTICE

In this section, we will collect the main points you should know about the use of UDOs: what
you must regard in loading them, what special features they offer, what restrictions you must
respect, how you can build your own language with them. 

LOADING USER DEFINED OPCODES IN THE ORCHESTRA HEADER

As it can be seen from the examples above, User Defined Opcodes must be defined in the
orchestra header (which is sometimes called "instrument 0"). Note that your opcode
definitions must be the last part of all your orchestra header statements. Though you are
probably right to call Csound intolerant in this case, the following statement gives an error:

   EXAMPLE 03F05.csd   

<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

  opcode FiltFb, aa, akkkia
;;DELAY AND FEEDBACK OF A BAND FILTERED INPUT SIGNAL
;input: aSnd = input sound; kFb = feedback multiplier (0-1); kFiltFq: center frequency for the reson band filter (Hz); kQ = band width of reson filter as kFiltFq/kQ; iMaxDel = maximum delay time in seconds; aDelTm = delay time
;output: aFilt = filtered and balanced aSnd; aDel = delay and feedback of aFilt
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aSnd, kFb, kFiltFq, kQ, iMaxDel, aDelTm xin
aDel      init      0
aFilt     reson     aSnd, kFiltFq, kFiltFq/kQ
aFilt     balance   aFilt, aSnd
aDel      vdelayx   aFilt + kFb*aDel, aDelTm, iMaxDel, 128; variable delay
          xout      aFilt, aDel
  endop

giSine    ftgen     0, 0, 2^10, 10, 1
          seed      0

instr 1
...

Csound will complain about "misplaced opcodes", which means that the ftgen and the seed
statement must be before the opcode definitions. You should not try to discuss with Csound
in this case ...

LOADING A SET OF USER DEFINED OPCODES

You can load as many User Defined Opcodes into a Csound orchestra as you wish. If they do
not depend on each other, the order is arbitrarily. If UDO Opus123_FiltFb uses the UDO FiltFb
for its definition (see the example above), you must first load FiltFb, and then Opus123_FiltFb. If
not, you will get an error like this:

orch compiler:
 opcode Opus123_FiltFb a a 
error:  no legal opcode, line 25:
aFilt, aDel FiltFb    aSnd, iFb, kFiltFq, iQ, 1, aDelTm

LOADING BY AN #INCLUDE FILE

Definitions of User Defined Opcodes can also be loaded into a .csd file by an "#include"
statement. What you must do is the following:

1. Save your opcode definitions in a plain text file, for instance "MyOpcodes.txt".
2. If this file is in the same directory as your .csd file, you can just call it by the statement:

#include "MyOpcodes.txt"

3. If "MyOpcodes.txt" is in a different directory, you must call it by the full path name, for
instance:

#include "/Users/me/Documents/Csound/UDO/MyOpcodes.txt"

As always, make sure that the "#include" statement is the last one in the orchestra header,
and that the logical order is accepted if one opcode depends on an other one.

If you work a lot with User Defined Opcodes, and collect step by step a number of UDOs you
need for your work, the #include feature lets you easily import them to your .csd file, like a
personal library. 

THE SETKSMPS FEATURE

The ksmps assignment in the orchestra header cannot be changed during the performance of
a .csd file. But in a User Defined Opcode you have the unique possibility of changing this value
by a local assignment. If you use a setksmps statement in your UDO, you can have a locally
smaller value for the number of samples per control cycle in the UDO. In the following
example, the print statement in the UDO prints ten times compared to one time in the
instrument, because the ksmps in the UDO is 10 times smaller:

   EXAMPLE 03F06.csd    

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 44100 ;very hight because of printing

103

http://www.csounds.com/manual/html/ksmps.html
http://www.csounds.com/manual/html/setksmps.html


  opcode Faster, 0, 0
setksmps 4410 ;local ksmps is 1/10 of global ksmps
printks "UDO print!%n", 0
  endop

  instr 1
printks "Instr print!%n", 0 ;print each control period (once per second)
Faster ;print 10 times per second because of local ksmps
  endin

</CsInstruments>
<CsScore>
i 1 0 2
</CsScore>
</CsoundSynthesizer>

DEFAULT ARGUMENTS 

For i-time arguments, you can use a simple feature to set default values:

"o" (instead of "i") defaults to 0
"p" (instead of "i") defaults to 1
"j" (instead of "i") defaults to -1 

So you can omit these arguments - in this case the default values will be used. If you give an
input argument instead, the default value will be overwritten:

   EXAMPLE 03F07.csd     

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

  opcode Defaults, iii, opj
ia, ib, ic xin
xout ia, ib, ic
  endop

instr 1
ia, ib, ic Defaults
           print     ia, ib, ic
ia, ib, ic Defaults  10
           print     ia, ib, ic
ia, ib, ic Defaults  10, 100
           print     ia, ib, ic
ia, ib, ic Defaults  10, 100, 1000
           print     ia, ib, ic
endin

</CsInstruments>
<CsScore>
i 1 0 0
</CsScore>
</CsoundSynthesizer>

RECURSIVE USER DEFINED OPCODES

Recursion means that a function can call itself. This is a feature which can be fertile in many
situations. Also User Defined Opcodes can be recursive. You can do many things with a
recursive UDO which you cannot do in another way; at least not in a simliar simple way. This
is an example of generating eight partials by a recursive UDO. See the last example in the
next section for a more musical application of a recursive UDO.

   EXAMPLE 03F08.csd     

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
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nchnls = 2
0dbfs = 1

  opcode Recursion, a, iip
;input: frequency, number of partials, first partial (default=1)
ifreq, inparts, istart xin
iamp      =         1/inparts/istart ;decreasing amplitudes for higher partials
 if istart < inparts then ;if inparts have not yet reached
acall     Recursion ifreq, inparts, istart+1 ;call another instance of this UDO
 endif
aout      oscils    iamp, ifreq*istart, 0 ;execute this partial
aout      =         aout + acall ;add the audio signals
          xout      aout
  endop

  instr 1
amix      Recursion 400, 8 ;8 partials with a base frequency of 400 Hz
aout      linen     amix, .01, p3, .1
          outs      aout, aout
  endin

</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>

EXAMPLES

We will focus here on some examples which will hopefully show the wide range of User Defined
Opcodes. Some of them are adaptions of examples from previous chapters about the Csound
Syntax. Much more examples can be found in the User-Defined Opcode Database, editied by
Steven Yi.

PLAY A MONO OR STEREO SOUNDFILE

Csound is often very strict and gives errors where other applications "turn a blind eye". This is
also the case if you read a soundfile with one of Csound's opcodes: soundin, diskin or diskin2. If
your soundfile is mono, you must use the mono version, which has one audio signal as output.
If your soundfile is stereo, you must use the stereo version, which outputs two audio signals. If
you want a stereo output, but you happen to have a mono soundfile as input, you will get the
error message:

INIT ERROR in ...: number of output args inconsistent with number of file channels

This is a good job for a UDO. We want to have an opcode which works for both, mono and
stereo files as input. Two versions are possible: FilePlay1 returns always one audio signal (if the
file is stereo it uses just the first channel), FilePlay2 returns always two audio signals (if the file
is mono it duplicates this to both channels). We can use the default arguments to make this
opcode exactly the same to use as diskin2:

   EXAMPLE 03F09.csd      

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

  opcode FilePlay1, a, Skoooooo
;gives mono output regardless your soundfile is mono or stereo
;(if stereo, just the first channel is used)
;see the diskin2 page of the csound manual for information about the input arguments
Sfil, kspeed, iskip, iloop, iformat, iwsize, ibufsize, iskipinit xin
ichn      filenchnls Sfil
 if ichn == 1 then
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aout      diskin2   Sfil, kspeed, iskip, iloop, iformat, iwsize, ibufsize, iskipinit
 else
aout, a0  diskin2   Sfil, kspeed, iskip, iloop, iformat, iwsize, ibufsize, iskipinit
 endif
          xout      aout
  endop

  opcode FilePlay2, aa, Skoooooo
;gives stereo output regardless your soundfile is mono or stereo
;see the diskin2 page of the csound manual for information about the input arguments
Sfil, kspeed, iskip, iloop, iformat, iwsize, ibufsize, iskipinit xin
ichn      filenchnls Sfil
 if ichn == 1 then
aL        diskin2    Sfil, kspeed, iskip, iloop, iformat, iwsize, ibufsize, iskipinit
aR        =          aL
 else
aL, aR     diskin2    Sfil, kspeed, iskip, iloop, iformat, iwsize, ibufsize, iskipinit
 endif
          xout       aL, aR
  endop

  instr 1
aMono     FilePlay1  "fox.wav", 1
          outs       aMono, aMono
  endin

  instr 2
aL, aR    FilePlay2  "fox.wav", 1
          outs       aL, aR
  endin

</CsInstruments>
<CsScore>
i 1 0 4
i 2 4 4
</CsScore>
</CsoundSynthesizer>

CHANGE THE CONTENT OF A FUNCTION TABLE 

In example XXX (INSERT NUMBER: loop section of Control Structures Chapter), a function table
has been changed at performance time, once a second, by random deviations. This can be
easily transformed to a User Defined Opcode. It takes the function table variable, a trigger
signal, and the random deviation in percent as input. In each control cycle where the trigger
signal is "1", the table values are read. The random deviation is applied, and the changed
values are written again into the table. Here, the tab/tabw opcodes are used to make sure
that also non-power-of-two tables can be used.

   EXAMPLE 03F10.csd      

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 441
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 256, 10, 1; sine wave
          seed      0; each time different seed

  opcode TabDirtk, 0, ikk
;"dirties" a function table by applying random deviations at a k-rate trigger
;input: function table, trigger (1 = perform manipulation), deviation as percentage
ift, ktrig, kperc xin
 if ktrig == 1 then ;just work if you get a trigger signal
kndx      =         0
loop:
krand     random    -kperc/100, kperc/100
kval      tab       kndx, ift; read old value
knewval   =         kval + (kval * krand); calculate new value
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          tabw      knewval, kndx, giSine; write new value
          loop_lt   kndx, 1, ftlen(ift), loop; loop construction
 endif
  endop

  instr 1
kTrig     metro     1, .00001 ;trigger signal once per second
          TabDirtk  giSine, kTrig, 10
aSig      poscil    .2, 400, giSine
          outs      aSig, aSig
  endin

</CsInstruments>
<CsScore>
i 1 0 10
</CsScore>
</CsoundSynthesizer>

Of course you can also change the content of a function table at init-time. The next example
permutes a series of numbers randomly each time it is called. For this purpose, first the input
function table iTabin is copied as iCopy. This is necessary because we do not want to change
iTabin in any way. Then a random index in iCopy is calculated, and the value there is written
at the beginning of iTabout, which contains the permutet result. At the end of this cycle, each
value in iCopy which is has a larger index than the one which has just been read, is shifted one
position to the left. So now iCopy has become one position smaller - not in table size but in
the number of values to read. This procedure is continued until all values from iCopy are again
in iTabout:

   EXAMPLE 03F11.csd     

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

giVals    ftgen     0, 0, -12, -2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
          seed      0; each time different seed

  opcode TabPermRand_i, i, i
;permuts randomly the values of the input table and creates an output table for the result
iTabin    xin
itablen   =         ftlen(iTabin)
iTabout   ftgen     0, 0, -itablen, 2, 0 ;create empty output table
iCopy     ftgen     0, 0, -itablen, 2, 0 ;create empty copy of input table
          tableicopy iCopy, iTabin ;write values of iTabin into iCopy
icplen    init      itablen ;number of values in iCopy
indxwt    init      0 ;index of writing in iTabout
loop:
indxrd    random    0, icplen - .0001; random read index in iCopy
indxrd    =         int(indxrd)
ival      tab_i     indxrd, iCopy; read the value
          tabw_i    ival, indxwt, iTabout; write it to iTabout
 shift:           ;shift values in iCopy larger than indxrd one position to the left
 if indxrd < icplen-1 then ;if indxrd has not been the last table value
ivalshft  tab_i     indxrd+1, iCopy ;take the value to the right ...
          tabw_i    ivalshft, indxrd, iCopy ;... and write it to indxrd position
indxrd    =         indxrd + 1 ;then go to the next position
          igoto     shift ;return to shift and see if there is anything left to do
 endif
indxwt    =         indxwt + 1 ;increase the index of writing in iTabout
          loop_gt   icplen, 1, 0, loop ;loop as long as there is a value in iCopy
          ftfree    iCopy, 0 ;delete the copy table
          xout      iTabout ;return the number of iTabout
  endop

instr 1
iPerm     TabPermRand_i giVals ;perform permutation
;print the result
indx      =         0
Sres      =         "Result:"
print:
ival      tab_i     indx, iPerm
Sprint    sprintf   "%s %d", Sres, ival
Sres      =         Sprint
          loop_lt   indx, 1, 12, print
          puts      Sres, 1
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          puts      Sres, 1
endin

instr 2; the same but performed ten times
icnt      =         0
loop:
iPerm     TabPermRand_i giVals ;perform permutation
;print the result
indx      =         0
Sres      =         "Result:"
print:
ival      tab_i     indx, iPerm
Sprint    sprintf   "%s %d", Sres, ival
Sres      =         Sprint
          loop_lt   indx, 1, 12, print
          puts      Sres, 1
          loop_lt   icnt, 1, 10, loop
endin

</CsInstruments>
<CsScore>
i 1 0 0
i 2 0 0
</CsScore>
</CsoundSynthesizer>

PRINT THE CONTENT OF A FUNCTION TABLE

There is no opcode in Csound for printing the content of a function table, but it can be written
as a UDO. Again a loop is needed for checking the values and putting them in a string which
can be printed then. In addition, some options can be given for the print precision and for the
number of elements in a line.

   EXAMPLE 03F12.csd      

<CsoundSynthesizer>
<CsOptions>
-ndm0 -+max_str_len=10000
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz

gitab     ftgen     1, 0, -7, -2, 0, 1, 2, 3, 4, 5, 6
gisin     ftgen     2, 0, 128, 10, 1

  opcode TableDumpSimp, 0, ijo
;prints the content of a table in a simple way
;input: function table, float precision while printing (default = 3), parameters per row (default = 10, maximum = 32)
ifn, iprec, ippr xin
iprec     =         (iprec == -1 ? 3 : iprec)
ippr      =         (ippr == 0 ? 10 : ippr)
iend      =         ftlen(ifn)
indx      =         0
Sformat   sprintf   "%%.%df\t", iprec
Sdump     =         ""
loop:
ival      tab_i     indx, ifn
Snew      sprintf   Sformat, ival
Sdump     strcat    Sdump, Snew
indx      =         indx + 1
imod      =         indx % ippr
 if imod == 0 then
          puts      Sdump, 1
Sdump     =         ""
 endif
 if indx < iend igoto loop
          puts      Sdump, 1
  endop
 
 
instr 1
          TableDumpSimp p4, p5, p6
          prints    "%n"
endin
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</CsInstruments>
<CsScore>
;i1   st   dur   ftab   prec   ppr
i1    0    0     1      -1
i1    .    .     1       0
i1    .    .     2       3     10 
i1    .    .     2       6     32
</CsScore>
</CsoundSynthesizer>

A RECURSIVE USER DEFINED OPCODE FOR ADDITIVE SYNTHESIS

In the last example of the chapter about Triggering Instrument Events a number of partials
were synthesized, each with a random frequency deviation of maximal 10% compared to the
harmonic spectrum and an own duration for each partial. This can also be written as a
recursive UDO. Each UDO generates one partial, and calls the next UDO, unless the last
partial is generated. Now the code can be reduced to two instruments: instrument 1 performs
the time loop, calculates the basic values for one note, and triggers the event. Then
instrument 11 is called which feeds the UDO with the values and gives the audio signals to the
output.

   EXAMPLE 03F13.csd     

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1
          seed      0

  opcode PlayPartials, aa, iiipo
;plays inumparts partials with frequency deviation and own envelopes and durations for each partial
ibasfreq  \ ; base frequency of sound mixture
inumparts \ ; total number of partials
ipan      \ ; panning
ipartnum  \ ; which partial is this (1 - N, default=1)
ixtratim  \ ; extra time in addition to p3 needed for this partial (default=0)
          xin
ifreqgen  =         ibasfreq * ipartnum; general frequency of this partial
ifreqdev  random    -10, 10; frequency deviation between -10% and +10%
ifreq     =         ifreqgen + (ifreqdev*ifreqgen)/100; real frequency
ixtratim1 random    0, p3; calculate additional time for this partial
imaxamp   =         1/inumparts; maximum amplitude
idbdev    random    -6, 0; random deviation in dB for this partial
iamp      =         imaxamp * ampdb(idbdev-ipartnum); higher partials are softer
ipandev   random    -.1, .1; panning deviation
ipan      =         ipan + ipandev
aEnv      transeg   0, .005, 0, iamp, p3+ixtratim1-.005, -10, 0; envelope
aSine     poscil    aEnv, ifreq, giSine
aL1, aR1  pan2      aSine, ipan
 if ixtratim1 > ixtratim then
ixtratim  =         ixtratim1 ;set ixtratim to the ixtratim1 if the latter is larger
 endif
 if ipartnum < inumparts then ;if this is not the last partial
aL2, aR2  PlayPartials ibasfreq, inumparts, ipan, ipartnum+1, ixtratim ;call the next one
 else               ;if this is the last partial
p3        =         p3 + ixtratim; reset p3 to the longest ixtratim value
 endif
          xout      aL1+aL2, aR1+aR2
  endop

  instr 1; time loop with metro
kfreq     init      1; give a start value for the trigger frequency
kTrig     metro     kfreq
 if kTrig == 1 then ;if trigger impulse:
kdur      random    1, 5; random duration for instr 10
knumparts random    8, 14
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knumparts =         int(knumparts); 8-13 partials
kbasoct   random    5, 10; base pitch in octave values
kbasfreq  =         cpsoct(kbasoct) ;base frequency
kpan      random    .2, .8; random panning between left (0) and right (1)
          event     "i", 11, 0, kdur, kbasfreq, knumparts, kpan; call instr 11
kfreq     random    .25, 1; set new value for trigger frequency
 endif
  endin

  instr 11; plays one mixture with 8-13 partials
aL, aR    PlayPartials p4, p5, p6
          outs      aL, aR
  endin

</CsInstruments>
<CsScore>
i 1 0 300
</CsScore>
</CsoundSynthesizer>

LINKS AND RELATED OPCODES

LINKS 

This is the page in the Canonical Csound Reference Manual about the definition of UDOs.

The most important resource of User Defined Opcodes is the User-Defined Opcode Database,
editied by Steven Yi.

Also by Steven Yi, read the second part of his article about control flow in Csound in the
Csound Journal (summer 2006).

RELATED OPCODES

opcode: The opcode to write a User Defined Opcode. 

#include: Useful to include any loadable Csound code, in this case definitions of User Defined
Opcodes. 

setksmps: Lets you set a smaller ksmps value locally in a User Defined Opcode. 
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19. ADDITIVE SYNTHESIS
Jean Baptiste Joseph Fourier demonstrated around 1800 that any continuous function can be
perfectly described as a sum of sine waves. This in fact means that you can create any sound,
no matter how complex, if you know which sine waves to add together.

This concept really excited the early pioneers of electronic music, who imagined that sine
waves would give them the power to create any sound imaginable and previously unimagined.
Unfortunately, they soon realized that while adding sine waves is easy, interesting sounds
must have a large number of sine waves which are constantly varying in frequency and
amplitude, which turns out to be a hugely impractical task.

However, additive synthesis can provide unusual and interesting sounds. Moreover both, the
power of modern computers, and the ability of managing data in a programming language offer
new dimensions of working with this old tool. As with most things in Csound there are several
ways to go about it. We will try to show some of them, and see how they are connected with
different programming paradigms. 

WHAT ARE THE MAIN PARAMETERS OF ADDITIVE
SYNTHESIS?

Before we go into different ways of implementing additive synthesis in Csound, we shall think
about the parameters we can consider. As additive synthesis is the addition of several sine
generators, we have parameters on two different levels:

For each sine, we have a frequency and an amplitude with an envelope.
The frequency is usually a constant value. But of course you are principally free
to vary the frequency. Natural sounds usually have very slight changes of partial
frequencies.
The amplitude must at least have a simple envelope like the well-known ADSR.
But more complex ways of continuously altering the amplitude will make the sound
much more lively. 

For the sound as a whole, these are the relevant parameters:
The total number of sinusoids. A sound which consists of just three sinusoids is
of course "poorer" than a sound which consists of 100 sinusoids. 
The frequency ratios of the sine generators. For a classical harmonic spectrum,
the multipliers of the sinusoids are 1, 2, 3, ... (If your first sine is 100 Hz, the others
are 200, 300, 400, ... Hz.) For an inharmonic or noisy spectrum, there are
probably no simple integer ratios. This frequency ratio is mainly responsible for our
perception of timbre.
The base frequency is the frequency of the first partial. If the partials are
showing an harmonic ratio, this frequency (in the example given 100 Hz) is also the
overall perceived pitch. 
The amplitude ratios of the sinusoids. This is also very important for the
resulting timbre of a sound. If the higher partials are relatively strong, the sound
appears more brilliant; if the higher partials are soft, the sound appears dark and
soft.
The duration ratios of the sinusoids. In simple additive synthesis, all single sines
have the same duration, but they may also differ. This usually relates to the
envelopes: if the envelopes of different partials vary, some partials may die away
faster than others.

It is not always the aim of additive synthesis to imitate natural sounds, but we can definitely
learn a lot through the task of first analyzing and then attempting to imitate this sound using
additive synthesis techniques. This is what a guitar note looks like when spectrally analyzed:
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Each partial has its own movement and duration. We may or may not be able to achieve this
successfully in additive synthesis. Let us begin with some simple sounds and consider ways of
programming this with Csound; later we will look at some more complex sounds and advanced
ways of programming this. 

SIMPLE ADDITIONS OF SINUSOIDS INSIDE AN
INSTRUMENT 

If additive synthesis amounts to the adding sine generators, it is straightforward to create
multiple oscillators in a single instrument and to add the resulting audio signals together. In the
following example, instrument 1 shows a harmonic spectrum, and instrument 2 an inharmonic
one. Both instruments share the same amplitude multipliers: 1, 1/2, 1/3, 1/4, ... and receive the
base frequency in Csound's pitch notation (octave.semitone) and the main amplitude in dB. 

EXAMPLE 04A01.csd 

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;example by Andrés Cabrera
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1

    instr 1 ;harmonic additive synthesis
;receive general pitch and volume from the score
ibasefrq  =         cpspch(p4) ;convert pitch values to frequency
ibaseamp  =         ampdbfs(p5) ;convert dB to amplitude
;create 8 harmonic partials
aOsc1     poscil    ibaseamp, ibasefrq, giSine
aOsc2     poscil    ibaseamp/2, ibasefrq*2, giSine
aOsc3     poscil    ibaseamp/3, ibasefrq*3, giSine
aOsc4     poscil    ibaseamp/4, ibasefrq*4, giSine
aOsc5     poscil    ibaseamp/5, ibasefrq*5, giSine
aOsc6     poscil    ibaseamp/6, ibasefrq*6, giSine
aOsc7     poscil    ibaseamp/7, ibasefrq*7, giSine
aOsc8     poscil    ibaseamp/8, ibasefrq*8, giSine
;apply simple envelope
kenv      linen     1, p3/4, p3, p3/4
;add partials and write to output
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aOut = aOsc1 + aOsc2 + aOsc3 + aOsc4 + aOsc5 + aOsc6 + aOsc7 + aOsc8
          outs      aOut*kenv, aOut*kenv
    endin

    instr 2 ;inharmonic additive synthesis
ibasefrq  =         cpspch(p4)
ibaseamp  =         ampdbfs(p5)
;create 8 inharmonic partials
aOsc1     poscil    ibaseamp, ibasefrq, giSine
aOsc2     poscil    ibaseamp/2, ibasefrq*1.02, giSine
aOsc3     poscil    ibaseamp/3, ibasefrq*1.1, giSine
aOsc4     poscil    ibaseamp/4, ibasefrq*1.23, giSine
aOsc5     poscil    ibaseamp/5, ibasefrq*1.26, giSine
aOsc6     poscil    ibaseamp/6, ibasefrq*1.31, giSine
aOsc7     poscil    ibaseamp/7, ibasefrq*1.39, giSine
aOsc8     poscil    ibaseamp/8, ibasefrq*1.41, giSine
kenv      linen     1, p3/4, p3, p3/4
aOut = aOsc1 + aOsc2 + aOsc3 + aOsc4 + aOsc5 + aOsc6 + aOsc7 + aOsc8
          outs aOut*kenv, aOut*kenv
    endin

</CsInstruments>
<CsScore>
;          pch       amp
i 1 0 5    8.00      -10
i 1 3 5    9.00      -14
i 1 5 8    9.02      -12
i 1 6 9    7.01      -12
i 1 7 10   6.00      -10
s
i 2 0 5    8.00      -10
i 2 3 5    9.00      -14
i 2 5 8    9.02      -12
i 2 6 9    7.01      -12
i 2 7 10   6.00      -10
</CsScore>
</CsoundSynthesizer>

SIMPLE ADDITIONS OF SINUSOIDS VIA THE SCORE 

A typical paradigm in programming: If you find some almost identical lines in your code,
consider to abstract it. For the Csound Language this can mean, to move parameter control to
the score. In our case, the lines

aOsc1     poscil    ibaseamp, ibasefrq, giSine
aOsc2     poscil    ibaseamp/2, ibasefrq*2, giSine
aOsc3     poscil    ibaseamp/3, ibasefrq*3, giSine
aOsc4     poscil    ibaseamp/4, ibasefrq*4, giSine
aOsc5     poscil    ibaseamp/5, ibasefrq*5, giSine
aOsc6     poscil    ibaseamp/6, ibasefrq*6, giSine
aOsc7     poscil    ibaseamp/7, ibasefrq*7, giSine
aOsc8     poscil    ibaseamp/8, ibasefrq*8, giSine

can be abstracted to the form

aOsc     poscil    ibaseamp*iampfactor, ibasefrq*ifreqfactor, giSine

with the parameters iampfactor (the relative amplitude of a partial) and ifreqfactor (the
frequency multiplier) transferred to the score. 

The next version simplifies the instrument code and defines the variable values as score
parameters:

EXAMPLE 04A02.csd 

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;example by Andrés Cabrera and Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
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nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1

    instr 1
iBaseFreq =         cpspch(p4)
iFreqMult =         p5 ;frequency multiplier
iBaseAmp  =         ampdbfs(p6)
iAmpMult  =         p7 ;amplitude multiplier
iFreq     =         iBaseFreq * iFreqMult
iAmp      =         iBaseAmp * iAmpMult
kEnv      linen     iAmp, p3/4, p3, p3/4
aOsc      poscil    kEnv, iFreq, giSine
          outs      aOsc, aOsc
    endin

</CsInstruments>
<CsScore>
;          freq      freqmult  amp       ampmult
i 1 0 7    8.09      1         -10       1
i . . 6    .         2         .         [1/2]
i . . 5    .         3         .         [1/3]
i . . 4    .         4         .         [1/4]
i . . 3    .         5         .         [1/5]
i . . 3    .         6         .         [1/6]
i . . 3    .         7         .         [1/7]
s
i 1 0 6    8.09      1.5       -10       1
i . . 4    .         3.1       .         [1/3]
i . . 3    .         3.4       .         [1/6]
i . . 4    .         4.2       .         [1/9]
i . . 5    .         6.1       .         [1/12]
i . . 6    .         6.3       .         [1/15]
</CsScore>
</CsoundSynthesizer>

You might say: Okay, where is the simplification? There are even more lines than before! -
This is true, and this is certainly just a step on the way to a better code. The main benefit
now is flexibility. Now our code is capable of realizing any number of partials, with any
amplitude, frequency and duration ratios. Using the Csound score abbreviations (for instance a
dot for repeating the previous value in the same p-field), you can do a lot of copy-and-paste,
and focus on what is changing from line to line.

Note also that you are now calling one instrument in multiple instances at the same time
for performing additive synthesis. In fact, each instance of the instrument contributes just one
partial for the additive synthesis. This call of multiple and simultaneous instances of one
instrument is also a typical procedure for situations like this, and for writing clean and
effective Csound code. We will discuss later how this can be done in a more elegant way than
in the last example. 

CREATING FUNCTION TABLES FOR ADDITIVE SYNTHESIS 

Before we continue on this road, let us go back to the first example and discuss a classical and
abbreviated method of playing a number of partials. As we mentioned at the beginning, Fourier
stated that any periodic oscillation can be described as a sum of simple sinusoids. If the single
sinusoids are static (no individual envelope or duration), the resulting waveform will always be
the same.
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You see four sine generators, each with fixed frequency and amplitude relations, and mixed
together. At the bottom of the illustration you see the composite waveform which repeats
itself at each period. So - why not just calculate this composite waveform first, and then read
it with just one oscillator?

This is what some Csound GEN routines do. They compose the resulting shape of the periodic
wave, and store the values in a function table. GEN10 can be used for creating a waveform
consisting of harmonically related partials. After the common GEN routine p-fields

<table number>, <creation time>, <size in points>, <GEN number>

you have just to determine the relative strength of the harmonics. GEN09 is more complex
and allows you to also control the frequency multiplier and the phase (0-360°) of each partial.
We are able to reproduce the first example in a shorter (and computational faster) form:

EXAMPLE 04A03.csd 

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;example by Andrés Cabrera and Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1
giHarm    ftgen     1, 0, 2^12, 10, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8
giNois    ftgen     2, 0, 2^12, 9, 100,1,0,  102,1/2,0,  110,1/3,0,  123,1/4,0,  126,1/5,0,  131,1/6,0,  139,1/7,0,  141,1/8,0

    instr 1
iBasFreq  =         cpspch(p4)
iTabFreq  =         p7 ;base frequency of the table
iBasFreq  =         iBasFreq / iTabFreq
iBaseAmp  =         ampdb(p5)
iFtNum    =         p6
aOsc      poscil    iBaseAmp, iBasFreq, iFtNum
aEnv      linen     aOsc, p3/4, p3, p3/4
          outs      aEnv, aEnv
    endin

</CsInstruments>
<CsScore>

116



;          pch       amp       table      table base (Hz)
i 1 0 5    8.00      -10       1          1
i . 3 5    9.00      -14       .          .
i . 5 8    9.02      -12       .          .
i . 6 9    7.01      -12       .          .
i . 7 10   6.00      -10       .          .
s
i 1 0 5    8.00      -10       2          100
i . 3 5    9.00      -14       .          .
i . 5 8    9.02      -12       .          .
i . 6 9    7.01      -12       .          .
i . 7 10   6.00      -10       .          .
</CsScore>
</CsoundSynthesizer>

As you can see, for non-harmonically related partials, the construction of a table must be
done with a special care. If the frequency multipliers in our first example started with 1 and
1.02, the resulting period is acually very long. For a base frequency of 100 Hz, you will have the
frequencies of 100 Hz and 102 Hz overlapping each other. So you need 100 cycles from the
1.00 multiplier and 102 cycles from the 1.02 multiplier to complete one period and to start
again both together from zero. In other words, we have to create a table which contains 100
respectively 102 periods, instead of 1 and 1.02. Then the table values are not related to 1 - as
usual - but to 100. That is the reason we have to introduce a new parameter iTabFreq for this
purpose. 

This method of composing waveforms can also be used for generating the four standard
historical shapes used in a synthesizer. An impulse wave can be created by adding a number
of harmonics of the same strength. A sawtooth has the amplitude multipliers 1, 1/2, 1/3, ... for
the harmonics. A square has the same multipliers, but just for the odd harmonics. A triangle
can be calculated as 1 divided by the square of the odd partials, with changing positive and
negative values. The next example creates function tables with just ten partials for each
standard form.

EXAMPLE 04A04.csd 

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giImp  ftgen  1, 0, 4096, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
giSaw  ftgen  2, 0, 4096, 10, 1,1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/9,1/10
giSqu  ftgen  3, 0, 4096, 10, 1, 0, 1/3, 0, 1/5, 0, 1/7, 0, 1/9, 0
giTri  ftgen  4, 0, 4096, 10, 1, 0, -1/9, 0, 1/25, 0, -1/49, 0, 1/81, 0

instr 1
asig   poscil .2, 457, p4
       outs   asig, asig
endin

</CsInstruments>
<CsScore>
i 1 0 3 1
i 1 4 3 2
i 1 8 3 3
i 1 12 3 4
</CsScore>
</CsoundSynthesizer>

TRIGGERING SUBINSTRUMENTS FOR THE PARTIALS 
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Performing additive synthesis by designing partial strengths into function tables has the
disadvantage that once a note has begun we do not have any way of varying the relative
strengths of individual partials. There are various methods to circumvent the inflexibility of
table-based additive synthesis such as morphing between several tables (using for example
the ftmorf opcode). Next we will consider another approach: triggering one instance of a
subinstrument for each partial, and exploring the possibilities of creating a spectrally dynamic
sound using this technique.

Let us return to our second instrument (05A02.csd) which already made some abstractions
and triggered one instrument instance for each partial. This was done in the score; but now
we will trigger one complete note in one score line, not one partial. The first step is to assign
the desired number of partials via a score parameter. The next example triggers any number
of partials using this one value:

EXAMPLE 04A05.csd  

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1

instr 1 ;master instrument
inumparts =         p4 ;number of partials
ibasfreq  =         200 ;base frequency
ipart     =         1 ;count variable for loop
;loop for inumparts over the ipart variable
;and trigger inumpartss instanes of the subinstrument
loop:
ifreq     =         ibasfreq * ipart
iamp      =         1/ipart/inumparts
          event_i   "i", 10, 0, p3, ifreq, iamp
          loop_le   ipart, 1, inumparts, loop
endin

instr 10 ;subinstrument for playing one partial
ifreq     =         p4 ;frequency of this partial
iamp      =         p5 ;amplitude of this partial
aenv      transeg   0, .01, 0, iamp, p3-0.1, -10, 0
apart     poscil    aenv, ifreq, giSine
          outs      apart, apart
endin

</CsInstruments>
<CsScore>
;         number of partials
i 1 0 3   10
i 1 3 3   20
i 1 6 3   2
</CsScore>
</CsoundSynthesizer>

This instrument can easily be transformed to be played via a midi keyboard. The next
example connects the number of synthesized partials with the midi velocity. So if you play
softly, the sound will have fewer partials than if a key is struck with force.

EXAMPLE 04A06.csd   

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
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nchnls = 2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1
          massign   0, 1 ;all midi channels to instr 1

instr 1 ;master instrument
ibasfreq  cpsmidi ;base frequency
iampmid   ampmidi   20 ;receive midi-velocity and scale 0-20
inparts   =         int(iampmid)+1 ;exclude zero
ipart     =         1 ;count variable for loop
;loop for inumparts over the ipart variable
;and trigger inumpartss instanes of the subinstrument
loop:
ifreq     =         ibasfreq * ipart
iamp      =         1/ipart/inparts
          event_i   "i", 10, 0, 1, ifreq, iamp
          loop_le   ipart, 1, inparts, loop
endin

instr 10 ;subinstrument for playing one partial
ifreq     =         p4 ;frequency of this partial
iamp      =         p5 ;amplitude of this partial
aenv      transeg   0, .01, 0, iamp, p3-.01, -3, 0
apart     poscil    aenv, ifreq, giSine
          outs      apart/3, apart/3
endin

</CsInstruments>
<CsScore>
f 0 3600
</CsScore>
</CsoundSynthesizer>

Although this instrument is rather primitive it is useful to be able to control the timbre in this
using key velocity. Let us continue to explore other methods of creating parameter variations
in additive synthesis.

USER-CONTROLLED RANDOM VARIATIONS IN ADDITIVE
SYNTHESIS 

In natural sounds, there is movement and change all the time. Even the best player or singer
will not be able to play a note in the exact same way twice. And inside a tone, the partials
have some unsteadiness all the time: slight excitations of the amplitudes, uneven durations,
slight frequency movements. In an audio programming language like Csound, we can achieve
these movements with random deviations. It is not so important whether we use randomness
or not, rather in which way. The boundaries of random deviations must be adjusted as
carefully as with any other parameter in electronic composition. If sounds using random
deviations begin to sound like mistakes then it is probably less to do with actually using
random functions but instead more to do with some poorly chosen boundaries.

Let us start with some random deviations in our subinstrument. These parameters can be
affected:

The frequency of each partial can be slightly detuned. The range of this possible
maximum detuning can be set in cents (100 cent = 1 semitone).
The amplitude of each partial can be altered, compared to its standard value. The
alteration can be measured in Decibel (dB).
The duration of each partial can be shorter or longer than the standard value. Let us
define this deviation as a percentage. If the expected duration is five seconds, a
maximum deviation of 100% means getting a value between half the duration (2.5 sec)
and the double duration (10 sec).

The following example shows the effect of these variations. As a base - and as a reference to
its author - we take the "bell-like sound" which Jean-Claude Risset created in his Sound
Catalogue.1  

EXAMPLE 04A07.csd    
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<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

;frequency and amplitude multipliers for 11 partials of Risset's bell
giFqs     ftgen     0, 0, -11, -2, .56,.563,.92,.923,1.19,1.7,2,2.74,3,3.74,4.07
giAmps    ftgen     0, 0, -11, -2, 1, 2/3, 1, 1.8, 8/3, 1.46, 4/3, 4/3, 1, 4/3
giSine    ftgen     0, 0, 2^10, 10, 1
          seed      0

instr 1 ;master instrument
ibasfreq  =         400
ifqdev    =         p4 ;maximum freq deviation in cents
iampdev   =         p5 ;maximum amp deviation in dB
idurdev   =         p6 ;maximum duration deviation in %
indx      =         0 ;count variable for loop
loop:
ifqmult   tab_i     indx, giFqs ;get frequency multiplier from table
ifreq     =         ibasfreq * ifqmult
iampmult  tab_i     indx, giAmps ;get amp multiplier
iamp      =         iampmult / 20 ;scale
          event_i   "i", 10, 0, p3, ifreq, iamp, ifqdev, iampdev, idurdev
          loop_lt   indx, 1, 11, loop
endin

instr 10 ;subinstrument for playing one partial
;receive the parameters from the master instrument
ifreqnorm =         p4 ;standard frequency of this partial
iampnorm  =         p5 ;standard amplitude of this partial
ifqdev    =         p6 ;maximum freq deviation in cents
iampdev   =         p7 ;maximum amp deviation in dB
idurdev   =         p8 ;maximum duration deviation in %
;calculate frequency
icent     random    -ifqdev, ifqdev ;cent deviation
ifreq     =         ifreqnorm * cent(icent)
;calculate amplitude
idb       random    -iampdev, iampdev ;dB deviation
iamp      =         iampnorm * ampdb(idb)
;calculate duration
idurperc  random    -idurdev, idurdev ;duration deviation (%)
iptdur    =         p3 * 2^(idurperc/100)
p3        =         iptdur ;set p3 to the calculated value
;play partial
aenv      transeg   0, .01, 0, iamp, p3-.01, -10, 0
apart     poscil    aenv, ifreq, giSine
          outs      apart, apart
endin

</CsInstruments>
<CsScore>
;         frequency   amplitude   duration
;         deviation   deviation   deviation
;         in cent     in dB       in %
;;unchanged sound (twice)
r 2
i 1 0 5   0           0           0
s
;;slight variations in frequency
r 4
i 1 0 5   25          0           0
;;slight variations in amplitude
r 4
i 1 0 5   0           6           0
;;slight variations in duration
r 4
i 1 0 5   0           0           30
;;slight variations combined
r 6
i 1 0 5   25          6           30
;;heavy variations
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r 6
i 1 0 5   50          9           100
</CsScore>
</CsoundSynthesizer> 

For a midi-triggered descendant of the instrument, we can - as one of many possible choices -
vary the amount of possible random variation on the key velocity. So a key pressed softly
plays the bell-like sound as described by Risset but as a key is struck with increasing force the
sound produced will be increasingly altered.

EXAMPLE 04A08.csd    

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

;frequency and amplitude multipliers for 11 partials of Risset's bell
giFqs     ftgen     0, 0, -11, -2, .56,.563,.92,.923,1.19,1.7,2,2.74,3,3.74,4.07
giAmps    ftgen     0, 0, -11, -2, 1, 2/3, 1, 1.8, 8/3, 1.46, 4/3, 4/3, 1, 4/3
giSine    ftgen     0, 0, 2^10, 10, 1
          seed      0
          massign   0, 1 ;all midi channels to instr 1

instr 1 ;master instrument
;;scale desired deviations for maximum velocity
;frequency (cent)
imxfqdv   =         100
;amplitude (dB)
imxampdv  =         12
;duration (%)
imxdurdv  =         100
;;get midi values
ibasfreq  cpsmidi ;base frequency
iampmid   ampmidi   1 ;receive midi-velocity and scale 0-1
;;calculate maximum deviations depending on midi-velocity
ifqdev    =         imxfqdv * iampmid
iampdev   =         imxampdv * iampmid
idurdev   =         imxdurdv * iampmid
;;trigger subinstruments
indx      =         0 ;count variable for loop
loop:
ifqmult   tab_i     indx, giFqs ;get frequency multiplier from table
ifreq     =         ibasfreq * ifqmult
iampmult  tab_i     indx, giAmps ;get amp multiplier
iamp      =         iampmult / 20 ;scale
          event_i   "i", 10, 0, 3, ifreq, iamp, ifqdev, iampdev, idurdev
          loop_lt   indx, 1, 11, loop
endin

instr 10 ;subinstrument for playing one partial
;receive the parameters from the master instrument
ifreqnorm =         p4 ;standard frequency of this partial
iampnorm  =         p5 ;standard amplitude of this partial
ifqdev    =         p6 ;maximum freq deviation in cents
iampdev   =         p7 ;maximum amp deviation in dB
idurdev   =         p8 ;maximum duration deviation in %
;calculate frequency
icent     random    -ifqdev, ifqdev ;cent deviation
ifreq     =         ifreqnorm * cent(icent)
;calculate amplitude
idb       random    -iampdev, iampdev ;dB deviation
iamp      =         iampnorm * ampdb(idb)
;calculate duration
idurperc  random    -idurdev, idurdev ;duration deviation (%)
iptdur    =         p3 * 2^(idurperc/100)
p3        =         iptdur ;set p3 to the calculated value
;play partial
aenv      transeg   0, .01, 0, iamp, p3-.01, -10, 0
apart     poscil    aenv, ifreq, giSine
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          outs      apart, apart
endin

</CsInstruments>
<CsScore>
f 0 3600
</CsScore>
</CsoundSynthesizer> 

It will depend on the power of your computer whether you can play examples like this in
realtime. Have a look at chapter 2D (Live Audio) for tips on getting the best possible
performance from your Csound orchestra.

Additive synthesis can still be an exciting way of producing sounds. The nowadays
computational power and programming structures open the way for new discoverings and
ideas. The later examples were intended to show some of these potentials of additive
synthesis in Csound. 

1. Jean-Claude Risset, Introductory Catalogue of Computer Synthesized Sounds (1969), cited
after Dodge/Jerse, Computer Music, New York / London 1985, p.94^

20. SUBTRACTIVE SYNTHESIS

INTRODUCTION

Subtractive synthesis is, at least conceptually, the converse of additive synthesis in that
instead of building complex sound through the addition of simple cellular materials such as sine
waves, subtractive synthesis begins with a complex sound source, such as white noise or a
recorded sample, or a rich waveform, such as a sawtooth or pulse, and proceeds to refine
that sound by removing partials or entire sections of the frequency spectrum through the use
of audio filters.

The creation of dynamic spectra (an arduous task in additive synthesis) is relatively simple in
subtractive synthesis as all that will be required will be to modulate a few parameters
pertaining to any filters being used. Working with the intricate precision that is possible with
additive synthesis may not be as easy with subtractive synthesis but sounds can be created
much more instinctively than is possible with additive or FM synthesis.

A CSOUND TWO-OSCILLATOR SYNTHESIZER

The first example represents perhaps the classical idea of subtractive synthesis: a simple two
oscillator synth filtered using a single resonant lowpass filter. Many of the ideas used in this
example have been inspired by the design of the Minimoog synthesizer (1970) and other similar
instruments.

Each oscillator can describe either a sawtooth, PWM waveform (i.e. square - pulse etc.) or
white noise and each oscillator can be transposed in octaves or in cents with respect to a
fundamental pitch. The two oscillators are mixed and then passed through a 4-pole / 24dB per
octave resonant lowpass filter. The opcode 'moogladder' is chosen on account of its authentic
vintage character. The cutoff frequency of the filter is modulated using an ADSR-style (attack-
decay-sustain-release) envelope facilitating the creation of dynamic, evolving spectra. Finally
the sound output of the filter is shaped by an ADSR amplitude envelope.

As this instrument is suggestive of a performance instrument controlled via MIDI, this has been
partially implemented. Through the use of Csound's MIDI interoperability opcode, mididefault,
the instrument can be operated from the score or from a MIDI keyboard. If a MIDI note is
received, suitable default p-field values are substituted for the missing p-fields. MIDI controller
1 can be used to control the global cutoff frequency for the filter.

A schematic for this instrument is shown below: 
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   EXAMPLE 04B01.CSD

<CsoundSynthesizer>

<CsOptions>
-odevaudio -b512 -Ma
</CsOptions>

<CsInstruments>
sr = 44100
ksmps = 4
nchnls = 2
0dbfs = 1

initc7 1,1,0.8                 ;set initial controller position

prealloc 1, 10

   instr 1
iNum   notnum                  ;read in midi note number
iCF    ctrl7        1,1,0.1,14 ;read in midi controller 1

; set up default p-field values for midi activated notes
       mididefault  iNum, p4   ;pitch (note number)
       mididefault  0.3, p5    ;amplitude 1
       mididefault  2, p6      ;type 1
       mididefault  0.5, p7    ;pulse width 1
       mididefault  0, p8      ;octave disp. 1
       mididefault  0, p9      ;tuning disp. 1
       mididefault  0.3, p10   ;amplitude 2
       mididefault  1, p11     ;type 2
       mididefault  0.5, p12   ;pulse width 2
       mididefault  -1, p13    ;octave displacement 2
       mididefault  20, p14    ;tuning disp. 2
       mididefault  iCF, p15   ;filter cutoff freq
       mididefault  0.01, p16  ;filter env. attack time
       mididefault  1, p17     ;filter env. decay time
       mididefault  0.01, p18  ;filter env. sustain level
       mididefault  0.1, p19   ;filter release time
       mididefault  0.3, p20   ;filter resonance
       mididefault  0.01, p21  ;amp. env. attack
       mididefault  0.1, p22   ;amp. env. decay.
       mididefault  1, p23     ;amp. env. sustain
       mididefault  0.01, p24  ;amp. env. release

; asign p-fields to variables
iCPS   =            cpsmidinn(p4) ;convert from note number to cps
kAmp1  =            p5
iType1 =            p6
kPW1   =            p7
kOct1  =            octave(p8)  ;convert from octave displacement to multiplier
kTune1 =            cent(p9)    ;convert from cents displacement to multiplier
kAmp2  =            p10
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iType2 =            p11
kPW2   =            p12
kOct2  =            octave(p13)
kTune2 =            cent(p14)
iCF    =            p15
iFAtt  =            p16
iFDec  =            p17
iFSus  =            p18
iFRel  =            p19
kRes   =            p20
iAAtt  =            p21
iADec  =            p22
iASus  =            p23
iARel  =            p24

;oscillator 1
if iType1==1||iType1==2 then                           ;if type is sawtooth or square...
 iMode1 = (iType1=1?0:2)                               ;...derive vco2 'mode' from waveform type
 aSig1  vco2   kAmp1,iCPS*kOct1*kTune1,iMode1,kPW1;VCO audio oscillator
else                                                   ;otherwise...
 aSig1  noise  kAmp1, 0.5                         ;...generate white noise
endif

;oscillator 2 - identical to oscillator 1
if iType2==1||iType2==2 then
 iMode2  =  (iType2=1?0:2)
 aSig2  vco2   kAmp2,iCPS*kOct2*kTune2,iMode2,kPW2
else
  aSig2 noise  kAmp2,0.5
endif

;mix oscillators
aMix       sum          aSig1,aSig2
;lowpass filter
kFiltEnv   expsegr      0.0001,iFAtt,iCPS*iCF,iFDec,iCPS*iCF*iFSus,iFRel,0.0001
aOut       moogladder   aMix, kFiltEnv, kRes

;amplitude envelope
aAmpEnv    expsegr      0.0001,iAAtt,1,iADec,iASus,iARel,0.0001
aOut       =            aOut*aAmpEnv
           outs         aOut,aOut
  endin
</CsInstruments>

<CsScore>
;p4  = oscillator frequency
;oscillator 1
;p5  = amplitude
;p6  = type (1=sawtooth,2=square-PWM,3=noise)
;p7  = PWM (square wave only)
;p8  = octave displacement
;p9  = tuning displacement (cents)
;oscillator 2
;p10 = amplitude
;p11 = type (1=sawtooth,2=square-PWM,3=noise)
;p12 = pwm (square wave only)
;p13 = octave displacement
;p14 = tuning displacement (cents)
;global filter envelope
;p15 = cutoff
;p16 = attack time
;p17 = decay time
;p18 = sustain level (fraction of cutoff)
;p19 = release time
;p20 = resonance
;global amplitude envelope
;p21 = attack time
;p22 = decay time
;p23 = sustain level
;p24 = release time
; p1 p2 p3  p4 p5  p6 p7   p8 p9  p10 p11 p12 p13 p14 p15 p16  p17  p18  p19 p20 p21  p22 p23 p24
i 1  0  1   50 0   2  .5   0  -5  0   2   0.5 0   5   12  .01  2    .01  .1  0   .005 .01 1   .05
i 1  +  1   50 .2  2  .5   0  -5  .2  2   0.5 0   5   1   .01  1    .1   .1  .5  .005 .01 1   .05
i 1  +  1   50 .2  2  .5   0  -8  .2  2   0.5 0   8   3   .01  1    .1   .1  .5  .005 .01 1   .05
i 1  +  1   50 .2  2  .5   0  -8  .2  2   0.5 -1  8   7  .01   1    .1   .1  .5  .005 .01 1   .05
i 1  +  3   50 .2  1  .5   0  -10 .2  1   0.5 -2  10  40  .01  3    .001 .1  .5  .005 .01 1   .05
i 1  +  10  50 1   2  .01  -2 0   .2  3   0.5 0   0   40  5    5    .001 1.5 .1  .005 .01 1   .05
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f 0 3600
e
</CsScore>

</CsoundSynthesizer

SIMULATION OF TIMBRES FROM A NOISE SOURCE

The next example makes extensive use of bandpass filters arranged in parallel to filter white
noise. The bandpass filter bandwidths are narrowed to the point where almost pure tones are
audible. The crucial difference is that the noise source always induces instability in the
amplitude and frequency of tones produced - it is this quality that makes this sort of
subtractive synthesis sound much more organic than an additive synthesis equivalent. If the
bandwidths are widened then more of the characteristic of the noise source comes through
and the tone becomes 'airier' and less distinct; if the bandwidths are narrowed the resonating
tones become clearer and steadier. By varying the bandwidths interesting metamorphoses of
the resultant sound are possible.

22 reson filters are used for the bandpass filters on account of their ability to ring and
resonate as their bandwidth narrows. Another reason for this choice is the relative CPU
economy of the reson filter, a not inconsiderable concern as so many of them are used. The
frequency ratios between the 22 parallel filters are derived from analysis of a hand bell, the
data was found in the appendix of the Csound manual here. 

In addition to the white noise as a source, noise impulses are also used as a sound source (via
the 'mpulse' opcode). The instrument will automatically and randomly slowly crossfade
between these two sound sources.

A lowpass and highpass filter are inserted in series before the parallel bandpass filters to
shape the frequency spectrum of the source sound. Csound's butterworth filters butlp and
buthp are chosen for this task on account of their steep cutoff slopes and lack of ripple at the
cutoff point.

The outputs of the reson filters are sent alternately to the left and right outputs in order to
create a broad stereo effect. 

This example makes extensive use of the 'rspline' opcode, a generator of random spline
functions, to slowly undulate the many input parameters. The orchestra is self generative in
that instrument 1 repeatedly triggers note events in instrument 2 and the extensive use of
random functions means that the results will continually evolve as the orchestra is allowed to
perform.

A flow diagram for this instrument is shown below:

   EXAMPLE 04B02.CSD

<CsoundSynthesizer>

<CsOptions>
-odevaudio -b512 -dm0
</CsOptions>
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<CsInstruments>
;Example written by Iain McCurdy

sr = 44100
ksmps = 16
nchnls = 2
0dbfs = 1

  instr 1 ; triggers notes in instrument 2 with randomised p-fields
krate  randomi 0.2,0.4,0.1   ;rate of note generation
ktrig  metro  krate          ;triggers used by schedkwhen
koct   random 5,12           ;fundemental pitch of synth note
kdur   random 15,30          ;duration of note
schedkwhen ktrig,0,0,2,0,kdur,cpsoct(koct) ;trigger a note in instrument 2
  endin

  instr 2 ; subtractive synthesis instrument
aNoise  pinkish  1                    ;a noise source sound: pink noise
kGap    rspline  0.3,0.05,0.2,2       ;time gap between impulses
aPulse  mpulse   15, kGap             ;a train of impulses
kCFade  rspline  0,1,0.1,1            ;crossfade point between noise and impulses
aInput  ntrpol   aPulse,aNoise,kCFade ;implement crossfade

; cutoff frequencies for low and highpass filters
kLPF_CF  rspline  13,8,0.1,0.4
kHPF_CF  rspline  5,10,0.1,0.4
; filter input sound with low and highpass filters in series -
; - done twice per filter in order to sharpen cutoff slopes
aInput    butlp    aInput, cpsoct(kLPF_CF)
aInput    butlp    aInput, cpsoct(kLPF_CF)
aInput    buthp    aInput, cpsoct(kHPF_CF)
aInput    buthp    aInput, cpsoct(kHPF_CF)

kcf     rspline  p4*1.05,p4*0.95,0.01,0.1 ; fundemental
; bandwidth for each filter is created individually as a random spline function
kbw1    rspline  0.00001,10,0.2,1
kbw2    rspline  0.00001,10,0.2,1
kbw3    rspline  0.00001,10,0.2,1
kbw4    rspline  0.00001,10,0.2,1
kbw5    rspline  0.00001,10,0.2,1
kbw6    rspline  0.00001,10,0.2,1
kbw7    rspline  0.00001,10,0.2,1
kbw8    rspline  0.00001,10,0.2,1
kbw9    rspline  0.00001,10,0.2,1
kbw10   rspline  0.00001,10,0.2,1
kbw11   rspline  0.00001,10,0.2,1
kbw12   rspline  0.00001,10,0.2,1
kbw13   rspline  0.00001,10,0.2,1
kbw14   rspline  0.00001,10,0.2,1
kbw15   rspline  0.00001,10,0.2,1
kbw16   rspline  0.00001,10,0.2,1
kbw17   rspline  0.00001,10,0.2,1
kbw18   rspline  0.00001,10,0.2,1
kbw19   rspline  0.00001,10,0.2,1
kbw20   rspline  0.00001,10,0.2,1
kbw21   rspline  0.00001,10,0.2,1
kbw22   rspline  0.00001,10,0.2,1

imode   =        0 ; amplitude balancing method used by the reson filters
a1      reson    aInput, kcf*1,               kbw1, imode
a2      reson    aInput, kcf*1.0019054878049, kbw2, imode
a3      reson    aInput, kcf*1.7936737804878, kbw3, imode
a4      reson    aInput, kcf*1.8009908536585, kbw4, imode
a5      reson    aInput, kcf*2.5201981707317, kbw5, imode
a6      reson    aInput, kcf*2.5224085365854, kbw6, imode
a7      reson    aInput, kcf*2.9907012195122, kbw7, imode
a8      reson    aInput, kcf*2.9940548780488, kbw8, imode
a9      reson    aInput, kcf*3.7855182926829, kbw9, imode
a10     reson    aInput, kcf*3.8061737804878, kbw10,imode
a11     reson    aInput, kcf*4.5689024390244, kbw11,imode
a12     reson    aInput, kcf*4.5754573170732, kbw12,imode
a13     reson    aInput, kcf*5.0296493902439, kbw13,imode
a14     reson    aInput, kcf*5.0455030487805, kbw14,imode
a15     reson    aInput, kcf*6.0759908536585, kbw15,imode
a16     reson    aInput, kcf*5.9094512195122, kbw16,imode
a17     reson    aInput, kcf*6.4124237804878, kbw17,imode
a18     reson    aInput, kcf*6.4430640243902, kbw18,imode
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a19     reson    aInput, kcf*7.0826219512195, kbw19,imode
a20     reson    aInput, kcf*7.0923780487805, kbw20,imode
a21     reson    aInput, kcf*7.3188262195122, kbw21,imode
a22     reson    aInput, kcf*7.5551829268293, kbw22,imode

; amplitude control for each filter output
kAmp1    rspline  0, 1, 0.3, 1
kAmp2    rspline  0, 1, 0.3, 1
kAmp3    rspline  0, 1, 0.3, 1
kAmp4    rspline  0, 1, 0.3, 1
kAmp5    rspline  0, 1, 0.3, 1
kAmp6    rspline  0, 1, 0.3, 1
kAmp7    rspline  0, 1, 0.3, 1
kAmp8    rspline  0, 1, 0.3, 1
kAmp9    rspline  0, 1, 0.3, 1
kAmp10   rspline  0, 1, 0.3, 1
kAmp11   rspline  0, 1, 0.3, 1
kAmp12   rspline  0, 1, 0.3, 1
kAmp13   rspline  0, 1, 0.3, 1
kAmp14   rspline  0, 1, 0.3, 1
kAmp15   rspline  0, 1, 0.3, 1
kAmp16   rspline  0, 1, 0.3, 1
kAmp17   rspline  0, 1, 0.3, 1
kAmp18   rspline  0, 1, 0.3, 1
kAmp19   rspline  0, 1, 0.3, 1
kAmp20   rspline  0, 1, 0.3, 1
kAmp21   rspline  0, 1, 0.3, 1
kAmp22   rspline  0, 1, 0.3, 1

; left and right channel mixes are created using alternate filter outputs.
; This shall create a stereo effect.
aMixL    sum      a1*kAmp1,a3*kAmp3,a5*kAmp5,a7*kAmp7,a9*kAmp9,a11*kAmp11,\
                        a13*kAmp13,a15*kAmp15,a17*kAmp17,a19*kAmp19,a21*kAmp21,
aMixR    sum      a2*kAmp2,a4*kAmp4,a6*kAmp6,a8*kAmp8,a10*kAmp10,a12*kAmp12,\
                        a14*kAmp14,a16*kAmp16,a18*kAmp18,a20*kAmp20,a22*kAmp22

kEnv     linseg   0, p3*0.5, 1,p3*0.5,0,1,0       ; global amplitude envelope
outs   (aMixL*kEnv*0.00002), (aMixR*kEnv*0.00002) ; audio sent to outputs
  endin

</CsInstruments>

<CsScore>
i 1 0 3600  ; instrument 1 (note generator) plays for 1 hour
e
</CsScore>

</CsoundSynthesizer>

VOWEL-SOUND EMULATION USING BANDPASS FILTERING

The final example in this section uses precisely tuned bandpass filters, to simulate the sound
of the human voice expressing vowel sounds. Spectral resonances in this context are often
referred to as 'formants'. Five formants are used to simulate the effect of the human mouth
and head as a resonating (and therefore filtering) body. The filter data for simulating the vowel
sounds A,E,I,O and U as expressed by a bass, tenor, counter-tenor, alto and soprano voice
were found in the appendix of the Csound manual here. Bandwidth and intensity (dB)
information is also needed to accurately simulate the various vowel sounds.

reson filters are again used but butbp and others could be equally valid choices. 

Data is stored in GEN07 linear break point function tables, as this data is read by k-rate line
functions we can interpolate and therefore morph between different vowel sounds during a
note. 

The source sound for the filters comes from either a pink noise generator or a pulse
waveform. The pink noise source could be used if the emulation is to be that of just the
breath whereas the pulse waveform provides a decent approximation of the human vocal
chords buzzing. This instrument can however morph continuously between these two sources.

A flow diagram for this instrument is shown below:
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   EXAMPLE 04B03.CSD

<CsoundSynthesizer>

<CsOptions>
-odevaudio -b512 -dm0
</CsOptions>

<CsInstruments>
;example by Iain McCurdy

sr = 44100
ksmps = 16
nchnls = 2
0dbfs = 1

instr 1
  kFund    expon     p4,p3,p5               ; fundemental
  kVow     line      p6,p3,p7               ; vowel select
  kBW      line      p8,p3,p9               ; bandwidth factor
  iVoice   =         p10                    ; voice select
  kSrc     line      p11,p3,p12             ; source mix

  aNoise   pinkish   3                    ; pink noise
  aVCO     vco2      1.2,kFund,2,0.02       ; pulse tone
  aInput   ntrpol    aVCO,aNoise,kSrc       ; input mix

  ; read formant cutoff frequenies from tables
  kCF1     table     kVow,1+(iVoice*15),1
  kCF2     table     kVow,2+(iVoice*15),1
  kCF3     table     kVow,3+(iVoice*15),1
  kCF4     table     kVow,4+(iVoice*15),1
  kCF5     table     kVow,5+(iVoice*15),1
  ; read formant intensity values from tables
  kDB1     table     kVow,6+(iVoice*15),1
  kDB2     table     kVow,7+(iVoice*15),1
  kDB3     table     kVow,8+(iVoice*15),1
  kDB4     table     kVow,9+(iVoice*15),1
  kDB5     table     kVow,10+(iVoice*15),1
  ; read formant bandwidths from tables
  kBW1     table     kVow,11+(iVoice*15),1
  kBW2     table     kVow,12+(iVoice*15),1
  kBW3     table     kVow,13+(iVoice*15),1
  kBW4     table     kVow,14+(iVoice*15),1
  kBW5     table     kVow,15+(iVoice*15),1
  ; create resonant formants byt filtering source sound
  aForm1   reson     aInput, kCF1, kBW1*kBW, 1     ; formant 1
  aForm2   reson     aInput, kCF2, kBW2*kBW, 1     ; formant 2
  aForm3   reson     aInput, kCF3, kBW3*kBW, 1     ; formant 3
  aForm4   reson     aInput, kCF4, kBW4*kBW, 1     ; formant 4
  aForm5   reson     aInput, kCF5, kBW5*kBW, 1     ; formant 5

  ; formants are mixed and multiplied both by intensity values derived from tables and by the on-screen gain controls for each formant
  aMix     sum       aForm1*ampdbfs(kDB1),aForm2*ampdbfs(kDB2),aForm3*ampdbfs(kDB3),aForm4*ampdbfs(kDB4),aForm5*ampdbfs(kDB5)
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  kEnv     linseg    0,3,1,p3-6,1,3,0     ; an amplitude envelope
           outs      aMix*kEnv, aMix*kEnv ; send audio to outputs
endin

</CsInstruments>

<CsScore>
f 0 3600 ;DUMMY SCORE EVENT - PERMITS REALTIME PERFORMANCE FOR UP TO 1 HOUR

;FUNCTION TABLES STORING FORMANT DATA FOR EACH OF THE FIVE VOICE TYPES REPRESENTED
;BASS
f 1  0 32768 -7 600 10922 400 10922 250 10924 350 ;FREQ
f 2  0 32768 -7 1040 10922 1620 10922 1750 10924 600 ;FREQ
f 3  0 32768 -7 2250 10922 2400 10922 2600 10924 2400 ;FREQ
f 4  0 32768 -7 2450 10922 2800 10922 3050 10924 2675 ;FREQ
f 5  0 32768 -7 2750 10922 3100 10922 3340 10924 2950 ;FREQ
f 6  0 32768 -7 0 10922 0 10922 0 10924 0 ;dB
f 7  0 32768 -7 -7 10922 -12 10922 -30 10924 -20 ;dB
f 8  0 32768 -7 -9 10922 -9 10922 -16 10924 -32 ;dB
f 9  0 32768 -7 -9 10922 -12 10922 -22 10924 -28 ;dB
f 10 0 32768 -7 -20 10922 -18 10922 -28 10924 -36 ;dB
f 11 0 32768 -7 60 10922 40 10922 60 10924 40 ;BAND WIDTH
f 12 0 32768 -7 70 10922 80 10922 90 10924 80 ;BAND WIDTH
f 13 0 32768 -7 110 10922 100 10922 100 10924 100 ;BAND WIDTH
f 14 0 32768 -7 120 10922 120 10922 120 10924 120 ;BAND WIDTH
f 15 0 32768 -7 130 10922 120 10922 120 10924 120 ;BAND WIDTH
;TENOR
f 16 0 32768 -7 650  8192 400  8192 290 8192 400 8192 350 ;FREQ
f 17 0 32768 -7 1080  8192 1700    8192 1870 8192 800 8192 600 ;FREQ
f 18 0 32768 -7 2650 8192 2600    8192 2800 8192 2600 8192 2700 ;FREQ
f 19 0 32768 -7 2900 8192 3200    8192 3250 8192 2800 8192 2900 ;FREQ
f 20 0 32768 -7 3250 8192 3580    8192 3540 8192 3000 8192 3300 ;FREQ
f 21 0 32768 -7 0 8192 0 8192 0 8192 0 8192 0 ;dB
f 22 0 32768 -7 -6 8192 -14 8192 -15 8192 -10 8192 -20 ;dB
f 23 0 32768 -7 -7 8192 -12 8192 -18 8192 -12 8192 -17 ;dB
f 24 0 32768 -7 -8 8192 -14 8192 -20 8192 -12 8192 -14 ;dB
f 25 0 32768 -7 -22 8192 -20 8192 -30 8192 -26 8192 -26 ;dB
f 26 0 32768 -7 80 8192 70 8192 40 8192 40 8192 40 ;BAND WIDTH
f 27 0 32768 -7 90 8192 80 8192 90 8192 80 8192 60 ;BAND WIDTH
f 28 0 32768 -7 120 8192 100 8192 100 8192 100 8192 100 ;BAND WIDTH
f 29 0 32768 -7 130 8192 120 8192 120 8192 120 8192 120 ;BAND WIDTH
f 30 0 32768 -7 140 8192 120 8192 120 8192 120 8192 120 ;BAND WIDTH
;COUNTER TENOR
f 31 0 32768 -7 660 8192 440 8192 270 8192 430 8192 370 ;FREQ
f 32 0 32768 -7 1120 8192 1800 8192 1850 8192 820 8192 630 ;FREQ
f 33 0 32768 -7 2750 8192 2700 8192 2900 8192 2700 8192 2750 ;FREQ
f 34 0 32768 -7 3000 8192 3000 8192 3350 8192 3000 8192 3000 ;FREQ
f 35 0 32768 -7 3350 8192 3300 8192 3590 8192 3300 8192 3400 ;FREQ
f 36 0 32768 -7 0 8192 0 8192 0 8192 0 8192 0 ;dB
f 37 0 32768 -7 -6 8192 -14 8192 -24 8192 -10 8192 -20 ;dB
f 38 0 32768 -7 -23 8192 -18 8192 -24 8192 -26 8192 -23 ;dB
f 39 0 32768 -7 -24 8192 -20 8192 -36 8192 -22 8192 -30 ;dB
f 40 0 32768 -7 -38 8192 -20 8192 -36 8192 -34 8192 -30 ;dB
f 41 0 32768 -7 80 8192 70 8192 40 8192 40 8192 40 ;BAND WIDTH
f 42 0 32768 -7 90 8192 80 8192 90 8192 80 8192 60 ;BAND WIDTH
f 43 0 32768 -7 120 8192 100 8192 100 8192 100 8192 100 ;BAND WIDTH
f 44 0 32768 -7 130 8192 120 8192 120 8192 120 8192 120 ;BAND WIDTH
f 45 0 32768 -7 140 8192 120 8192 120 8192 120 8192 120 ;BAND WIDTH
;ALTO
f 46 0 32768 -7 800 8192 400 8192 350 8192 450 8192 325 ;FREQ
f 47 0 32768 -7 1150 8192 1600 8192 1700 8192 800 8192 700 ;FREQ
f 48 0 32768 -7 2800 8192 2700 8192 2700 8192 2830 8192 2530 ;FREQ
f 49 0 32768 -7 3500 8192 3300 8192 3700 8192 3500 8192 2500 ;FREQ
f 50 0 32768 -7 4950 8192 4950 8192 4950 8192 4950 8192 4950 ;FREQ
f 51 0 32768 -7 0 8192 0 8192 0 8192 0 8192 0 ;dB
f 52 0 32768 -7 -4 8192 -24 8192 -20 8192 -9 8192 -12 ;dB
f 53 0 32768 -7 -20 8192 -30 8192 -30 8192 -16 8192 -30 ;dB
f 54 0 32768 -7 -36 8192 -35 8192 -36 8192 -28 8192 -40 ;dB
f 55 0 32768 -7 -60 8192 -60 8192 -60 8192 -55 8192 -64 ;dB
f 56 0 32768 -7 50 8192 60 8192 50 8192 70 8192 50 ;BAND WIDTH
f 57 0 32768 -7 60 8192 80 8192 100 8192 80 8192 60 ;BAND WIDTH
f 58 0 32768 -7 170 8192 120 8192 120 8192 100 8192 170 ;BAND WIDTH
f 59 0 32768 -7 180 8192 150 8192 150 8192 130 8192 180 ;BAND WIDTH
f 60 0 32768 -7 200 8192 200 8192 200 8192 135 8192 200 ;BAND WIDTH
;SOPRANO
f 61 0 32768 -7 800 8192 350 8192 270 8192 450 8192 325 ;FREQ
f 62 0 32768 -7 1150 8192 2000 8192 2140 8192 800 8192 700 ;FREQ
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f 63 0 32768 -7 2900 8192 2800 8192 2950 8192 2830 8192 2700 ;FREQ
f 64 0 32768 -7 3900 8192 3600 8192 3900 8192 3800 8192 3800 ;FREQ
f 65 0 32768 -7 4950 8192 4950 8192 4950 8192 4950 8192 4950 ;FREQ
f 66 0 32768 -7 0 8192 0 8192 0 8192 0 8192 0 ;dB
f 67 0 32768 -7 -6 8192 -20 8192 -12 8192 -11 8192 -16 ;dB
f 68 0 32768 -7 -32 8192 -15 8192 -26 8192 -22 8192 -35 ;dB
f 69 0 32768 -7 -20 8192 -40 8192 -26 8192 -22 8192 -40 ;dB
f 70 0 32768 -7 -50 8192 -56 8192 -44 8192 -50 8192 -60 ;dB
f 71 0 32768 -7 80 8192 60 8192 60 8192 70 8192 50 ;BAND WIDTH
f 72 0 32768 -7 90 8192 90 8192 90 8192 80 8192 60 ;BAND WIDTH
f 73 0 32768 -7 120 8192 100 8192 100 8192 100 8192 170 ;BAND WIDTH
f 74 0 32768 -7 130 8192 150 8192 120 8192 130 8192 180 ;BAND WIDTH
f 75 0 32768 -7 140 8192 200 8192 120 8192 135 8192 200 ;BAND WIDTH

; p4 = fundemental begin value (c.p.s.)
; p5 = fundemental end value
; p6 = vowel begin value (0 - 1 : a e i o u)
; p7 = vowel end value
; p8 = bandwidth factor begin (suggested range 0 - 2)
; p9 = bandwidth factor end
; p10 = voice (0=bass; 1=tenor; 2=counter_tenor; 3=alto; 4=soprano)
; p11 = input source begin (0 - 1 : VCO - noise)
; p12 = input source end

;        p4  p5  p6  p7  p8  p9 p10 p11  p12
i 1 0 10 50  100 0   1   2   0  0   0    0
i 1 8 .  78  77  1   0   1   0  1   0    0
i 1 16 .  150 118 0   1   1   0  2   1    1
i 1 24 .  200 220 1   0   0.2 0  3   1    0
i 1 32 .  400 800 0   1   0.2 0  4   0    1
e
</CsScore>

</CsoundSynthesizer>

CONCLUSION

Hopefully these examples have demonstrated the strengths of subtractive synthesis in its
simplicity, intuitive operation and its ability to create organic sounding timbres. Further
research could explore Csound's other filter opcodes including vcomb, wguide1, wguide2 and the
more esoteric phaser1, phaser2 and resony. 

21. AMPLITUDE AND RING MODULATION

INTRODUCTION

Amplitude-modulation (AM) means, that one oscillator varies the volume/amplitude of an
other. If this modulation is done very slowly (1 Hz to 10 Hz) it is recognised as tremolo.
Volume-modulation above 10 Hz lead to the effect, that the sound changes its timbre. So
called side-bands appear.

Example 04C01.csd 

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 48000
ksmps = 32
nchnls = 1
0dbfs = 1

instr 1
aRaise expseg 2, 20, 100
aSine1 poscil 0.3, aRaise , 1
aSine2 poscil 0.3, 440, 1
out aSine1*aSine2
endin
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</CsInstruments>
<CsScore>
f 1 0 1024 10 1
i 1 0 25
e
</CsScore>
</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011)

THEORY, MATHEMATICS AND SIDEBANDS

The side-bands appear on both sides of the main frequency. This means (freq1-freq2) and
(freq1+freq2) appear.

The sounding result of the following example can be calculated as this: freq1 = 440Hz, freq2 =
40 Hz -> The result is a sound with [400, 440, 480] Hz.

The amount of the sidebands can be controlled by a DC-offset of the modulator. 

Example 04C02.csd 

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 48000
ksmps = 32
nchnls = 1
0dbfs = 1

instr 1
aOffset linseg 0, 1, 0, 5, 0.6, 3, 0
aSine1 poscil 0.3, 40 , 1
aSine2 poscil 0.3, 440, 1
out (aSine1+aOffset)*aSine2
endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1
i 1 0 10
e
</CsScore>
</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011)

Ring modulation is the special-case of AM, without DC-offset (DC-Offset = 0). That means the
modulator varies between -1 and +1 like the carrier. If the modulator is unipolar (oscilates
between 0 and +1) the effect is called AM.

The sounding difference is, that AM contains the carrier frequency and RM not. 

MORE COMPLEX SYNTHESIS USING RING MODULATION
AND AMPLITUDE MODULATION 

If the modulator itself has more harmonics, the result becomes easily more complex.

Carrier freq: 600 Hz 
Modulator freqs: 200Hz with 3 harmonics = [200, 400, 600] Hz 
Resulting freqs:  [0, 200, 400, <-600->, 800, 1000, 1200]

Example 04C03.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
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</CsOptions>
<CsInstruments>

sr = 48000
ksmps = 32
nchnls = 1
0dbfs = 1

instr 1   ; Ring-Modulation (no DC-Offset)
aSine1 poscil 0.3, 200, 2 ; -> [200, 400, 600] Hz
aSine2 poscil 0.3, 600, 1
out aSine1*aSine2
endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1 ; sine
f 2 0 1024 10 1 1 1; 3 harmonics
i 1 0 5
e
</CsScore>
</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011)

Using an inharmonic modulator frequency also makes the result sound inharmonic. Varying the
DC-offset makes the sound-spectrum evolve over time. 
Modulator freqs: [230, 460, 690] 
Resulting freqs:  [ (-)90, 140, 370, <-600->, 830, 1060, 1290] 
(negative frequencies become mirrowed, but phase inverted)

Example 04C04.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 48000
ksmps = 32
nchnls = 1
0dbfs = 1

instr 1   ; Amplitude-Modulation
aOffset linseg 0, 1, 0, 5, 1, 3, 0
aSine1 poscil 0.3, 230, 2 ; -> [230, 460, 690] Hz
aSine2 poscil 0.3, 600, 1
out (aSine1+aOffset)*aSine2
endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1 ; sine
f 2 0 1024 10 1 1 1; 3 harmonics
i 1 0 10
e
</CsScore>
</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011) 

 

22. FREQUENCY MODULATION

FROM VIBRATO TO THE EMERGENCE OF SIDEBANDS

A vibrato is a periodical change of pitch, normally less than a halftone and with a slow
changing-rate (around 5Hz). Frequency modulation is usually done with sine-wave oscillators.

Example 04D01.csd  
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<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 48000
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
aMod poscil 10, 5 , 1  ; 5 Hz vibrato with 10 Hz modulation-width
aCar poscil 0.3, 440+aMod, 1  ; -> vibrato between 430-450 Hz
outs aCar, aCar
endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1   ;Sine wave for table 1
i 1 0 2
</CsScore>
</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011)

When the modulation-width becomes increased, it becomes harder to describe the base-
frequency, but it is still a vibrato. 

Example 04D02.csd 

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 48000
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
aMod poscil 90, 5 , 1 ; modulate 90Hz ->vibrato from 350 to 530 hz
aCar poscil 0.3, 440+aMod, 1
outs aCar, aCar
endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1   ;Sine wave for table 1
i 1 0 2
</CsScore>
</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011)

THE SIMPLE MODULATOR->CARRIER PAIRING

Increasing the modulation-rate leads to a different effect. Frequency-modulation with more
than 20Hz is no longer recognized as vibrato. The main-oscillator frequency lays in the middle
of the sound and sidebands appear above and below. The number of sidebands is related to
the modulation amplitude, later this is controlled by the so called modulation-index.

Example 04D03.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 48000
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
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instr 1
aRaise linseg 2, 10, 100    ;increase modulation from 2Hz to 100Hz
aMod poscil 10, aRaise , 1
aCar poscil 0.3, 440+aMod, 1
outs aCar, aCar
endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1   ;Sine wave for table 1
i 1 0 12
</CsScore>
</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011

Hereby the main-oscillator is called carrier and the one changing the carriers frequency is the
modulator. The modulation-index: I = mod-amp/mod-freq. Making changes to the modulation-
index, changes the amount of overtones, but not the overall volume. That gives the possibility
produce drastic timbre-changes without the risk of distortion. 

When carrier and modulator frequency have integer ratios like 1:1, 2:1, 3:2, 5:4.. the sidebands
build a harmonic series, which leads to a sound with clear fundamental pitch.

Example 04D04.csd 

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 48000
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
kCarFreq = 660     ; 660:440 = 3:2 -> harmonic spectrum
kModFreq = 440
kIndex = 15        ; high Index.. try lower values like 1, 2, 3..
kIndexM = 0
kMaxDev = kIndex*kModFreq
kMinDev = kIndexM * kModFreq
kVarDev = kMaxDev-kMinDev
kModAmp = kMinDev+kVarDev
aModulator poscil kModAmp, kModFreq, 1
aCarrier poscil 0.3, kCarFreq+aModulator, 1
outs aCarrier, aCarrier
endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1   ;Sine wave for table 1
i 1 0 15
</CsScore>
</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011)

Otherwise the spectrum of the sound is inharmonic, which makes it metallic or noisy. 
Raising the modulation-index, shifts the energy into the side-bands. The side-bands distance
is:  Distance in Hz = (carrierFreq)-(k*modFreq) | k = {1, 2, 3, 4 ..}

This calculation can result in negative frequencies. Those become reflected at zero, but with
inverted phase! So negative frequencies can erase existing ones. Frequencies over Nyquist-
frequency (half of samplingrate) "fold over" (aliasing). 

THE JOHN CHOWNING FM MODEL OF A TRUMPET

Composer and researcher Jown Chowning worked on the first digital implementation of FM in
the 1970's. 
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Using envelopes to control the modulation index and the overall amplitude gives you the
possibility to create evolving sounds with enormous spectral variations. Chowning showed
these possibilities in his pieces, where he let the sounds transform. In the piece Sabelithe a
drum sound morphes over the time into a trumpet tone.

Example 04D05.csd  

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 48000
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1  ; simple way to generate a trumpet-like sound
kCarFreq = 440
kModFreq = 440
kIndex = 5
kIndexM = 0
kMaxDev = kIndex*kModFreq
kMinDev = kIndexM * kModFreq
kVarDev = kMaxDev-kMinDev
aEnv expseg .001, 0.2, 1, p3-0.3, 1, 0.2, 0.001
aModAmp = kMinDev+kVarDev*aEnv
aModulator poscil aModAmp, kModFreq, 1
aCarrier poscil 0.3*aEnv, kCarFreq+aModulator, 1
outs aCarrier, aCarrier
endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1   ;Sine wave for table 1
i 1 0 2
</CsScore>
</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011)

The following example uses the same instrument, with different settings to generate a bell-like
sound:

Example 04D06.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 48000
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1  ; bell-like sound
kCarFreq = 200  ; 200/280 = 5:7 -> inharmonic spectrum
kModFreq = 280
kIndex = 12
kIndexM = 0
kMaxDev = kIndex*kModFreq
kMinDev = kIndexM * kModFreq
kVarDev = kMaxDev-kMinDev
aEnv expseg .001, 0.001, 1, 0.3, 0.5, 8.5, .001
aModAmp = kMinDev+kVarDev*aEnv
aModulator poscil aModAmp, kModFreq, 1
aCarrier poscil 0.3*aEnv, kCarFreq+aModulator, 1
outs aCarrier, aCarrier
endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1   ;Sine wave for table 1
i 1 0 9
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</CsScore>
</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011)

MORE COMPLEX FM ALGORITHMS

Combining more than two oscillators (operators) is called complex FM synthesis. Operators can
be connected in different combinations often 4-6 operators are used. The carrier is always the
last operator in the row. Changing it's pitch, shifts the whole sound. All other operators are
modulators, changing their pitch alters the sound-spectrum. 

TWO INTO ONE: M1+M2 -> C

The principle here is, that (M1:C) and (M2:C) will be separate modulations and later added
together.  

Example 04D07.csd  

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 48000
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
aMod1 poscil 200, 700, 1
aMod2 poscil 1800, 290, 1
aSig poscil 0.3, 440+aMod1+aMod2, 1
outs aSig, aSig
endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1   ;Sine wave for table 1
i 1 0 3
</CsScore>
</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011)

IN SERIES: M1->M2->C

This is much more complicated to calculate and sound-timbre becomes harder to predict,
because M1:M2 produces a complex spectrum (W), which then modulates the carrier (W:C).

Example 04D08.csd  

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 48000
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
aMod1 poscil 200, 700, 1
aMod2 poscil 1800, 290+aMod1, 1
aSig poscil 0.3, 440+aMod2, 1
outs aSig, aSig
endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1   ;Sine wave for table 1
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f 1 0 1024 10 1   ;Sine wave for table 1
i 1 0 3
</CsScore>
</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011)

PHASE MODULATION - THE YAMAHA DX7 AND FEEDBACK
FM

There is a strong relation between frequency modulation and phase modulation, as both
techniques influence the oscillator's pitch, and the resulting timbre modifications are the same.

If you'd like to build a feedbacking FM system, it will happen that the self-modulation comes to
a zero point, which stops the oscillator forever. To avoid this, it is more practical to modulate
the carriers table-lookup phase, instead of its pitch. 

Even the most famous FM-synthesizer Yamaha DX7 is based on the phase-modulation (PM)
technique, because this allows feedback. The DX7 provides 7 operators, and offers 32 routing
combinations of these. (http://yala.freeservers.com/t2synths.htm#DX7)

To build a PM-synth in Csound tablei opcode needs to be used as oscillator. In order to step
through the f-table, a phasor will output the necessary steps.

Example 04D09.csd  

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 48000
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1  ; simple PM-Synth
kCarFreq = 200
kModFreq = 280
kModFactor = kCarFreq/kModFreq
kIndex = 12/6.28   ;  12/2pi to convert from radians to norm. table index
aEnv expseg .001, 0.001, 1, 0.3, 0.5, 8.5, .001
aModulator poscil kIndex*aEnv, kModFreq, 1
aPhase phasor kCarFreq
aCarrier tablei aPhase+aModulator, 1, 1, 0, 1
outs (aCarrier*aEnv), (aCarrier*aEnv)
endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1   ;Sine wave for table 1
i 1 0 9
</CsScore>
</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011)

Let's use the possibilities of self-modulation (feedback-modulation) of the oscillator. So in the
following example, the oscillator is both modulator and carrier. To control the amount of
modulation, an envelope scales the feedback.

Example 04D10.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 48000
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1  ; feedback PM
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kCarFreq = 200
kFeedbackAmountEnv linseg 0, 2, 0.2, 0.1, 0.3, 0.8, 0.2, 1.5, 0
aAmpEnv expseg .001, 0.001, 1, 0.3, 0.5, 8.5, .001
aPhase phasor kCarFreq
aCarrier init 0 ; init for feedback
aCarrier tablei aPhase+(aCarrier*kFeedbackAmountEnv), 1, 1, 0, 1
outs aCarrier*aAmpEnv, aCarrier*aAmpEnv
endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1   ;Sine wave for table 1
i 1 0 9
</CsScore>
</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011)

23. WAVESHAPING
coming in the next release ...

24. GRANULAR SYNTHESIS 

CONCEPT BEHIND GRANULAR SYNTHESIS

Granular synthesis is a technique in which a source sound or waveform is broken into many
fragments, often of very short duration, which are then being restructured and rearranged
according to various patterning and indeterminacy functions.

If we imagine the simplest possible granular synthesis algorithm in which a precise fragment of
sound is repeated with regularity, there are two principle attributes of this process that we
are most concerned with. Firstly the duration of each sound grain is significant: if the grain
duration if very small, typically less than 0.02 seconds, then less of the characteristics of the
source sound will be evident. If the grain duration is greater than 0.02 then more of the
character of the source sound or waveform will be evident. Secondly the rate at which grains
are generated will be significant: if grain generation is below 20 hertz, i.e. less than 20 grains
per second, then the stream of grains will be perceived as a rhythmic pulsation; if rate of grain
generation increases beyond 20 Hz then individual grains will be harder to distinguish and
instead we will begin to perceive a buzzing tone, the fundamental of which will correspond to
the frequency of grain generation. Any pitch contained within the source material is not
normally perceived as the fundamental of the tone whenever grain generation is periodic,
instead the pitch of the source material or waveform will be perceived as a resonance peak
(sometimes referred to as a formant); therefore transposition of the source material will
result in the shifting of this resonance peak.

GRANULAR SYNTHESIS DEMONSTRATED USING FIRST
PRINCIPLES 

The following example exemplifies the concepts discussed above. None of Csound's built-in
granular synthesis opcodes are used, instead schedkwhen in instrument 1 is used to precisely
control the triggering of grains in instrument 2. Three notes in instrument 1 are called from the
score one after the other which in turn generate three streams of grains in instrument 2. The
first note demonstrates the transition from pulsation to the perception of a tone as the rate
of grain generation extends beyond 20 Hz. The second note demonstrates the loss of influence
of the source material as the grain duration is reduced below 0.02 seconds. The third note
demonstrates how shifting the pitch of the source material for the grains results in the shifting
of a resonance peak in the output tone. In each case information regarding rate of grain
generation, duration and fundamental (source material pitch) is output to the terminal every
1/2 second so that the user can observe the changing parameters.
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It should also be noted how the amplitude of each grain is enveloped in instrument 2. If grains
were left unenveloped they would likely produce clicks on account of discontinuities in the
waveform produced at the beginning and ending of each grain.

Granular synthesis in which grain generation occurs with perceivable periodicity is referred to
as synchronous granular synthesis. granular synthesis in which this periodicity is not evident is
referred to as asynchronous granular synthesis.  

EXAMPLE 04F01.CSD

<CsoundSynthesizer>

<CsOptions>
-odevaudio -b512 -dm0
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 1
nchnls = 1
0dbfs = 1

giSine  ftgen  0,0,4096,10,1

instr 1
  kRate  expon  p4,p3,p5   ; rate of grain generation created as an exponential function from p-field values
  kTrig  metro  kRate      ; a trigger to generate grains
  kDur   expon  p6,p3,p7   ; grain duration is created as a exponential funcion from p-field values
  kForm  expon  p8,p3,p9   ; formant is created as an exponential function from p-field values
   ;                      p1 p2 p3   p4
  schedkwhen    kTrig,0,0,2, 0, kDur,kForm ;trigger a note(grain) in instr 2
  ;print data to terminal every 1/2 second
  printks "Rate:%5.2F  Dur:%5.2F  Formant:%5.2F%n", 0.5, kRate , kDur, kForm
endin

instr 2
  iForm =       p4
  aEnv  linseg  0,0.005,0.2,p3-0.01,0.2,0.005,0
  aSig  poscil  aEnv, iForm, giSine
        out     aSig
endin

</CsInstruments>

<CsScore>
;p4 = rate begin
;p5 = rate end
;p6 = duration begin
;p7 = duration end
;p8 = formant begin
;p9 = formant end
; p1 p2 p3 p4 p5  p6   p7    p8  p9
i 1  0  30 1  100 0.02 0.02  400 400  ;demo of grain generation rate
i 1  31 10 10 10  0.4  0.01  400 400  ;demo of grain size
i 1  42 20 50 50  0.02 0.02  100 5000 ;demo of changing formant
e
</CsScore>

</CsoundSynthesizer>

GRANULAR SYNTHESIS OF VOWELS: FOF
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The principles outlined in the previous example can be extended to imitate vowel sounds
produced by the human voice. This type of granular synthesis is referred to as FOF (fonction
d'onde formatique) synthesis and is based on work by Xavier Rodet on his CHANT program at
IRCAM. Typically five synchronous granular synthesis streams will be used to create five
different resonant peaks in a fundamental tone in order to imitate different vowel sounds
expressible by the human voice. The most crucial element in defining a vowel imitation is the
degree to which the source material within each of the five grain streams is transposed.
Bandwidth (essentially grain duration) and intensity (loudness) of each grain stream are also
important indicators in defining the resultant sound. 

Csound has a number of opcodes that make working with FOF synthesis easier. We will be
using fof.

Information regarding frequency, bandwidth and intensity values that will produce various
vowel sounds for different voice types can be found in the appendix of the Csound manual
here. These values are stored in function tables in the FOF synthesis example. GEN07, which
produces linear break point envelopes, is chosen as we will then be able to morph continuously
between vowels.

EXAMPLE 04F02.CSD 

<CsoundSynthesizer>

<CsOptions>
-odevaudio -b512 -dm0
</CsOptions>

<CsInstruments>
;example by Iain McCurdy

sr = 44100
ksmps = 16
nchnls = 2
0dbfs = 1

instr 1
  kFund    expon     p4,p3,p5               ; fundemental
  kVow     line      p6,p3,p7               ; vowel select
  kBW      line      p8,p3,p9               ; bandwidth factor
  iVoice   =         p10                    ; voice select

  ; read formant cutoff frequenies from tables
  kForm1     table     kVow,1+(iVoice*15),1
  kForm2     table     kVow,2+(iVoice*15),1
  kForm3     table     kVow,3+(iVoice*15),1
  kForm4     table     kVow,4+(iVoice*15),1
  kForm5     table     kVow,5+(iVoice*15),1
  ; read formant intensity values from tables
  kDB1     table     kVow,6+(iVoice*15),1
  kDB2     table     kVow,7+(iVoice*15),1
  kDB3     table     kVow,8+(iVoice*15),1
  kDB4     table     kVow,9+(iVoice*15),1
  kDB5     table     kVow,10+(iVoice*15),1
  ; read formant bandwidths from tables
  kBW1     table     kVow,11+(iVoice*15),1
  kBW2     table     kVow,12+(iVoice*15),1
  kBW3     table     kVow,13+(iVoice*15),1
  kBW4     table     kVow,14+(iVoice*15),1
  kBW5     table     kVow,15+(iVoice*15),1
  ; create resonant formants byt filtering source sound
  koct     =         1 
  aForm1   fof       ampdb(kDB1), kFund, kForm1, 0, kBW1, 0.003, 0.02, 0.007, 1000, 101, 102, 3600
  aForm2   fof       ampdb(kDB2), kFund, kForm2, 0, kBW2, 0.003, 0.02, 0.007, 1000, 101, 102, 3600
  aForm3   fof       ampdb(kDB3), kFund, kForm3, 0, kBW3, 0.003, 0.02, 0.007, 1000, 101, 102, 3600
  aForm4   fof       ampdb(kDB4), kFund, kForm4, 0, kBW4, 0.003, 0.02, 0.007, 1000, 101, 102, 3600
  aForm5   fof       ampdb(kDB5), kFund, kForm5, 0, kBW5, 0.003, 0.02, 0.007, 1000, 101, 102, 3600

  ; formants are mixed and multiplied both by intensity values derived from tables and by the on-screen gain controls for each formant
  aMix     sum       aForm1,aForm2,aForm3,aForm4,aForm5
  kEnv     linseg    0,3,1,p3-6,1,3,0     ; an amplitude envelope
           outs      aMix*kEnv, aMix*kEnv ; send audio to outputs
endin
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</CsInstruments>

<CsScore>
f 0 3600 ;DUMMY SCORE EVENT - PERMITS REALTIME PERFORMANCE FOR UP TO 1 HOUR

;FUNCTION TABLES STORING FORMANT DATA FOR EACH OF THE FIVE VOICE TYPES REPRESENTED
;BASS
f 1  0 32768 -7 600 10922 400 10922 250 10924 350 ;FREQ
f 2  0 32768 -7 1040 10922 1620 10922 1750 10924 600 ;FREQ
f 3  0 32768 -7 2250 10922 2400 10922 2600 10924 2400 ;FREQ
f 4  0 32768 -7 2450 10922 2800 10922 3050 10924 2675 ;FREQ
f 5  0 32768 -7 2750 10922 3100 10922 3340 10924 2950 ;FREQ
f 6  0 32768 -7 0 10922 0 10922 0 10924 0 ;dB
f 7  0 32768 -7 -7 10922 -12 10922 -30 10924 -20 ;dB
f 8  0 32768 -7 -9 10922 -9 10922 -16 10924 -32 ;dB
f 9  0 32768 -7 -9 10922 -12 10922 -22 10924 -28 ;dB
f 10 0 32768 -7 -20 10922 -18 10922 -28 10924 -36 ;dB
f 11 0 32768 -7 60 10922 40 10922 60 10924 40 ;BAND WIDTH
f 12 0 32768 -7 70 10922 80 10922 90 10924 80 ;BAND WIDTH
f 13 0 32768 -7 110 10922 100 10922 100 10924 100 ;BAND WIDTH
f 14 0 32768 -7 120 10922 120 10922 120 10924 120 ;BAND WIDTH
f 15 0 32768 -7 130 10922 120 10922 120 10924 120 ;BAND WIDTH
;TENOR
f 16 0 32768 -7 650  8192 400  8192 290 8192 400 8192 350 ;FREQ
f 17 0 32768 -7 1080  8192 1700    8192 1870 8192 800 8192 600 ;FREQ
f 18 0 32768 -7 2650 8192 2600    8192 2800 8192 2600 8192 2700 ;FREQ
f 19 0 32768 -7 2900 8192 3200    8192 3250 8192 2800 8192 2900 ;FREQ
f 20 0 32768 -7 3250 8192 3580    8192 3540 8192 3000 8192 3300 ;FREQ
f 21 0 32768 -7 0 8192 0 8192 0 8192 0 8192 0 ;dB
f 22 0 32768 -7 -6 8192 -14 8192 -15 8192 -10 8192 -20 ;dB
f 23 0 32768 -7 -7 8192 -12 8192 -18 8192 -12 8192 -17 ;dB
f 24 0 32768 -7 -8 8192 -14 8192 -20 8192 -12 8192 -14 ;dB
f 25 0 32768 -7 -22 8192 -20 8192 -30 8192 -26 8192 -26 ;dB
f 26 0 32768 -7 80 8192 70 8192 40 8192 40 8192 40 ;BAND WIDTH
f 27 0 32768 -7 90 8192 80 8192 90 8192 80 8192 60 ;BAND WIDTH
f 28 0 32768 -7 120 8192 100 8192 100 8192 100 8192 100 ;BAND WIDTH
f 29 0 32768 -7 130 8192 120 8192 120 8192 120 8192 120 ;BAND WIDTH
f 30 0 32768 -7 140 8192 120 8192 120 8192 120 8192 120 ;BAND WIDTH
;COUNTER TENOR
f 31 0 32768 -7 660 8192 440 8192 270 8192 430 8192 370 ;FREQ
f 32 0 32768 -7 1120 8192 1800 8192 1850 8192 820 8192 630 ;FREQ
f 33 0 32768 -7 2750 8192 2700 8192 2900 8192 2700 8192 2750 ;FREQ
f 34 0 32768 -7 3000 8192 3000 8192 3350 8192 3000 8192 3000 ;FREQ
f 35 0 32768 -7 3350 8192 3300 8192 3590 8192 3300 8192 3400 ;FREQ
f 36 0 32768 -7 0 8192 0 8192 0 8192 0 8192 0 ;dB
f 37 0 32768 -7 -6 8192 -14 8192 -24 8192 -10 8192 -20 ;dB
f 38 0 32768 -7 -23 8192 -18 8192 -24 8192 -26 8192 -23 ;dB
f 39 0 32768 -7 -24 8192 -20 8192 -36 8192 -22 8192 -30 ;dB
f 40 0 32768 -7 -38 8192 -20 8192 -36 8192 -34 8192 -30 ;dB
f 41 0 32768 -7 80 8192 70 8192 40 8192 40 8192 40 ;BAND WIDTH
f 42 0 32768 -7 90 8192 80 8192 90 8192 80 8192 60 ;BAND WIDTH
f 43 0 32768 -7 120 8192 100 8192 100 8192 100 8192 100 ;BAND WIDTH
f 44 0 32768 -7 130 8192 120 8192 120 8192 120 8192 120 ;BAND WIDTH
f 45 0 32768 -7 140 8192 120 8192 120 8192 120 8192 120 ;BAND WIDTH
;ALTO
f 46 0 32768 -7 800 8192 400 8192 350 8192 450 8192 325 ;FREQ
f 47 0 32768 -7 1150 8192 1600 8192 1700 8192 800 8192 700 ;FREQ
f 48 0 32768 -7 2800 8192 2700 8192 2700 8192 2830 8192 2530 ;FREQ
f 49 0 32768 -7 3500 8192 3300 8192 3700 8192 3500 8192 2500 ;FREQ
f 50 0 32768 -7 4950 8192 4950 8192 4950 8192 4950 8192 4950 ;FREQ
f 51 0 32768 -7 0 8192 0 8192 0 8192 0 8192 0 ;dB
f 52 0 32768 -7 -4 8192 -24 8192 -20 8192 -9 8192 -12 ;dB
f 53 0 32768 -7 -20 8192 -30 8192 -30 8192 -16 8192 -30 ;dB
f 54 0 32768 -7 -36 8192 -35 8192 -36 8192 -28 8192 -40 ;dB
f 55 0 32768 -7 -60 8192 -60 8192 -60 8192 -55 8192 -64 ;dB
f 56 0 32768 -7 50 8192 60 8192 50 8192 70 8192 50 ;BAND WIDTH
f 57 0 32768 -7 60 8192 80 8192 100 8192 80 8192 60 ;BAND WIDTH
f 58 0 32768 -7 170 8192 120 8192 120 8192 100 8192 170 ;BAND WIDTH
f 59 0 32768 -7 180 8192 150 8192 150 8192 130 8192 180 ;BAND WIDTH
f 60 0 32768 -7 200 8192 200 8192 200 8192 135 8192 200 ;BAND WIDTH
;SOPRANO
f 61 0 32768 -7 800 8192 350 8192 270 8192 450 8192 325 ;FREQ
f 62 0 32768 -7 1150 8192 2000 8192 2140 8192 800 8192 700 ;FREQ
f 63 0 32768 -7 2900 8192 2800 8192 2950 8192 2830 8192 2700 ;FREQ
f 64 0 32768 -7 3900 8192 3600 8192 3900 8192 3800 8192 3800 ;FREQ
f 65 0 32768 -7 4950 8192 4950 8192 4950 8192 4950 8192 4950 ;FREQ
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f 66 0 32768 -7 0 8192 0 8192 0 8192 0 8192 0 ;dB
f 67 0 32768 -7 -6 8192 -20 8192 -12 8192 -11 8192 -16 ;dB
f 68 0 32768 -7 -32 8192 -15 8192 -26 8192 -22 8192 -35 ;dB
f 69 0 32768 -7 -20 8192 -40 8192 -26 8192 -22 8192 -40 ;dB
f 70 0 32768 -7 -50 8192 -56 8192 -44 8192 -50 8192 -60 ;dB
f 71 0 32768 -7 80 8192 60 8192 60 8192 70 8192 50 ;BAND WIDTH
f 72 0 32768 -7 90 8192 90 8192 90 8192 80 8192 60 ;BAND WIDTH
f 73 0 32768 -7 120 8192 100 8192 100 8192 100 8192 170 ;BAND WIDTH
f 74 0 32768 -7 130 8192 150 8192 120 8192 130 8192 180 ;BAND WIDTH
f 75 0 32768 -7 140 8192 200 8192 120 8192 135 8192 200 ;BAND WIDTH

f 101 0 4096 10 1   ;SINE WAVE
f 102 0 1024 19 0.5 0.5 270 0.5  ;EXPONENTIAL CURVE USED TO DEFINE THE ENVELOPE SHAPE OF FOF PULSES

; p4 = fundamental begin value (c.p.s.)
; p5 = fundamental end value
; p6 = vowel begin value (0 - 1 : a e i o u)
; p7 = vowel end value
; p8 = bandwidth factor begin (suggested range 0 - 2)
; p9 = bandwidth factor end
; p10 = voice (0=bass; 1=tenor; 2=counter_tenor; 3=alto; 4=soprano)

; p1 p2  p3  p4  p5  p6  p7  p8  p9 p10
i 1  0   10  50  100 0   1   2   0  0
i 1  8   .   78  77  1   0   1   0  1
i 1  16  .   150 118 0   1   1   0  2
i 1  24  .   200 220 1   0   0.2 0  3
i 1  32  .   400 800 0   1   0.2 0  4
e
</CsScore>

</CsoundSynthesizer>

ASYNCHRONOUS GRANULAR SYNTHESIS

The previous two examples have played psychoacoustic phenomena associated with the
perception of granular textures that exhibit periodicity and patterns. If we introduce
indeterminacy into some of the parameters of granular synthesis we begin to lose the
coherence of some of these harmonic structures.

The next example is based on the design of example 04F01.csd. Two streams of grains are
generated. The first stream begins as a synchronous stream but as the note progresses the
periodicity of grain generation is eroded through the addition of an increasing degree of
gaussian noise. It will be heard how the tone metamorphosizes from one characterized by
steady purity to one of fuzzy airiness. The second the applies a similar process of increasing
indeterminacy to the formant parameter (frequency of material within each grain).

Other parameters of granular synthesis such as the amplitude of each grain, grain duration,
spatial location etc. can be similarly modulated with random functions to offset the
psychoacoustic effects of synchronicity when using constant values.

EXAMPLE 04F03.CSD 

<CsoundSynthesizer>

<CsOptions>
-odevaudio -b512 -dm0
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 1
nchnls = 1
0dbfs = 1

giWave  ftgen  0,0,2^10,10,1,1/2,1/4,1/8,1/16,1/32,1/64

instr 1 ;grain generating instrument
  kRate         =          p4
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  kTrig         metro      kRate      ; a trigger to generate grains
  kDur          =          p5
  kForm         =          p6
  ;note delay time (p2) is defined using a random function -
  ;- beginning with no randomization but then gradually increasing
  kDelayRange   transeg    0,1,0,0,  p3-1,4,0.03
  kDelay        gauss      kDelayRange
  ;                                  p1 p2 p3   p4
                schedkwhen kTrig,0,0,3, abs(kDelay), kDur,kForm ;trigger a note (grain) in instr 3
endin

instr 2 ;grain generating instrument
  kRate          =          p4
  kTrig          metro      kRate      ; a trigger to generate grains
  kDur           =          p5
  ;formant frequency (p4) is multiplied by a random function -
  ;- beginning with no randomization but then gradually increasing
  kForm          =          p6
  kFormOSRange  transeg     0,1,0,0,  p3-1,2,12 ;range defined in semitones
  kFormOS       gauss       kFormOSRange
  ;                                   p1 p2 p3   p4
                schedkwhen  kTrig,0,0,3, 0, kDur,kForm*semitone(kFormOS) ;trigger a note (grain) in instr 3
endin

instr 3 ;grain sounding instrument
  iForm =       p4
  aEnv  linseg  0,0.005,0.2,p3-0.01,0.2,0.005,0
  aSig  poscil  aEnv, iForm, giWave
        out     aSig
endin

</CsInstruments>

<CsScore>
;p4 = rate
;p5 = duration
;p6 = formant
; p1 p2   p3 p4  p5   p6
i 1  0    12 200 0.02 400
i 2  12.5 12 200 0.02 400
e
</CsScore>

</CsoundSynthesizer>

SYNTHESIS OF DYNAMIC SOUND SPECTRA: GRAIN3

The next example introduces another of Csound's built-in granular synthesis opcodes to
demonstrate the range of dynamic sound spectra that are possible with granular synthesis.

Several parameters are modulated slowly using Csound's random spline generator rspline.
These parameters are formant frequency, grain duration and grain density (rate of grain
generation). The waveform used in generating the content for each grain is randomly chosen
using a slow sample and hold random function - a new waveform will be selected every 10
seconds. Five waveforms are provided: a sawtooth, a square wave, a triangle wave, a pulse
wave and a band limited buzz-like waveform. Some of these waveforms, particularly the
sawtooth, square and pulse waveforms, can generate very high overtones, for this reason a
high sample rate is recommended to reduce the risk of aliasing (see chapter 01A).

Current values for formant (cps), grain duration, density and waveform are printed to the
terminal every second. The key for waveforms is: 1:sawtooth; 2:square; 3:triangle; 4:pulse;
5:buzz.

EXAMPLE 04F04.CSD

<CsoundSynthesizer>

<CsOptions>
-odevaudio -b512 -dm0
</CsOptions>
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<CsInstruments>
;example by Iain McCurdy

sr = 96000
ksmps = 16
nchnls = 1
0dbfs = 1

;waveforms used for granulation
giSaw   ftgen 1,0,4096,7,0,4096,1
giSq    ftgen 2,0,4096,7,0,2046,0,0,1,2046,1
giTri   ftgen 3,0,4096,7,0,2046,1,2046,0
giPls   ftgen 4,0,4096,7,1,200,1,0,0,4096-200,0
giBuzz  ftgen 5,0,4096,11,20,1,1

;window function - used as an amplitude envelope for each grain
;(hanning window)
giWFn   ftgen 7,0,16384,20,2,1

instr 1
  ;random spline generates formant values in oct format
  kOct    rspline 4,8,0.1,0.5
  ;oct format values converted to cps format
  kCPS    =       cpsoct(kOct)
  ;phase location is left at 0 (the beginning of the waveform)
  kPhs    =       0
  ;formant(frequency) randomization and phase randomization are not used
  kFmd    =       0
  kPmd    =       1
  ;grain duration and density (rate of grain generation) created as random spline functions
  kGDur   rspline 0.01,0.2,0.05,0.2
  kDens   rspline 10,200,0.05,0.5
  ;maximum number of grain overlaps allowed. This is used as a CPU brake
  iMaxOvr =       1000
  ;function table for source waveform for content of the grain is randomized
  ;kFn will choose a different wavefrom from the five provided once every 10 seconds
  kFn     randomh 1,5.99,0.1
  ;print info. to the terminal
          printks "CPS:%5.2F%TDur:%5.2F%TDensity:%5.2F%TWaveform:%1.0F%n",1,kCPS,kGDur,kDens,kFn
  aSig    grain3  kCPS, kPhs, kFmd, kPmd, kGDur, kDens, iMaxOvr, kFn, giWFn, 0, 0
          out     aSig*0.06
endin

</CsInstruments>

<CsScore>
i 1 0 300
e
</CsScore>

</CsoundSynthesizer>

The final example introduces grain3's two built-in randomizing functions for phase and pitch.
Phase refers to the location in the source waveform from which a grain will be read, pitch
refers to the pitch of the material within grains. In this example a long note is played, initially
no randomization is employed but gradually phase randomization is increased and then
reduced back to zero. The same process is applied to the pitch randomization amount
parameter. This time grain size is relatively large:0.8 seconds and density correspondingly low:
20 Hz.

EXAMPLE 04F05.CSD

<CsoundSynthesizer>

<CsOptions>
-odevaudio -b512 -dm0
</CsOptions>

<CsInstruments>
;example by Iain McCurdy

sr = 44100
ksmps = 16
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nchnls = 1
0dbfs = 1

;waveforms used for granulation
giBuzz  ftgen 1,0,4096,11,40,1,0.9

;window function - used as an amplitude envelope for each grain
;(bartlett window)
giWFn   ftgen 2,0,16384,20,3,1

instr 1
  kCPS    =       100
  kPhs    =       0
  kFmd    transeg 0,21,0,0, 10,4,15, 10,-4,0
  kPmd    transeg 0,1,0,0,  10,4,1,  10,-4,0
  kGDur   =       0.8
  kDens   =       20
  iMaxOvr =       1000
  kFn     =       1
  ;print info. to the terminal
          printks "Random Phase:%5.2F%TPitch Random:%5.2F%n",1,kPmd,kFmd
  aSig    grain3  kCPS, kPhs, kFmd, kPmd, kGDur, kDens, iMaxOvr, kFn, giWFn, 0, 0
          out     aSig*0.06
endin

</CsInstruments>

<CsScore>
i 1 0 51
e
</CsScore>

</CsoundSynthesizer>

CONCLUSION

This chapter has introduced some of the concepts behind the synthesis of new sounds based
from simple waveforms by using granular synthesis techniques. Only two of Csound's built-in
opcodes for granular synthesis, fof and grain3, have been used; it is beyond the scope of this
work to cover all of the many opcodes for granulation that Csound provides. This chapter has
focussed mainly on synchronous granular synthesis; chapter 05G, which introduces granulation
of recorded sound files, makes greater use of asynchronous granular synthesis for time-
stretching and pitch shifting. This chapter will also introduce some of Csound's other opcodes
for granular synthesis. 

25. PHYSICAL MODELLING
coming in the next release ...
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26. ENVELOPES
Envelopes are used to define the change in a value over time. In early synthesizers, envelopes
were used to define the changes in amplitude in a sound across its duration thereby imbuing
sounds characteristics such as 'percussive', or 'sustaining'. Of course envelopes can be applied
to any parameter and not just amplitude.

Csound offers a wide array of opcodes for generating envelopes including ones which emulate
the classic ADSR (attack-decay-sustain-release) envelopes found on hardware and commercial
software synthesizers. A selection of these opcodes, which represent the basic types, shall be
introduced here

The simplest opcode for defining an envelope is line. line describes a single envelope segment
as a straight line between a start value and an end value which has a given duration.

ares line ia, idur, ib
kres line ia, idur, ib

In the following example line is used to create a simple envelope which is then used as the
amplitude control of a poscil oscillator. This envelope starts with a value of 0.5 then over the
course of 2 seconds descends in linear fashion to zero.

   EXAMPLE 05A01.csd 

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine   ftgen    0, 0, 2^12, 10, 1; a sine wave

  instr 1
aEnv     line     0.5, 2, 0; amplitude envelope
aSig     poscil   aEnv, 500, giSine; audio oscillator
         out      aSig; audio sent to output
  endin

</CsInstruments>
<CsScore>
i 1 0 2; instrument 1 plays a note for 2 seconds
e
</CsScore>
</CsoundSynthesizer>

The envelope in the above example assumes that all notes played by this instrument will be 2
seconds long. In practice it is often beneficial to relate the duration of the envelope to the
duration of the note (p3) in some way. In the next example the duration of the envelope is
replaced with the value of p3 retrieved from the score, whatever that may be. The envelope
will be stretched or contracted accordingly.

   EXAMPLE 05A02.csd 

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy
sr = 44100
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ksmps = 32
nchnls = 1
0dbfs = 1

giSine   ftgen    0, 0, 2^12, 10, 1; a sine wave

  instr 1
aEnv     line     0.5, p3, 0; single segment envelope. time value defined by note duration
aSig     poscil   aEnv, 500, giSine; an audio oscillator
         out      aSig; audio sent to output
  endin

</CsInstruments>
<CsScore>
; p1 p2  p3
i 1  0    1
i 1  2  0.2
i 1  3    4
e
</CsScore>
</CsoundSynthesizer>

It may not be disastrous if a envelope's duration does not match p3 and indeed there are
many occasions when we want an envelope duration to be independent of p3 but we need to
remain aware that if p3 is shorter than an envelope's duration then that envelope will be
truncated before it is allowed to complete and if p3 is longer than an envelope's duration then
the envelope will complete before the note ends (the consequences of this latter situation will
be looked at in more detail later on in this section).

line (and most of Csound's envelope generators) can output either k or a-rate variables. k-rate
envelopes are computationally cheaper than a-rate envelopes but in envelopes with fast
moving segments quantization can occur if they output a k-rate variable, particularly when the
control rate is low, which in the case of amplitude envelopes can lead to clicking artefacts or
distortion.

linseg is an elaboration of line and allows us to add an arbitrary number of segments by adding
further pairs of time durations followed envelope values. Provided we always end with a value
and not a duration we can make this envelope as long as we like.

In the next example a more complex amplitude envelope is employed by using the linseg
opcode. This envelope is also note duration (p3) dependent but in a more elaborate way. A
attack-decay stage is defined using explicitly declared time durations. A release stage is also
defined with an explicitly declared duration. The sustain stage is the p3 dependent stage but
to ensure that the duration of the entire envelope still adds up to p3, the explicitly defined
durations of the attack, decay and release stages are subtracted from the p3 dependent
sustain stage duration. For this envelope to function correctly it is important that p3 is not
less than the sum of all explicitly defined envelope segment durations. If necessary, additional
code could be employed to circumvent this from happening.

   EXAMPLE 05A03.csd 

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine   ftgen    0, 0, 2^12, 10, 1; a sine wave

  instr 1
;                 |-attack-|-decay--|---sustain---|-release-|
aEnv     linseg   0, 0.01, 1, 0.1, 0.1, p3-0.21, 0.1, 0.1, 0; a more complex amplitude envelope
aSig     poscil   aEnv, 500, giSine
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         out      aSig
  endin

</CsInstruments>

<CsScore>
i 1 0 1
i 1 2 5
e
</CsScore>

</CsoundSynthesizer>

The next example illustrates an approach that can be taken whenever it is required that more
than one envelope segment duration be p3 dependent. This time each segment is a fraction of
p3. The sum of all segments still adds up to p3 so the envelope will complete across the
duration of each each note regardless of duration.

   EXAMPLE 05A04.csd 

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine   ftgen    0, 0, 2^12, 10, 1; a sine wave

  instr 1
aEnv     linseg   0, p3*0.5, 1, p3*0.5, 0; rising then falling envelope
aSig     poscil   aEnv, 500, giSine
         out      aSig
  endin

</CsInstruments>

<CsScore>
;3 notes of different durations are played
i 1 0   1
i 1 2 0.1
i 1 3   5
e
</CsScore>

</CsoundSynthesizer>

The next example highlights an important difference in the behaviours of line and linseg when
p3 exceeds the duration of an envelope.

When a note continues beyond the end of the final value of a linseg defined envelope the final
value of that envelope is held. A line defined envelope behaves differently in that instead of
holding its final value it continues in a trajectory defined by the last segment.

This difference is illustrated in the following example. The linseg and line envelopes of
instruments 1 and 2 appear to be the same but the difference in their behaviour as described
above when they continue beyond the end of their final segment is clear when listening to the
example.

Note that information given in the Csound Manual in regard to this matter is incorrect at the
time of writing.

   EXAMPLE 05A05.csd

<CsoundSynthesizer>
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<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine   ftgen    0, 0, 2^12, 10, 1; a sine wave

  instr 1; linseg envelope
aCps     linseg   300, 1, 600; linseg holds its last value
aSig     poscil   0.2, aCps, giSine
         out      aSig
  endin

  instr 2; line envelope
aCps     line     300, 1, 600; line continues its trajectory
aSig     poscil   0.2, aCps, giSine
         out      aSig
  endin

</CsInstruments>

<CsScore>
i 1 0 5; linseg envelope
i 2 6 5; line envelope
e
</CsScore>

</CsoundSynthesizer> 

expon and expseg are versions of line and linseg that instead produce envelope segments with
concave exponential rather than linear shapes. expon and expseg can often be more musically
useful for envelopes that define amplitude or frequency as they will reflect the logarithmic
nature of how these parameters are perceived. On account of the mathematics that is used
to define these curves, we cannot define a value of zero at any node in the envelope and an
envelope cannot cross the zero axis. If we require a value of zero we can instead provide a
value very close to zero. If we still really need zero we can always subtract the offset value
from the entire envelope in a subsequent line of code.

The following example illustrates the difference between line and expon when applied as
amplitude envelopes.

   EXAMPLE 05A06.csd 

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine   ftgen    0, 0, 2^12, 10, 1; a sine wave

  instr 1; line envelope
aEnv     line     1, p3, 0
aSig     poscil   aEnv, 500, giSine
         out      aSig
  endin

  instr 2; expon envelope
aEnv     expon    1, p3, 0.0001
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aSig     poscil   aEnv, 500, giSine
         out      aSig
  endin

</CsInstruments>

<CsScore>
i 1 0 2; line envelope
i 2 2 1; expon envelope
e
</CsScore>

</CsoundSynthesizer> 

The nearer our 'near-zero' values are to zero the more concave the segment curve will be. In
the next example smaller and smaller envelope end values are passed to the expon opcode
using p4 values in the score. The percussive 'ping' sounds are perceived to be increasingly
short.

   EXAMPLE 05A07.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine   ftgen    0, 0, 2^12, 10, 1; a sine wave

  instr 1; expon envelope
iEndVal  =        p4; variable 'iEndVal' retrieved from score
aEnv     expon    1, p3, iEndVal
aSig     poscil   aEnv, 500, giSine
         out      aSig
  endin

</CsInstruments>

<CsScore>
;p1  p2 p3 p4
i 1  0  1  0.001
i 1  1  1  0.000001
i 1  2  1  0.000000000000001
e
</CsScore>

</CsoundSynthesizer>

Note that expseg does not behave like linseg in that it will not hold its last final value if p3
exceeds its entire duration, instead it continues its curving trajectory in a manner similar to
line (and expon). This could have dangerous results if used as an amplitude envelope.

When dealing with notes with an indefinite duration at the time of initiation (such as midi
activated notes or score activated notes with a negative p3 value), we do not have the option
of using p3 in a meaningful way. Instead we can use one of Csound's envelopes that sense the
ending of a note when it arrives and adjust their behaviour according to this. The opcodes in
question are linenr, linsegr, expsegr, madsr, mxadsr and envlpxr. These opcodes wait until a
held note is turned off before executing their final envelope segment. To facilitate this
mechanism they extend the duration of the note so that this final envelope segment can
complete.
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The following example uses midi input (either hardware or virtual) to activate notes. The use
of the linsegr envelope means that after the short attack stage lasting 0.1 seconds, the
penultimate value of 1 will be held as long as the note is sustained but as soon as the note is
released the note will be extended by 0.5 seconds in order to allow the final envelope segment
to decay to zero.

   EXAMPLE 05A08.csd

<CsoundSynthesizer>

<CsOptions>
-odac -+rtmidi=virtual -M0; activates real time sound output and virtual midi device
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine   ftgen    0, 0, 2^12, 10, 1; a sine wave

  instr 1
icps     cpsmidi
;                 attack-|sustain-|-release
aEnv     linsegr  0, 0.01,   1,      0.5,0; envelope that senses note releases
aSig     poscil   aEnv, icps, giSine; audio oscillator
         out      aSig; audio sent to output
  endin

</CsInstruments>

<CsScore>
f 0 240; extend csound performance for 4 minutes
e
</CsScore>

</CsoundSynthesizer>

Sometimes designing our envelope shape in a function table can provide us with shapes that
are not possible using Csound's envelope generating opcodes. In this case the envelope can be
read from the function table using an oscillator and if the oscillator is given a frequency of 1/p3
then it will read though the envelope just once across the duration of the note.

The following example generates an amplitude envelope which is the shape of the first half of
a sine wave.

   EXAMPLE 05A09.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine   ftgen    0, 0, 2^12, 10, 1; a sine wave
giEnv    ftgen    0, 0, 2^12, 9, 0.5, 1, 0; the envelope shape: a half sine

  instr 1
aEnv     poscil   1, 1/p3, giEnv; read the envelope once during the note
aSig     poscil   aEnv, 500, giSine; audio oscillator
         out      aSig; audio sent to output
  endin
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</CsInstruments>

<CsScore>
;7 notes, increasingly short
i 1 0 2
i 1 2 1
i 1 3 0.5
i 1 4 0.25
i 1 5 0.125
i 1 6 0.0625
i 1 7 0.03125
f 0 7.1
e
</CsScore>

</CsoundSynthesizer>

LPSHOLD, LOOPSEG AND LOOPTSEG - A CSOUND TB303 

The next example introduces three of Csound's looping opcodes, lpshold, loopseg and looptseg.

These opcodes generate envelopes which are looped at a rate corresponding to a defined
frequency. What they each do could also be accomplished using the 'envelope from table'
technique outlined in an earlier example but these opcodes provides the added convenience of
encapsulating all the required code in one line without the need of any function tables.
Furthermore all of the input arguments for these opcodes can be modulated at k-rate.

lpshold generates an envelope with in which each break point is held constant until a new
break point is encountered. The resulting envelope will contain horizontal line segments. In our
example this opcode will be used to generate a looping bassline in the fashion of a Roland
TB303. Because the duration of the entire envelope is wholly dependent upon the frequency
with which the envelope repeats - in fact it is the reciprocal – values for the durations of
individual envelope segments are defining times in seconds but represent proportions of the
entire envelope duration. The values given for all these segments do not need to add up to
any specific value as Csound rescales the proportionality according to the sum of all segment
durations. You might find it convenient to contrive to have them all add up to 1, or to 100 –
either is equally valid. The other looping envelope opcodes discussed here use the same
method for defining segment durations.

loopseg allows us to define a looping envelope with linear segements. In this example it is used
to define the amplitude envelope of each individual note. Take note that whereas the lpshold
envelope used to define the pitches of the melody repeats once per phrase the amplitude
envelope repeats once for each note of the melody therefore its frequency is 16 times that of
the melody envelope (there are 16 notes in our melodic phrase).

looptseg is an elaboration of loopseg in that is allows us to define the shape of each segment
individually whether that be convex, linear of concave. This aspect is defined using the 'type'
parameters. A 'type' value of 0 denotes a linear segement, a positive value denotes a convex
segment with higher positive values resulting in increasingly convex curves. Negative values
denote concave segments with increasing negative values resulting in increasingly concave
curves. In this example looptseg is used to define a filter envelope which, like the amplitude
envelope, repeats for every note. The addition of the 'type' parameter allows us to modulate
the sharpness of the decay of the filter envelope. This is a crucial element of the TB303
design. Note that looptseg is only available in Csound 5.12 or later.

Other crucial features of this instrument such as 'note on/off' and 'hold' for each step are also
implemented using lpshold.

A number of the input parameters of this example are modulated automatically using the
randomi opcodes in order to keep it interesting. It is suggested that these modulations could
be replaced by linkages to other controls such as QuteCsound widgets, FLTK widgets or MIDI
controllers. Suggested ranges for each of these values are given in the .csd.
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The filter used in this example is moogladder, an excellent implementation of the classic moog
filter. This filter is however rather computationally expensive, if you encounter problems
running this example in realtime you might like to swap it for the moogvcf opcode which is
provided as an alternative in a commented out line.

  EXAMPLE 05A10.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 4
nchnls = 1
0dbfs = 1

seed 0; seed random number generators from system clock

  instr 1; Bassline instrument
kTempo    =            90; tempo in beats per second
kCfBase   randomi      1,4,0.2; base filter cutoff frequency described in octaves above the current pitch. Values should be greater than 0 up to about 8
kCfEnv    randomi      0,4,0.2; filter envelope depth. Values probably in the range 0 - 4 although negative numbers could be used for special effects
kRes      randomi      0.5,0.9,0.2; filter resonance. Suggested range 0 - 0.99
kVol      =            0.5; volume control. Suggested range 0 - 1
kDecay    randomi      -10,10,0.2; decay shape of the filter. Suggested range -10 to +10. Zero=linear, negative=increasingly_concave, positive=increasingly_convex
kWaveform =            0;waveform of the audio oscillator. 0=sawtooth 2=square
kDist     randomi      0,0.8,0.1; amount of distortion. Suggested range 0 - 1
;read in phrase event widgets - use a macro to save typing
kPhFreq   =            kTempo/240; frequency with which to repeat the entire phrase
kBtFreq   =            (kTempo)/15; frequency of each 1/16th note
;                                         the first value of each pair defines the relative duration of that segment (just leave these as they are unless you want to create quirky rhythmic variations)
;                                         the second, the value itself. Note numbers (kNum) are defined as MIDI note numbers. Note On/Off (kOn) and hold (kHold) are defined as on/off switches, 1 or zero
;envelopes with held segments        note:1         2         3         4         5         6         7         8         9         10         11         12         13         14         15         16           DUMMY
kNum      lpshold      kPhFreq, 0,        0,40,     1,42,     1,50,     1,49,     1,60,     1,54,     1,39,     1,40,     1,46,     1,36,      1,40,      1,46,      1,50,      1,56,      1,44,      1,47,        1,45; need an extra 'dummy' value
kOn       lpshold      kPhFreq, 0,        0,1,      1,1,      1,1,      1,1,      1,1,      1,1,      1,0,      1,1,      1,1,      1,1,       1,1,       1,1,       1,1,       1,1,       1,0,       1,1,         1,1
kHold     lpshold      kPhFreq, 0,        0,0,      1,1,      1,1,      1,0,      1,0,      1,0,      1,0,      1,1,      1,0,      1,0,       1,1,       1,1,       1,1,       1,1,       1,0,       1,0,         1,0; need an extra 'dummy' value

kHold     vdel_k       kHold, 1/kBtFreq, 1; offset hold by 1/2 note duration
kNum      portk        kNum, (0.01*kHold); apply portamento to pitch changes - if note is not held, no portamento will be applied
kCps      =            cpsmidinn(kNum)
kOct      =            octcps(kCps)
; amplitude envelope
;                                         attack     sustain        decay      gap
kAmpEnv   loopseg      kBtFreq, 0,   0,   0,0.1,  1, 55/kTempo, 1,  0.1,0,  5/kTempo,0 ; sustain segment duration (and therefore attack and decay segment durations) are dependent upon tempo
kAmpEnv   =            (kHold=0?kAmpEnv:1); if hold is off, use amplitude envelope, otherwise use constant value
; filter envelope
kCfOct    looptseg      kBtFreq, 0, 0, kCfBase+kCfEnv+kOct, kDecay, 1, kCfBase+kOct
kCfOct    =             (kHold=0?kCfOct:kCfBase+kOct); if hold is off, use filter envelope, otherwise use steady state value
kCfOct    limit        kCfOct, 4, 14; limit the cutoff frequency to be within sensible limits
;kCfOct    port         kCfOct, 0.05; smooth the cutoff frequency envelope with portamento
kWavTrig  changed      kWaveform; generate a 'bang' if waveform selector changes
 if kWavTrig=1 then; if a 'bang' has been generated...
reinit REINIT_VCO; begin a reinitialization pass from the label 'REINIT_VCO'
 endif
REINIT_VCO:; a label
aSig      vco2         0.4, kCps, i(kWaveform)*2, 0.5; generate audio using VCO oscillator
rireturn; return from initialization pass to performance passes
aSig      moogladder   aSig, cpsoct(kCfOct), kRes; filter audio
;aSig      moogvcf   aSig, cpsoct(kCfOct), kRes ;use moogvcf is CPU is struggling with moogladder
; distortion
iSclLimit ftgentmp     0, 0, 1024, -16, 1, 1024,  -8, 0.01; rescaling curve for clip 'limit' parameter
iSclGain  ftgentmp     0, 0, 1024, -16, 1, 1024,   4, 10; rescaling curve for gain compensation
kLimit    table        kDist, iSclLimit, 1; read Limit value from rescaling curve
kGain     table        kDist, iSclGain, 1;  read Gain value from rescaling curve
kTrigDist changed      kLimit; if limit value changes generate a 'bang'
 if kTrigDist=1 then; if a 'bang' has been generated...
reinit REINIT_CLIP; begin a reinitialization pass from label 'REINIT_CLIP'
 endif
REINIT_CLIP:
aSig      clip         aSig, 0, i(kLimit); clip distort audio signal
rireturn
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aSig      =            aSig * kGain; compensate for gain loss from 'clip' processing
kOn       port         kOn, 0.006
          out          aSig * kAmpEnv * kVol * kOn; audio sent to output, apply amp. envelope, volume control and note On/Off status
  endin

</CsInstruments>

<CsScore>
i 1 0 3600
e
</CsScore>

</CsoundSynthesizer>

27. PANNING AND SPATIALIZATION

SIMPLE STEREO PANNING 

Csound provides a large number of opcodes designed to assist in the distribution of sound
amongst two or more speakers. These range from opcodes that merely balance a sound
between two channel to ones that include algorithms to simulate the doppler shift that occurs
when sound moves, algorithms that simulate the filtering and inter-aural delay that occurs as
sound reaches both our ears and algorithms that simulate distance in an acoustic space.

First we will look at some 'first principles' methods of panning a sound between two speakers.

The simplest method that is typically encountered is to multiply one channel of audio (aSig) by
a panning variable (kPan) and to multiply the other side by 1 minus the same variable like this:

aSigL  =  aSig * kPan
aSigR  =  aSig * (1 – kPan)
          outs aSigL, aSigR

where kPan is within the range zero to 1. If kPan is 1 all the signal will be in the left channel, if
it is zero all the signal will be in the right channel and if it is 0.5 there will be signal of equal
amplitide in both the left and the right channels. This way the signal can be continuously
panned between the left and right channels.

The problem with this method is that the overall power drops as the sound is panned to the
middle.

One possible solution to this problem is to take the square root of the panning variable for
each channel before multiplying it to the audio signal like this:

aSigL  =     aSig * sqrt(kPan)
aSigR  =     aSig * sqrt((1 – kPan))
       outs  aSigL, aSigR

By doing this, the straight line function of the input panning variable becomes a convex curve
so that less power is lost as the sound is panned centrally.

Using 90º sections of a sine wave for the mapping produces a more convex curve and a less
immediate drop in power as the sound is panned away from the extremities. This can be
implemented using the code shown below.

aSigL  =     aSig * sin(kPan*$M_PI_2)
aSigR  =     aSig * cos(kPan*$M_PI_2)
       outs  aSigL, aSigR

(Note that '$M_PI_2' is one of Csound's built in macros and is equivalent to pi/2.)

A fourth method, devised by Michael Gogins, places the point of maximum power for each
channel slightly before the panning variable reaches its extremity. The result of this is that
when the sound is panned dynamically it appears to move beyond the point of the speaker it
is addressing. This method is an elaboration of the previous one and makes use of a different
90 section of a sine wave. It is implemented using the following code:
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aSigL  =     aSig * sin((kPan + 0.5) * $M_PI_2)
aSigR  =     aSig * cos((kPan + 0.5) * $M_PI_2)
       outs  aSigL, aSigR

The following example demonstrates all three methods one after the other for comparison.
Panning movement is controlled by a slow moving LFO. The input sound is filtered pink noise.

   EXAMPLE 05B01.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 10
nchnls = 2
0dbfs = 1

  instr 1
imethod  =         p4; read panning method variable from score (p4)
;generate a source sound================
a1       pinkish   0.3; pink noise
a1       reson     a1, 500, 30, 1; bandpass filtered
aPan     lfo       0.5, 1, 1; panning controlled by an lfo
aPan     =         aPan + 0.5; offset shifted +0.5
;=======================================

 if imethod=1 then
;method 1===============================
aPanL    =         aPan
aPanR    =         1 - aPan
;=======================================
 endif

 if imethod=2 then
;method 2===============================
aPanL    =       sqrt(aPan)
aPanR    =       sqrt(1 - aPan)
;=======================================
 endif

 if imethod=3 then
;method 3===============================
aPanL    =       sin(aPan*$M_PI_2)
aPanR    =       cos(aPan*$M_PI_2)
;=======================================
 endif

 if imethod=4 then
;method 3===============================
aPanL   =  sin ((aPan + 0.5) * $M_PI_2)
aPanR   =  cos ((aPan + 0.5) * $M_PI_2)
;=======================================
 endif

         outs    a1*aPanL, a1*aPanR; audio sent to outputs
  endin

</CsInstruments>

<CsScore>
;4 notes one after the other to demonstrate 4 different methods of panning
;p1 p2  p3   p4(method)
i 1 0   4.5  1
i 1 5   4.5  2
i 1 10  4.5  3
i 1 15  4.5  4
e
</CsScore>
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</CsoundSynthesizer>

An opcode called pan2 exist which makes panning slightly easier for us to implement simple
panning employing various methods. The following example demonstrates the three methods
that this opcode offers one after the other. The first is the 'equal power' method, the second
'square root' and the third is simple linear. The Csound Manual alludes to fourth method but
this does not seem to function currently.

   EXAMPLE 05B02.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 10
nchnls = 2
0dbfs = 1

  instr 1
imethod        =         p4; read panning method variable from score (p4)
;generate a source sound====================
aSig           pinkish   0.5; pink noise
aSig           reson     aSig, 500, 30, 1; bandpass filtered
aPan           lfo       0.5, 1, 1; panning controlled by an lfo
aPan           =         aPan + 0.5; offset shifted +0.5
;===========================================

aSigL, aSigR   pan2      aSig, aPan, imethod; create stereo panned output

               outs      aSigL, aSigR; audio sent to outputs
  endin

</CsInstruments>

<CsScore>
;3 notes one after the other to demonstrate 3 methods used by pan2
;p1 p2  p3   p4
i 1  0  4.5   0; equal power (harmonic)
i 1  5  4.5   1; square root method
i 1 10  4.5   2; linear
e
</CsScore>

</CsoundSynthesizer> 

3-D BINAURAL ENCODING 

3-D binaural simulation is availalable in a number of opcodes that make use of spectral data
files that provide information about the filtering and inter-aural delay effects of the human
head. The older one of these is hrtfer. The newer ones are hrtfmove, hrtfmove2 and hrftstat.
The main parameters for controlfor the opcodes are azimuth (where the sound source in the
horizontal plane relative to the direction we are facing) and elevation (the angle by which the
sound deviates from this horizontal plane, either above or below). Both these parameters are
defined in degrees. 'Binaural' infers that the stereo output of this opcode should be listened to
using headphones so that no mixing in the air of the two channels occurs before they reach
our ears.

The following example take a monophonic source sound of noise impulses and processes it
using the hrtfmove2 opcode. First of all the sound is rotated around us in the horizontal plane
then it is raised above our head then dropped below us and finally returned to be straight and
level in front of us.For this example to work you will need to download the files hrtf-44100-
left.dat and hrtf-44100-right.dat and place them in your SADIR (see setting environment
variables) or in the same directory as the .csd. 

157

http://www.csounds.com/manual/html/pan2.html
http://www.csounds.com/manual/html/index.html
http://www.csounds.com/manual/html/hrtfer.html
http://www.csounds.com/manual/html/hrtfmove.html
http://www.csounds.com/manual/html/hrtfmove2.html
http://www.csounds.com/manual/html/hrtfstat.html
http://csound.cvs.sourceforge.net/csound/csound5/samples/
http://en.flossmanuals.net/bin/view/Csound/hrtf-44100-right.dat
http://www.csounds.com/manual/html/CommandEnvironment.html


   EXAMPLE 05B03.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 10
nchnls = 2
0dbfs = 1

giSine         ftgen       0, 0, 2^12, 10, 1
giLFOShape     ftgen       0, 0, 131072, 19, 0.5, 1, 180, 1    ;U-SHAPE PARABOLA

  instr 1
; create an audio signal (noise impulses)
krate          oscil       30,0.2,giLFOShape; rate of impulses
kEnv           loopseg     krate+3,0, 0,1, 0.1,0, 0.9,0; amplitude envelope: a repeating pulse
aSig           pinkish     kEnv; pink noise. pulse envelope applied

; apply binaural 3d processing
kAz            linseg      0, 8, 360; break point envelope defines azimuth (one complete circle)
kElev          linseg      0, 8,   0, 4, 90, 8, -40, 4, 0; break point envelope defines elevation (held horizontal for 8 seconds then up then down then back to horizontal
aLeft, aRight  hrtfmove2   aSig, kAz, kElev, "hrtf-44100-left.dat","hrtf-44100-right.dat"; apply hrtfmove2 opcode to audio source - create stereo ouput
               outs        aLeft, aRight; audio sent to outputs
endin

</CsInstruments>

<CsScore>
i 1 0 60; instr 1 plays a note for 60 seconds
e
</CsScore>

</CsoundSynthesizer> 

 

28. FILTERS
Audio filters can range from devices that subtly shape the tonal characteristics of a sound to
ones that dramatically remove whole portions of a sound spectrum to create new sounds.
Csound includes several versions of each of the commonest types of filters and some more
esoteric ones also. The full list of Csound's standard filters can be found here. A list of the
more specialized filters can be found here. 

LOWPASS FILTERS
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The first type of filter encountered is normally the lowpass filter. As its name suggests it
allows lower frequencies to pass through unimpeded and therefore filters higher frequencies.
The crossover  frequency is normally referred to as the 'cutoff' frequency. Filters of this type
do not really cut frequencies off at the cutoff point like a brick wall but instead attenuate
increasingly according to a cutoff slope. Different filters offer different steepnesses of cutoff
slopes. Another aspect of a lowpass filter that we may be concerned with is a ripple that
might emerge at the cutoff point. If this is exaggerated intentionally it is referred to as
resonance or 'Q'. 

In the following example, three lowpass filters filters are demonstrated: tone, butlp and
moogladder. tone offers a quite gentle cutoff slope and therefore is better suited to subtle
spectral enhancement tasks. butlp is based on the Butterworth filter design and produces a
much sharper cutoff slope at the expense of a slightly greater CPU overhead. moogladder is an
interpretation of an analogue filter found in a moog synthesizer – it includes a resonance
control. 

In the example a sawtooth waveform is played in turn through each filter. Each time the
cutoff frequency is modulated using an envelope, starting high and descending low so that
more and more of the spectral content of the sound is removed as the note progresses. A
sawtooth waveform has been chosen as it contains strong higher frequencies and therefore
demonstrates the filters characteristics well; a sine wave would be a poor choice of source
sound on account of its lack of spectral richness. 

   EXAMPLE 05C01.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

  instr 1
        prints       "tone%n"; indicate filter type in console
aSig    vco2         0.5, 150; input signal is a sawtooth waveform
kcf     expon        10000,p3,20; descending cutoff frequency
aSig    tone         aSig, kcf; filter audio signal
        out          aSig; filtered audio sent to output
  endin

  instr 2
        prints       "butlp%n"; indicate filter type in console
aSig    vco2         0.5, 150; input signal is a sawtooth waveform
kcf     expon        10000,p3,20; descending cutoff frequency
aSig    butlp        aSig, kcf; filter audio signal
        out          aSig; filtered audio sent to output
  endin

  instr 3
        prints       "moogladder%n"; indicate filter type in console
aSig    vco2         0.5, 150; input signal is a sawtooth waveform
kcf     expon        10000,p3,20; descending cutoff frequency
aSig    moogladder   aSig, kcf, 0.9; filter audio signal
        out          aSig; filtered audio sent to output
  endin

</CsInstruments>
<CsScore>
; 3 notes to demonstrate each filter in turn
i 1 0  3; tone
i 2 4  3; butlp
i 3 8  3; moogladder
e
</CsScore>
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</CsoundSynthesizer>

HIGHPASS FILTERS

A highpass filter is the converse of a lowpass filter; frequencies higher than the cutoff point
are allowed to pass whilst those lower are attenuated. atone and buthp are the analogues of
tone and butlp. Resonant highpass filters are harder to find but Csound has one in bqrez. bqrez
is actually a multi-mode filter and could also be used as a resonant lowpass filter amongst
other things. We can choose which mode we want by setting one of its input arguments
appropriately. Resonant highpass is mode 1. In this example a sawtooth waveform is again
played through each of the filters in turn but this time the cutoff frequency moves from low
to high. Spectral content is increasingly removed but from the opposite spectral direction. 

   EXAMPLE 05C02.csd 

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

  instr 1
        prints       "atone%n"; indicate filter type in console
aSig    vco2         0.2, 150; input signal is a sawtooth waveform
kcf     expon        20, p3, 20000; define envelope for cutoff frequency
aSig    atone        aSig, kcf; filter audio signal
        out          aSig; filtered audio sent to output
  endin

  instr 2
        prints       "buthp%n"; indicate filter type in console
aSig    vco2         0.2, 150; input signal is a sawtooth waveform
kcf     expon        20, p3, 20000; define envelope for cutoff frequency
aSig    buthp        aSig, kcf; filter audio signal
        out          aSig; filtered audio sent to output
  endin

  instr 3
        prints       "bqrez(mode:1)%n"; indicate filter type in console
aSig    vco2         0.03, 150; input signal is a sawtooth waveform
kcf     expon        20, p3, 20000; define envelope for cutoff frequency
aSig    bqrez        aSig, kcf, 30, 1; filter audio signal
        out          aSig; filtered audio sent to output
  endin

</CsInstruments>

<CsScore>
; 3 notes to demonstrate each filter in turn
i 1 0  3; atone
i 2 5  3; buthp
i 3 10 3; bqrez(mode 1)
e
</CsScore>

</CsoundSynthesizer>

BANDPASS FILTERS
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A bandpass filter allows just a narrow band of sound to pass through unimpeded and as such
is a little bit like a combination of a lowpass and highpass filter connected in series. We
normally expect at least one additional parameter of control: control over the width of the
band of frequencies allowed to pass through, or 'bandwidth'. 

In the next example cutoff frequency and bandwidth are demonstrated independently for two
different bandpass filters offered by Csound. First of all a sawtooth waveform is passed
through a reson filter and a butbp filter in turn while the cutoff frequency rises (bandwidth
remains static). Then pink noise is passed through reson and butbp in turn again but this time
the cutoff frequency remains static at 5000Hz while the bandwidth expands from 8 to
5000Hz. In the latter two notes it will be heard how the resultant sound moves from almost a
pure sine tone to unpitched noise. butbp is obviously the Butterworth based bandpass filter.
reson can produce dramatic variations in amplitude depending on the bandwidth value and
therefore some balancing of amplitude in the output signal may be necessary if out of range
samples and distortion are to be avoided. Fortunately the opcode itself includes two modes of
amplitude balancing built in but by default neither of these methods are active and in this case
the use of the balance opcode may be required. Mode 1 seems to work well with spectrally
sparse sounds like harmonic tones while mode 2 works well with spectrally dense sounds such
as white or pink noise. 

 

   EXAMPLE 05C03.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

  instr 1
        prints       "reson%n"; indicate filter type in console
aSig    vco2         0.5, 150; input signal is a sawtooth waveform
kcf     expon        20,p3,10000; rising cutoff frequency
aSig    reson        aSig, kcf, kcf*0.1, 1; filter audio signal
        out          aSig; send filtered audio to output
  endin

  instr 2
        prints       "butbp%n"; indicate filter type in console
aSig    vco2         0.5, 150; input signal is a sawtooth waveform
kcf     expon        20,p3,10000; rising cutoff frequency
aSig    butbp        aSig, kcf, kcf*0.1; filter audio signal
        out          aSig; send filtered audio to output
  endin

  instr 3
        prints       "reson%n"; indicate filter type in console
aSig    pinkish      0.5; input signal is pinkish
kbw     expon        10000,p3,8; contracting bandwidth
aSig    reson        aSig, 5000, kbw, 2; filter audio signal
        out          aSig; send filtered audio to output
  endin

  instr 4
        prints       "butbp%n"; indicate filter type in console
aSig    pinkish      0.5; input signal is pinkish
kbw     expon        10000,p3,8; contracting bandwidth
aSig    butbp        aSig, 5000, kbw; filter audio signal
        out          aSig; send filtered audio to output
  endin

</CsInstruments>
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<CsScore>
i 1 0  3; reson - cutoff frequency rising
i 2 4  3; butbp - cutoff frequency rising
i 3 8  6; reson - bandwidth increasing
i 4 15 6; butbp - bandwidth increasing
e
</CsScore>

</CsoundSynthesizer>

COMB FILTERING

A comb filter is a special type of filter that creates a harmonically related stack of resonance
peaks on an input sound file. A comb filter is really just a very short delay effect with
feedback. Typically the delay times involved would be less than 0.05 seconds. Many of the
comb filters documented in the Csound Manual term this delay time, 'loop time'. The
fundamental of the harmonic stack of resonances produced will be 1/loop time. Loop time and
the frequencies of the resonance peaks will be inversely proportionsl – as loop time get
smaller, the frequencies rise. For a loop time of 0.02 seconds the fundamental resonance peak
will be 50Hz, the next peak 100Hz, the next 150Hz and so on. Feedback is normally
implemented as reverb time – the time taken for amplitude to drop to 1/1000 of its original
level or by 60dB. This use of reverb time as opposed to feedback alludes to the use of comb
filters in the design of reverb algorithms. Negative reverb times will result in only the odd
numbered partials of the harmonic stack being present. 

The following example demonstrates a comb filter using the vcomb opcode. This opcode allows
for performance time modulation of the loop time parameter. For the first 5 seconds of the
demonstration the reverb time increases from 0.1 seconds to 2 while the loop time remains
constant at 0.005 seconds. Then the loop time decreases to 0.0005 seconds over 6 seconds
(the resonant peaks rise in frequency), finally over the course of 10 seconds the loop time
rises to 0.1 seconds (the resonant peaks fall in frequency). A repeating noise impulse is used as
a source sound to best demonstrate the qualities of a comb filter. 

 

   EXAMPLE 05C04.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

  instr 1
; generate an input audio signal (noise impulses)
kEnv         loopseg   1,0, 0,1,0.005,1,0.0001,0,0.9949,0; repeating amplitude envelope
aSig         pinkish   kEnv*0.6; pink noise signal - repeating amplitude envelope applied

; apply comb filter to input signal
krvt    linseg  0.1, 5, 2; reverb time envelope for comb filter
alpt    expseg  0.005, 5, 0.005, 6, 0.0005, 10, 0.1, 1, 0.1; loop time envelope for comb filter - using an a-rate variable here will produce better results
aRes    vcomb   aSig, krvt, alpt, 0.1; comb filter
        out     aRes; comb filtered audio sent to output
  endin

</CsInstruments>

<CsScore>
i 1 0 25
e
</CsScore>
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</CsoundSynthesizer>

29. DELAY AND FEEDBACK
A delay in DSP is a special kind of buffer sometimes called a circular buffer. The length of this
buffer is finite and must be declared upon initialization as it is stored in RAM. One way to think
of the circular buffer is that as new items are added at the beginning of the buffer the oldest
items at the end of the buffer are being 'shoved' out.

Besides their typical application for creating echo effects, delays can also be used to
implement chorus, flanging, pitch shifting and filtering effects.

Csound offers many opcodes for implementing delays. Some of these offer varying degrees of
quality - often balanced against varying degrees of efficiency whilst some are for quite
specialized purposes.

To begin with this section is going to focus upon a pair of opcodes, delayr and delayw. Whilst
not the most efficient to use in terms of the number of lines of code required, the use of
delayr and delayw helps to clearly illustrate how a delay buffer works. Besides this, delayr and
delayw actually offer a lot more flexibility and versatility than many of the other delay
opcodes.

When using delayr and delayw the establishement of a delay buffer is broken down into two
steps: reading from the end of the buffer using delayr (and by doing this defining the length or
duration of the buffer) and then writing into the beginning of the buffer using delayw.

The code employed might look like this:

aSigOut  delayr  1
         delayw  aSigIn

where 'aSigIn' is the input signal written into the beginning of the buffer and 'aSigOut' is the
output signal read from the end of the buffer. The fact that we declare reading from the
buffer before writing to it is sometimes initially confusing but, as alluded to before, one reason
this is done is to declare the length of the buffer. The buffer length in this case is 1 second and
this will be the apparent time delay between the input audio signal and audio read from the
end of the buffer.

The following example implements the delay described above in a .csd file. An input sound of
sparse sine tone pulses is created. This is written into the delay buffer from which a new
audio signal is created by read from the end of this buffer. The input signal (sometimes
referred to as the dry signal) and the delay output signal (sometimes referred to as the wet
signal) are mixed and set to the output. The delayed signal is attenuated with respect to the
input signal.

   EXAMPLE 05D01.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine   ftgen   0, 0, 2^12, 10, 1; a sine wave

  instr 1
; create an input signal
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kEnv    loopseg  0.5, 0, 0, 0,0.0005, 1 , 0.1, 0, 1.9, 0
kCps    randomh  400, 600, 0.5
aEnv    interp   kEnv
aSig    poscil   aEnv, kCps, giSine

; create a delay buffer
aBufOut delayr   0.3
        delayw   aSig

;send audio to output (input and output to the buffer are mixed)
        out      aSig + (aBufOut*0.2)
  endin

</CsInstruments>

<CsScore>
i 1 0 25
e
</CsScore>

</CsoundSynthesizer>

If we mix some of the delayed signal into the input signal that is written into the buffer then
we will delay some of the delayed signal thus creating more than a single echo from each input
sound. Typically the sound that is fed back into the delay input is attenuated so that sound
cycle through the buffer indefinitely but instead will eventually die away. We can attenuate the
feedback signal by multiplying it by a value in the range zero to 1. The rapidity with which
echoes will die away is defined by how close the zero this value is. The following example
implements a simple delay with feedback.

   EXAMPLE 05D02.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine   ftgen   0, 0, 2^12, 10, 1; a sine wave

  instr 1
; create an input signal
kEnv    loopseg  0.5, 0, 0, 0,0.0005, 1 , 0.1, 0, 1.9, 0; repeating envelope
kCps    randomh  400, 600, 0.5; 'held' random values
aEnv    interp   kEnv; interpolate kEnv to create a-rate version
aSig    poscil   aEnv, kCps, giSine; generate audio

; create a delay buffer
iFdback =        0.5; this value defines the amount of delayed signal fed back into the delay buffer
aBufOut delayr   0.3; read audio from end of 0.3s buffer
        delayw   aSig + (aBufOut*iFdback); write audio into buffer (mix in feedback signal)

; send audio to ther output (mix the input signal with the delayed signal)
        out      aSig + (aBufOut*0.2)
  endin

</CsInstruments>

<CsScore>
i 1 0 25
e
</CsScore>

</CsoundSynthesizer>
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Constructing a delay effect in this way is rather limited as the delay time is static. If we want
to change the delay time we need to reinitialise the code that implements the delay buffer. A
more flexible approach is to read audio from within the buffer using one of Csounds opcodes
for 'tapping' a delay buffer, deltap, deltapi, deltap3 or deltapx. The opcodes are listed in order
of increasing quality which also reflects an increase in computational expense. In the next
example a delay tap is inserted within the delay buffer (between the delayr and the delayw)
opcodes. As our delay time is modulating quite quickly we will use deltapi which uses linear
interpolation as it rebuilds the audio signal whenever the delay time is moving. Note that this
time we are not using the audio output from the delayr opcode as we are using the audio
output from deltapi instead. The delay time used by deltapi is created by randomi which
creates a random function of straight line segments. A-rate is used for the delay time to
improve the accuracy of its values, use of k-rate would result in a noticeably poorer sound
quality. You will notice that as well as modulating the time gap between echoes, this example
also modulates the pitch of the echoes – if the delay tap is static within the buffer there
would be no change in pitch, if is moving towards the beginning of the buffer then pitch will rise
and if it is moving towards the end of the buffer then pitch will drop. This side effect has led
to digital delay buffers being used in the design of many pitch shifting effects.

The user must take care that the delay time demanded from the delay tap does not exceed
the length of the buffer as defined in the delayr line. If it does it will attempt to read data
beyond the end of the RAM buffer – the results of this are unpredictable. The user must also
take care that the delay time does not go below zero, in fact the minumum delay time that
will be permissible will be the duration of one k cycle (ksmps/sr).

   EXAMPLE 05D03.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine   ftgen   0, 0, 2^12, 10, 1; a sine wave

  instr 1
; create an input signal
kEnv          loopseg  0.5, 0, 0, 0,0.0005, 1 , 0.1, 0, 1.9, 0
aEnv          interp   kEnv
aSig          poscil   aEnv, 500, giSine

aDelayTime    randomi  0.05, 0.2, 1; modulating delay time
; create a delay buffer
aBufOut       delayr   0.2; read audio from end of 0.3s buffer
aTap          deltapi  aDelayTime; 'tap' the delay buffer somewhere along its length
              delayw   aSig + (aTap*0.9); write audio into buffer (mix in feedback signal)

; send audio to ther output (mix the input signal with the delayed signal)
              out      aSig + ((aTap)*0.4)
  endin

</CsInstruments>

<CsScore>
i 1 0 30
e
</CsScore>

</CsoundSynthesizer
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We are not limited to inserting only a single delay tap within the buffer. If we add further taps
we create what is known as a multi-tap delay. The following example implements a multi-tap
delay with three delay taps. Note that only the final delay (the one closest to the end of the
buffer) is fed back into the input in order to create feedback but all three taps are mixed and
sent to the output. There is no reason not to experiment with arrangements other than this
but this one is most typical.

   EXAMPLE 05D04.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine   ftgen   0, 0, 2^12, 10, 1; a sine wave

  instr 1
; create an input signal
kEnv    loopseg  0.5, 0, 0, 0,0.0005, 1 , 0.1, 0, 1.9, 0; repeating envelope
kCps    randomh  400, 1000, 0.5; 'held' random values
aEnv    interp   kEnv; interpolate kEnv to create a-rate version
aSig    poscil   aEnv, kCps, giSine; generate audio

; create a delay buffer
aBufOut delayr   0.5; read audio from end of 0.3s buffer
aTap1   deltap   0.1373; delay tap 1
aTap2   deltap   0.2197; delay tap 2
aTap3   deltap   0.4139; delay tap 3
        delayw   aSig + (aTap3*0.4); write audio into buffer (mix in feedback signal)

; send audio to ther output (mix the input signal with the delayed signals)
        out      aSig + ((aTap1+aTap2+aTap3)*0.4)
  endin

</CsInstruments>

<CsScore>
i 1 0 25
e
</CsScore>

</CsoundSynthesizer>

As mentioned at the top of this section many familiar effects are actually created from using
delay buffers in various ways. We will briefly look at one of these effects: the flanger. Flanging
derives from a phenemenon which occurs when the delay time becomes so short that we
begin to no longer perceive individual echoes but instead a stack of harmonically related
resonances are perceived the frequencies of which are in simple ratio with 1/delay_time. This
effect is known as a comb filter. When the delay time is slowly modulated and the resonances
shifting up and down in sympathy the effect becomes known as a flanger. In this example the
delay time of the flanger is modulated using an LFO that employs a U-shaped parabola as its
waveform as this seems to provide the smoothest comb filter modulations.

   EXAMPLE 05D05.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy
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sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine   ftgen   0, 0, 2^12, 10, 1; a sine wave
giLFOShape  ftgen   0, 0, 2^12, 19, 0.5, 1, 180, 1; u-shaped parabola

  instr 1
aSig    pinkish  0.1; pink noise

aMod    poscil   0.005, 0.05, giLFOShape    ;oscillator that makes use of the positive domain only u-shape parabola with function table number gilfoshape

iOffset =        ksmps/sr; minimum delay time
iFdback =        0.9; amount of signal that will be fed back into the input
; create a delay buffer
aBufOut delayr   0.5; read audio from end of 0.5 buffer
aTap    deltap3  aMod + iOffset; tap audio from within delay buffer with a modulating delay time
        delayw   aSig + (aTap*iFdback); write audio into the delay buffer

; send audio to the output (mix the input signal with the delayed signal)
        out      aSig + aTap
  endin

</CsInstruments>

<CsScore>
i 1 0 25
e
</CsScore>

</CsoundSynthesizer>

30. REVERBERATION
Reverb is the effect a room or space has on a sound where the sound we perceive is a
mixture of the direct sound and the dense overlapping echoes of that sound reflecting off walls
and objects within the space.

Csound's earliest reverb opcodes are reverb and nreverb. By today's standards these sound
rather crude and as a consequence modern Csound users tend to prefer the more recent
opcodes freeverb and reverbsc.

The typical way to use a reverb is to run as a effect throughout the entire Csound
performance and to send it audio from other instruments to which it adds reverb. This is
more efficient than initiating a new reverb effect for every note that is played. This
arrangement is a reflection of how a reverb effect would be used with a mixing desk in a
conventional studio. There are several methods of sending audio from sound producing
instruments to the reverb instrument, three of which will be introduced in the coming
examples

The first method uses Csound's global variables so that an audio variable created in one
instrument and be read in another instrument. There are several points to highlight here. First
the global audio variable that is use to send audio the reverb instrument is initialized to zero
(silence) in the header area of the orchestra.

This is done so that if no sound generating instruments are playing at the beginning of the
performance this variable still exists and has a value. An error would result otherwise and
Csound would not run. When audio is written into this variable in the sound generating
instrument it is added to the current value of the global variable.
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This is done in order to permit polyphony and so that the state of this variable created by
other sound producing instruments is not overwritten. Finally it is important that the global
variable is cleared (assigned a value of zero) when it is finished with at the end of the reverb
instrument. If this were not done then the variable would quickly 'explode' (get astronomically
high) as all previous instruments are merely adding values to it rather that redeclaring it.
Clearing could be done simply by setting to zero but the clear opcode might prove useful in the
future as it provides us with the opportunity to clear many variables simultaneously.

This example uses the freeverb opcode and is based on a plugin of the same name. Freeverb
has a smooth reverberant tail and is perhaps similar in sound to a plate reverb. It provides us
with two main parameters of control: 'room size' which is essentially a control of the amount
of internal feedback and therefore reverb time, and 'high frequency damping' which controls
the amount of attenuation of high frequencies. Both there parameters should be set within
the range 0 to 1. For room size a value of zero results in a very short reverb and a value of 1
results in a very long reverb. For high frequency damping a value of zero provides minimum
damping of higher frequencies giving the impression of a space with hard walls, a value of 1
provides maximum high frequency damping thereby giving the impression of a space with soft
surfaces such as thick carpets and heavy curtains.

   EXAMPLE 05E01.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr =  44100
ksmps = 32
nchnls = 2
0dbfs = 1

gaRvbSend    init      0; global audio variable initialized to zero

  instr 1 ;sound generating instrument (sparse noise bursts)
kEnv         loopseg   0.5,0, 0,1,0.003,1,0.0001,0,0.9969,0; amplitude envelope: a repeating pulse
aSig         pinkish   kEnv; pink noise. pulse envelope applied
             outs      aSig, aSig; send audio to outputs
iRvbSendAmt  =         0.4; reverb send amount (try range 0 - 1)
gaRvbSend    =         gaRvbSend + (aSig * iRvbSendAmt); add a proportion of the audio from this instrument to the global reverb send variable
  endin

  instr 5; reverb - always on
kroomsize    init      0.85; room size (range zero to 1)
kHFDamp      init      0.5; high frequency damping (range zero to 1)
aRvbL,aRvbR  freeverb  gaRvbSend, gaRvbSend,kroomsize,kHFDamp; create reverberated version of input signal (note stereo input and output)
             outs      aRvbL, aRvbR; send audio to outputs
             clear     gaRvbSend
  endin

</CsInstruments>

<CsScore>
i 1 0 300; noise pulses (input sound)
i 5 0 300; start reverb
e
</CsScore>

</CsoundSynthesizer>
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The next example uses Csound's zak patching system to send audio from one instrument to
another. The zak system is a little like a patch bay you might find in a recording studio. Zak
channels can be a, k or i-rate. These channels will be addressed using numbers so it will be
important to keep track of what numbered channel does what. Our example will be very
simple in that we will only be using one zak audio channel. Before using any of the zak opcodes
for reading and writing data we must initialize zak storage space. This is done in the orchestra
header area using the zakinit opcode. This opcode initialize both a and k rate channel; we must
intialize at least one of each even if we don't need it.

zakinit    1, 1

The audio from the sound generating instrument is mixed into a zak audio channel:

zawm    aSig * iRvbSendAmt, 1

This channel is read from in the reverb instrument:

aInSig  zar   1

Because audio is begin mixed into our zak channel but it is never redefined it needs to be
cleared after we have finished with it. This is accomplished at the bottom of the reverb
instrument.

zacl      0, 1

This example uses the reverbsc opcode. It too has a stereo input and output. The arguments
that define its character are feedback level and cutoff frequency. Feedback level should be in
the range zero to 1 and controls reverb time. Cutoff frequency should be within the range of
human hearing (20Hz -20kHz) and it controls the cutoff frequencies of low pass filters within
the algorithm.

   EXAMPLE 05E02.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr =  44100
ksmps = 32
nchnls = 2
0dbfs = 1

             zakinit   1, 1; initialize zak space (one a-rate and one k-rate variable. We will only be using the a-rate variable)

  instr 1 ;sound generating instrument (sparse noise bursts)
kEnv         loopseg   0.5,0, 0,1,0.003,1,0.0001,0,0.9969,0; amplitude envelope: a repeating pulse
aSig         pinkish   kEnv; pink noise. pulse envelope applied
             outs      aSig, aSig; send audio to outputs
iRvbSendAmt  =         0.4; reverb send amount (try range 0 - 1)
             zawm      aSig*iRvbSendAmt, 1; write to zak audio channel 1 with mixing
  endin

  instr 5; reverb - always on
aInSig       zar       1; read first zak audio channel
kFblvl       init      0.85; feedback level - i.e. reverb time
kFco         init      7000; cutoff frequency of a filter within the feedback loop
aRvbL,aRvbR  reverbsc  aInSig, aInSig, kFblvl, kFco; create reverberated version of input signal (note stereo input and output)
             outs      aRvbL, aRvbR; send audio to outputs
             zacl      0, 1; clear zak audio channels
  endin

</CsInstruments>

<CsScore>
i 1 0 10; noise pulses (input sound)
i 5 0 12; start reverb
e
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</CsScore>

</CsoundSynthesizer>

 

reverbsc contains a mechanism to modulate delay times internally which has the effect of
harmonically blurring sounds the longer they are reverberated. This contrasts with freeverb's
rather static reverberant tail. On the other hand screverb's tail is not as smooth as that of
freeverb, inidividual echoes are sometimes discernible so it may not be as well suited to the
reverberation of percussive sounds. Also be aware that as well as reducing the reverb time,
the feedback level parameter reduces the overall amplitude of the effect to the point where a
setting of 1 will result in silence from the opcode.

A more recent option for sending sound from instrument to instrument in Csound is to use the
chn... opcodes. These opcodes can also be used to allow Csound to interface with external
programs using the software bus and the Csound API.

   EXAMPLE 05E03.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr =  44100 
ksmps = 32
nchnls = 2
0dbfs = 1

  instr 1 ;sound generating instrument (sparse noise bursts)
kEnv         loopseg   0.5,0, 0,1,0.003,1,0.0001,0,0.9969,0; amplitude envelope: a repeating pulse
aSig         pinkish   kEnv; pink noise. pulse envelope applied
             outs      aSig, aSig; send audio to outputs
iRvbSendAmt  =         0.4; reverb send amount (try range 0 - 1)
             chnmix    aSig*iRvbSendAmt, "ReverbSend" ;write audio into the named software channel
  endin

  instr 5; reverb - always on
aInSig       chnget    "ReverbSend"; read audio from the named software channel 
kTime        init      4; reverb time
kHDif        init      0.5; 'high frequency diffusion' - control of a filter within the feedback loop 0=no damping 1=maximum damping
aRvb         nreverb   aInSig, kTime, kHDif; create reverberated version of input signal (note stereo input and output)
             outs         aRvb, aRvb; send audio to outputs
             chnclear  "ReverbSend"; clear the named channel
  endin

</CsInstruments>

<CsScore>
i 1 0 10; noise pulses (input sound)
i 5 0 12; start reverb
e
</CsScore>

</CsoundSynthesizer>

 

THE SCHROEDER REVERB DESIGN
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Many reverb algorithms including Csound's freeverb, reverb and reverbn are based on what is
known as the Schroeder reverb design. This was a design proposed in the early 1960s by the
physicist Manfred Schroeder. In the Schroeder reverb a signal is passed into four parallel comb
filters the outputs of which are summed and then passed through two allpass filters as shown
in the diagram below. Essentially the comb filters provide the body of the reverb effect and
the allpass filters smear their resultant sound to reduce ringing artefacts the comb filters
might produce. More modern designs might extent the number of filters used in an attempt to
create smoother results. The freeverb opcode employs eight parallel comb filters followed by
four series allpass filters on each channel. The two main indicators of poor implementations of
the Schoeder reverb are individual echoes being excessively apparent and ringing artefacts.
The results produced by the freeverb opcode are very smooth but a criticism might be that it
is lacking in character and is more suggestive of a plate reverb than of a real room.

The next example implements the basic Schroeder reverb with four parallel comb filters
followed by three series allpass filters. This also proves a useful exercise in routing audio
signals within Csound. Perhaps the most crucial element of the Schroeder reverb is the choice
of loop times for the comb and allpass filters – careful choices here should obviate the
undesirable artefacts mentioned in the previous paragraph. If loop times are too long individual
echoes will become apparent, if they are too short the characteristic ringing of comb filters will
become apparent. If loop times between filters differ too much the outputs from the various
filters will not fuse. It is also important that the loop times are prime numbers so that echoes
between different filters do not reinforce each other. It may also be necessary to adjust loop
times when implementing very short reverbs or very long reverbs. The duration of the reverb
is effectively determined by the reverb times for the comb filters. There is ceratinly scope for
experimentation with the design of this example and exploration of settings other than the
ones suggested here. 

This example consists of five instruments. The fifth instrument implements the reverb
algorithm described above. The first four instruments act as a kind of generative drum
machine to provide source material for the reverb. Generally sharp percussive sounds provide
the sternest test of a reverb effect. Instrument 1 triggers the various synthesized drum
sounds (bass drum, snare and closed hi-hat) produced by instruments 2 to 4. 

  EXAMPLE 05E04.csd

<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr =  44100 
ksmps = 1
nchnls = 2
0dbfs = 1

giSine       ftgen       0, 0, 2^12, 10, 1 ;a sine wave
gaRvbSend    init        0; global audio variable initialized to zero
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giRvbSendAmt init        0.4; reverb send amount (try range 0 - 1)

  instr 1 ;trigger drum hits
ktrigger    metro       5; rate of drum strikes
kdrum       random      2, 4.999; randomly choose drum to strike
            schedkwhen  ktrigger, 0, 0, kdrum, 0, 0.1; strike a drum
  endin

  instr 2; sound 1 - bass drum
iamp        random      0, 0.5; amplitude randomly chosen from between the given values
p3          =           0.2; define duration for this sound
aenv        line        1,p3,0.001; amplitude envelope - percussive decay
icps        exprand     30; cycles-per-second offset randomly chosen from an exponential distribution
kcps        expon       icps+120,p3,20; pitch glissando
aSig        oscil       aenv*0.5*iamp, kcps, giSine; oscillator
            outs        aSig, aSig; send audio to outputs
gaRvbSend   =           gaRvbSend + (aSig * giRvbSendAmt); add portion of signal to global reverb send audio variable
  endin

  instr 3; sound 3 - snare
iAmp        random      0, 0.5; amplitude randomly chosen from between the given values
p3          =           0.3; define duration for this sound
aEnv        expon       1, p3, 0.001; amplitude envelope - percussive decay
aNse        noise       1, 0; create noise component for snare drum sound   
iCps        exprand     20; cycles-per-second offset randomly chosen from an exponential distribution
kCps        expon       250 + iCps, p3, 200+iCps; create tone component frequency glissando for snare drum sound
aJit        randomi     0.2, 1.8, 10000; jitter on frequency for tone component
aTne        oscil       aEnv, kCps*aJit, giSine; create tone component
aSig        sum         aNse*0.1, aTne; mix noise and tone sound components
aRes        comb        aSig, 0.02, 0.0035; pass signal through a comb filter to create static harmonic resonance
aSig        =           aRes * aEnv * iAmp; apply envelope and amplitude factor to sound
            outs        aSig, aSig; send audio to outputs
gaRvbSend   =           gaRvbSend + (aSig * giRvbSendAmt); add portion of signal to global reverb send audio variable
  endin

  instr 4; sound 4 - closed hi-hat
iAmp        random      0, 1.5; amplitude randomly chosen from between the given values
p3          =           0.1; define duration for this sound
aEnv        expon       1,p3,0.001; amplitude envelope - percussive decay
aSig        noise       aEnv, 0; create sound for closed hi-hat
aSig        buthp       aSig*0.5*iAmp, 12000; highpass filter sound
aSig        buthp       aSig,          12000; highpass filter sound again to sharpen cutoff
            outs        aSig, aSig; send audio to outputs
gaRvbSend   =           gaRvbSend + (aSig * giRvbSendAmt); add portion of signal to global reverb send audio variable
  endin

  instr 5; schroeder reverb - always on

; read in variables from the score
kRvt        =           p4
kMix        =           p5

; print some information about current settings gleaned from the score
            prints      "Type:"
            prints      p6
            prints      "\\nReverb Time:%2.1f\\nDry/Wet Mix:%2.1f\\n\\n",p4,p5

; four parallel comb filters       
a1          comb        gaRvbSend, kRvt, 0.0297; comb filter 1
a2          comb        gaRvbSend, kRvt, 0.0371; comb filter 2
a3          comb        gaRvbSend, kRvt, 0.0411; comb filter 3
a4          comb        gaRvbSend, kRvt, 0.0437; comb filter 4
asum        sum         a1,a2,a3,a4; sum (mix) the outputs of all 4 comb filters

; two allpass filters in series
a5          alpass      asum, 0.1, 0.005; send comb filter mix through first allpass filter
aOut        alpass      a5, 0.1, 0.02291; send comb filter mix through second allpass filter

amix        ntrpol      gaRvbSend, aOut, kMix; create a dry/wet mix between the dry and the reverberated signal
            outs        amix, amix; send audio to outputs
            clear       gaRvbSend   ;clear global audio variables
  endin

</CsInstruments>

<CsScore>
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; room reverb
i 1  0 10; start drum machine trigger instr
i 5  0 11 1 0.5 "Room Reverb"; start reverb

; tight ambience
i 1 11 10; start drum machine trigger instr
i 5 11 11 0.3 0.9 "Tight Ambience"; start reverb

; long reverb (low in the mix)
i 1 22 10; start drum machine trigger instr
i 5 22 15 5 0.1 "Long Reverb (Low In the Mix)"; start reverb

; very long reverb (high in the mix)
i 1 37 10; start drum machine trigger instr
i 5 37 25 8 0.9 "Very Long Reverb (High in the Mix)"; start reverb
e
</CsScore>

</CsoundSynthesizer>

31. AM / RM / WAVESHAPING
A theoretical introduction into amplitude-modulation, ringmodulation and waveshaping is given
in the "sound-synthesis" chapter 4.

AMPLITUDE MODULATION 

In "sound-synthesis" the principle  of AM was shown as a amplitude multiplication of two sine
oscillators. Later we've used a more complex modulators, to generate more complex
spectrums. The principle also works very well with sound-files (samples) or live-audio-input. 

Karlheinz Stockhausens "Mixtur fu ̈r Orchester, vier Sinusgeneratoren und vier Ringmodulatoren”
(1964) was the first piece which used analog ringmodulation (AM without DC-offset) to alter the
acoustic instruments pitch in realtime during a live-performance. The word ringmodulation
inherites from the analog four-diode circuit which was arranged in a "ring". 

In the following example shows how this can be done digitally in Csound. In this case a sound-
file works as the carrier which is modulated by a sine-wave-osc. The result sounds like old
'Harald Bode' pitch-shifters from the 1960's.

Example: 05F01.csd 

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 48000
ksmps = 32
nchnls = 1
0dbfs = 1

instr 1   ; Ringmodulation
aSine1 poscil 0.8, p4, 1
aSample diskin2 "fox.wav", 1, 0, 1, 0, 32
out aSine1*aSample
endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1 ; sine

i 1 0 2 400
i 1 2 2 800
i 1 4 2 1600
i 1 6 2 200
i 1 8 2 2400
e
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</CsScore>
</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011)

WAVESHAPING

coming soon.. 

GRANULAR SYNTHESIS
This chapter will focus upon granular synthesis used as a DSP technique upon recorded sound
files and will introduce techniques including time stretching, time compressing and pitch
shifting. The emphasis will be upon asynchronous granulation. For an introduction to
synchronous granular synthesis using simple waveforms please refer to chapter 04F.

Csound offers a wide range of opcodes for sound granulation. Each has its own strengths and
weaknesses and suitability for a particular task. Some are easier to use than others, some,
such as granule and partikkel, are extremely complex and are, at least in terms of the
number of input arguments they demand, amongst Csound's most complex opcodes.

SNDWARP - TIME STRETCHING AND PITCH SHIFTING

sndwarp may not be Csound's newest or most advanced opcode for sound granulation but it is
quite easy to use and is certainly up to the task of time stretching and pitch shifting. sndwarp
has two modes by which we can modulate time stretching characteristics, one in which we
define a 'stretch factor', a value of 2 defining a stretch to twice the normal length, and the
other in which we directly control a pointer into the file. The following example uses sndwarp's
first mode to produce a sequence of time stretches and pitch shifts. An overview of each
procedure will be printed to the terminal as it occurs. sndwarp does not allow for k-rate
modulation of grain size or density so for this level we need to look elsewhere.

You will need to make sure that a sound file is available to sndwarp via a GEN01 function
table. You can replace the one used in this example with one of your own by replacing the
reference to 'ClassicalGuitar.wav'. This sound file is stereo therefore instrument 1 uses the
stereo version of sndwarp. 'sndwarpst'. A mismatch between the number of channels in the
sound file and the version of sndwarp used will result in playback at an unexpected pitch. You
will also need to give GEN01 an appropriate size that will be able to contain your chosen sound
file. You can calculate the table size you will need by multiplying the duration of the sound file
(in seconds) by the sample rate - for stereo files this value should be doubled - and then
choose the next power of 2 above this value. If you wish to use the sound file used in this
example it can be found here.

sndwarp describes grain size as 'window size' and it is defined in samples so therefore a
window size of 44100 means that grains will last for 1s each (when sample rate is set at
44100). Window size randomization (irandw) adds a random number within that range to the
duration of each grain. As these two parameters are closely related it is sometime useful to
set irandw to be a fraction of window size. If irandw is set to zero we will get artefacts
associated with synchronous granular synthesis.

sndwarp (along with many of Csound's other granular synthesis opcodes) requires us to supply
it with a window function in the form of a function table according to which it will apply an
amplitude envelope to each grain. By using different function tables we can alternatively
create softer grains with gradual attacks and decays (as in this example), with more of a
percussive character (short attack, long decay) or 'gate'-like (short attack, long sustain, short
decay).

   EXAMPLE 05G01.csd

<CsoundSynthesizer>

<CsOptions>
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-odevaudio -b512 -dm0
</CsOptions>

<CsInstruments>
;example by Iain McCurdy

sr = 44100
ksmps = 16
nchnls = 2
0dbfs = 1

;waveforms used for granulation
giSound  ftgen 1,0,2097152,1,"ClassicalGuitar.wav",0,0,0

;window function - used as an amplitude envelope for each grain
;(first half of a sine wave)
giWFn   ftgen 2,0,16384,9,0.5,1,0

instr 1
  kamp        =          0.1
  ktimewarp   expon      p4,p3,p5
  kresample   line       p6,p3,p7
  ifn1        =          giSound
  ifn2        =          giWFn
  ibeg        =          0
  iwsize      =          3000
  irandw      =          3000
  ioverlap    =          50
  itimemode   =          0
              prints     p8
  aSigL,aSigR sndwarpst  kamp,ktimewarp,kresample,ifn1,ibeg, \
                                 iwsize,irandw,ioverlap,ifn2,itimemode
              outs       aSigL,aSigR
endin

</CsInstruments>

<CsScore>
;p3 = stretch factor begin / pointer location begin
;p4 = stretch factor end / pointer location end
;p5 = resample begin (transposition)
;p6 = resample end (transposition)
;p7 = procedure description
;p8 = description string
; p1 p2   p3 p4 p5  p6    p7    p8
i 1  0    10 1  1   1     1     "No time stretch. No pitch shift."
i 1  10.5 10 2  2   1     1     "%nTime stretch x 2."
i 1  21   20 1  20  1     1     "%nGradually increasing time stretch factor from x 1 to x 20."
i 1  41.5 10 1  1   2     2     "%nPitch shift x 2 (up 1 octave)."
i 1  52   10 1  1   0.5   0.5   "%nPitch shift x 0.5 (down 1 octave)."
i 1  62.5 10 1  1   4     0.25  "%nPitch shift glides smoothly from 4 (up 2 octaves) to 0.25 (down 2 octaves)."
i 1  73   15 4  4   1     1     "%nA chord containing three transpositions: unison, +5th, +10th. (x4 time stretch.)"
i 1  73   15 4  4   [3/2] [3/2] ""
i 1  73   15 4  4   3     3     ""
e
</CsScore>

</CsoundSynthesizer>

The next example uses sndwarp's other timestretch mode with which we explicitly define a
pointer position from where in the source file grains shall begin. This method allows us much
greater freedom with how a sound will be time warped; we can even freeze movement an go
backwards in time - something that is not possible with timestretching mode.
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This example is self generative in that instrument 2, the instrument that actually creates the
granular synthesis textures, is repeatedly triggered by instrument 1. Instrument 2 is triggered
once every 12.5s and these notes then last for 40s each so will overlap. Instrument 1 is played
from the score for 1 hour so this entire process will last that length of time. Many of the
parameters of granulation are chosen randomly when a note begins so that each note will
have unique characteristics. The timestretch is created by a line function: the start and end
points of which are defined randomly when the note begins. Grain/window size and window size
randomization are defined randomly when a note begins - notes with smaller window sizes will
have a fuzzy airy quality wheres notes with a larger window size will produce a clearer tone.
Each note will be randomly transposed (within a range of +/- 2 octaves) but that transposition
will be quantized to a rounded number of semitones - this is done as a response to the equally
tempered nature of source sound material used.

Each entire note is enveloped by an amplitude envelope and a resonant lowpass filter in each
case encasing each note under a smooth arc. Finally a small amount of reverb is added to
smooth the overall texture slightly 

   EXAMPLE 05G02.csd
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<CsoundSynthesizer>

<CsOptions>
-odevaudio -b1024 -dm0
</CsOptions>

<CsInstruments>
;example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

;the name of the sound file used is defined as a string variable -
;- as it will be used twice in the code.
;The simplifies the task of adapting the orchestra -
;to use a different sound file
gSfile = "ClassicalGuitar.wav"

;waveform used for granulation
giSound  ftgen 1,0,2097152,1,gSfile,0,0,0

;window function - used as an amplitude envelope for each grain
;(first half of a sine wave)
giWFn   ftgen 2,0,16384,9,0.5,1,0

seed 0; seed the random generators from the system clock
gaSendL init 0
gaSendR init 0

instr 1 ; triggers instrument 2
  ktrigger  metro   0.08         ;metronome of triggers. One every 12.5s
  schedkwhen ktrigger,0,0,2,0,40 ;trigger instr. 2 for 40s
endin

instr 2 ; generates granular synthesis textures
  ;define the input variables
  ifn1        =          giSound
  ilen        =          nsamp(ifn1)/sr
  iPtrStart   random     1,ilen-1
  iPtrTrav    random     -1,1
  ktimewarp   line       iPtrStart,p3,iPtrStart+iPtrTrav
  kamp        linseg     0,p3/2,0.2,p3/2,0
  iresample   random     -24,24.99
  iresample   =          semitone(int(iresample))
  ifn2        =          giWFn
  ibeg        =          0
  iwsize      random     400,10000
  irandw      =          iwsize/3
  ioverlap    =          50
  itimemode   =          1
  ;create a stereo granular synthesis texture using sndwarp
  aSigL,aSigR sndwarpst  kamp,ktimewarp,iresample,ifn1,ibeg,\
                              iwsize,irandw,ioverlap,ifn2,itimemode
  ;envelope the signal with a lowpass filter
  kcf         expseg     50,p3/2,12000,p3/2,50
  aSigL       moogvcf2    aSigL, kcf, 0.5
  aSigR       moogvcf2    aSigR, kcf, 0.5
  ; add a little of out audio signals to the global send variables
  ; these will be sent to the reverb instrument (2)
  gaSendL     =          gaSendL+(aSigL*0.4)
  gaSendR     =          gaSendR+(aSigR*0.4)
              outs       aSigL,aSigR
endin

instr 3 ; global reverb instrument (always on)
  ; use Sean Costello's high quality reverbsc opcode for creating reverb signal
  aRvbL,aRvbR reverbsc   gaSendL,gaSendR,0.85,8000
              outs       aRvbL,aRvbR
  ;clear variables to prevent out of control accumulation
              clear      gaSendL,gaSendR
endin

</CsInstruments>

<CsScore>
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; p1 p2 p3
i 1  0  3600 ; triggers instr 2
i 3  0  3600 ; reverb instrument
e
</CsScore>

</CsoundSynthesizer>

GRANULE - CLOUDS OF SOUND

The granule opcode is one of Csound's most complex opcodes requiring up to 22 input
arguments in order to function. Only a few of these arguments are available during
performance (k-rate) so it is less well suited for real-time modulation, for real-time a more
nimble implementation such as syncgrain, fog, or grain3 would be recommended. Instead
granule proves itself ideally suited at the production of massive clouds of granulated sound in
which individual grains are often completed indistinguishable. There are still two important k-
rate variables that have a powerful effect on the texture created when they are modulated
during a note, they are: grain gap - effectively density - and grain size which will affect the
clarity of the texture - textures with smaller grains will sound fuzzier and airier, textures with
larger grains will sound clearer. In the following example transeg envelopes move the grain gap
and grain size parameters through a variety of different states across the duration of each
note.

With granule we define a number a grain streams for the opcode using its 'ivoice' input
argument. This will also have an effect on the density of the texture produced. Like sndwarp's
first timestretching mode, granule also has a stretch ratio parameter. Confusingly it works the
other way around though, a value of 0.5 will slow movement through the file by 1/2, 2 will
double is and so on. Increasing grain gap will also slow progress through the sound file. granule
also provides up to four pitch shift voices so that we can create chord-like structures without
having to use more than one iteration of the opcode. We define the number of pitch shifting
voices we would like to use using the 'ipshift' parameter. If this is given a value of zero, all
pitch shifting intervals will be ignored and grain-by-grain transpositions will be chosen randomly
within the range +/-1 octave. granule contains built-in randomizing for several of it parameters
in order to easier facilitate asynchronous granular synthesis. In the case of grain gap and grain
size randomization these are defined as percentages by which to randomize the fixed values.

Unlike Csound's other granular synthesis opcodes, granule does not use a function table to
define the amplitude envelope for each grain, instead attack and decay times are defined as
percentages of the total grain duration using input arguments. The sum of these two values
should total less than 100. 

Five notes are played by this example. While each note explores grain gap and grain size in the
same way each time, different permutations for the four pitch transpositions are explored in
each note. Information about what these transpositions are, are printed to the terminal as
each note begins. 

   EXAMPLE 05G03.csd 
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<CsoundSynthesizer>

<CsOptions>
-odevaudio -b1024 -dm0
</CsOptions>

<CsInstruments>
;example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

;waveforms used for granulation
giSoundL ftgen 1,0,1048576,1,"ClassicalGuitar.wav",0,0,1
giSoundR ftgen 2,0,1048576,1,"ClassicalGuitar.wav",0,0,2

seed 0; seed the random generators from the system clock
gaSendL init 0
gaSendR init 0

instr 1 ; generates granular synthesis textures
              prints     p9
  ;define the input variables
  kamp        linseg     0,1,0.1,p3-1.2,0.1,0.2,0
  ivoice      =          64
  iratio      =          0.5
  imode       =          1
  ithd        =          0
  ipshift     =          p8
  igskip      =          0.1
  igskip_os   =          0.5
  ilength     =          nsamp(giSoundL)/sr
  kgap        transeg    0,20,14,4,       5,8,8,     8,-10,0,    15,0,0.1
  igap_os     =          50
  kgsize      transeg    0.04,20,0,0.04,  5,-4,0.01, 8,0,0.01,   15,5,0.4
  igsize_os   =          50
  iatt        =          30
  idec        =          30
  iseedL      =          0
  iseedR      =          0.21768
  ipitch1     =          p4
  ipitch2     =          p5
  ipitch3     =          p6
  ipitch4     =          p7
  ;create the granular synthesis textures; one for each channel
  aSigL  granule  kamp,ivoice,iratio,imode,ithd,giSoundL,ipshift,igskip,\
     igskip_os,ilength,kgap,igap_os,kgsize,igsize_os,iatt,idec,iseedL,\
     ipitch1,ipitch2,ipitch3,ipitch4
  aSigR  granule  kamp,ivoice,iratio,imode,ithd,giSoundR,ipshift,igskip,\
     igskip_os,ilength,kgap,igap_os,kgsize,igsize_os,iatt,idec,iseedR,\
     ipitch1,ipitch2,ipitch3,ipitch4
  ;send a little to the reverb effect
  gaSendL     =          gaSendL+(aSigL*0.3)
  gaSendR     =          gaSendR+(aSigR*0.3)
              outs       aSigL,aSigR
endin

instr 2 ; global reverb instrument (always on)
  ; use reverbsc opcode for creating reverb signal
  aRvbL,aRvbR reverbsc   gaSendL,gaSendR,0.85,8000
              outs       aRvbL,aRvbR
  ;clear variables to prevent out of control accumulation
              clear      gaSendL,gaSendR
endin

</CsInstruments>

<CsScore>
;p4 = pitch 1
;p5 = pitch 2
;p6 = pitch 3
;p7 = pitch 4
;p8 = number of pitch shift voices (0=random pitch)
; p1 p2  p3   p4  p5    p6    p7    p8    p9
i 1  0   48   1   1     1     1     4    "pitches: all unison"
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i 1  +   .    1   0.5   0.25  2     4    "%npitches: 1(unison) 0.5(down 1 octave) 0.25(down 2 octaves) 2(up 1 octave)"
i 1  +   .    1   2     4     8     4    "%npitches: 1 2 4 8"
i 1  +   .    1   [3/4] [5/6] [4/3] 4    "%npitches: 1 3/4 5/6 4/3"
i 1  +   .    1   1     1     1     0    "%npitches: all random"

i 2 0 [48*5+2]; reverb instrument
e
</CsScore>

</CsoundSynthesizer>  

CONCLUSION

Two contrasting opcodes for granular synthesis have been considered in this chapter but this
is in no way meant to suggest that these are the best, in fact it is strongly recommended to
explore all of Csound's other opcodes as they each have their own unique character. The
syncgrain family of opcodes (including also syncloop and diskgrain) are deceptively simple as
their k-rate controls encourages further abstractions of grain manipulation, fog is designed for
FOF synthesis type synchronous granulation but with sound files and partikkel offers a
comprehensive control of grain characteristics on a grain-by-grain basis inspired by Curtis
Roads' encyclopedic book on granular synthesis 'Microsound'. 

33. CONVOLUTION
coming in the next release ...

34. FOURIER TRANSFORMATION /
SPECTRAL PROCESSING
A fourier transformation (FT) is used to transfer an audio-signal from time-domain to the
frequency-domain. This can, for instance, be used to analyze and visualize the spectrum of the
signal appearing in one moment. Fourier transform and subsequent manipulations in the
frequency domain open a wide area of interesting sound transformations, like time stretching,
pitch shifting and much more. 

HOW DOES IT WORK?

The mathematician J.B. Fourier (1768-1830) developed a method to approximate unknown
functions by using trigonometric functions. The advantage of this was, that the properties of
the trigonometric functions (sin & cos) were well-known and helped to describe the properties
of the unknown function.

In music, a fourier transformed signal is decomposed into its sum of sinoids. In easy words:
Fourier transform is the opposite of additive synthesis. Ideally, a sound can be splitted by
Fourier transformation into its partial components, and resynthesized again by adding these
components. 

Because of sound beeing represented as discrete samples in the computer, the computer
implementation calculates a discrete Fourier transform (DFT). As each transformation needs a
certain number of samples, one main decision in performing DFT is about the number of
samples used. The analysis of the frequency components is better the more samples are used
for it. But as samples are progression in time, a caveat must be found for each FT in music
between either better time resolution (fewer samples) or better frequency resolution (more
samples). A typical value for FT in music is to have about 20-100 "snapshots" per second
(which can be compared to the single frames in a film or video).
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At a sample rate of 48000 samples per second, these are about 500-2500 samples for one
frame or window. The standard method for DFT in computer music works with window sizes
which are power-of-two samples long, for instance 512, 1024 or 2048 samples. The reason for
this restriction is that DFT for these power-of-two sized frames can be calculated much
faster. So it is called Fast Fourier Transform (FFT), and this is the standard implementation of
the Fourier transform in audio applications. 

HOW TO DO IT IN CSOUND?

As usual, there is not just one way to work with FFT and spectral processing in Csound. There
are several families of opcodes. Each family can be very useful for a specific approach of
working in the frequency domain. Have a look at the Spectral Processing overview in the
Csound Manual. This introduction will focus on the so-called "Phase Vocoder Streaming"
opcodes (all these opcodes begin with the charcters "pvs") which came into Csound by the
work of Richard Dobson, Victor Lazzarini and others. They are designed to work in realtime in
the frequency domain in Csound; and indeed they are not just very fast but also easier to use
than FFT implementations in some other applications.

CHANGING FROM TIME-DOMAIN TO FREQUENCY-DOMAIN 

For dealing with signals in the frequency domain, the pvs opcodes implement a new signal
type, the f-signals. Csound shows the type of a variable in the first letter of its name. Each
audio signal starts with an a, each control signal with a k, and so each signal in the frequency
domain used by the pvs-opcodes starts with an f.

There are several ways to create an f-signal. The most common way is to convert an audio
signal to a frequency signal. The first example covers two typical situations:

the audio signal derives from playing back a soundfile from the hard disc (instr 1)
the audio signal is the live input (instr 2)

(Be careful - the example can produce a feedback three seconds after the start. Best results
are with headphones.)

EXAMPLE 04I01.csd 1  

<CsoundSynthesizer>
<CsOptions>
-i adc -o dac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
;uses the file "fox.wav" (distributed with the Csound Manual)
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

;general values for fourier transform
gifftsiz  =         1024
gioverlap =         256
giwintyp  =         1 ;von hann window

instr 1 ;soundfile to fsig
asig      soundin   "fox.wav"
fsig      pvsanal   asig, gifftsiz, gioverlap, gifftsiz*2, giwintyp
aback     pvsynth   fsig
          outs      aback, aback
endin

instr 2 ;live input to fsig
          prints    "LIVE INPUT NOW!%n"
ain       inch      1 ;live input from channel 1
fsig      pvsanal   ain, gifftsiz, gioverlap, gifftsiz, giwintyp
alisten   pvsynth   fsig
          outs      alisten, alisten
endin
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</CsInstruments>
<CsScore>
i 1 0 3
i 2 3 10
</CsScore>
</CsoundSynthesizer> 

You should hear first the "fox.wav" sample, and then, the slightly delayed live input signal. The
delay depends first on the general settings for realtime input (ksmps, -b and -B: see chapter
2D). But second, there is also a delay added by the FFT. The window size here is 1024 samples,
so the additional delay is 1024/44100 = 0.023 seconds. If you change the window size gifftsiz to
2048 or to 512 samples, you should get a larger or shorter delay. - So for realtime
applications, the decision about the FFT size is not only a question "better time resolution
versus better frequency resolution", but it is also a question of tolerable latency.

What happens in the example above? At first, the audio signal (asig, ain) is being analyzed and
transformed in an f-signal. This is done via the opcode pvsanal. Then nothing happens but
transforming the frequency domain signal back into an audio signal. This is called inverse
Fourier transformation (IFT or IFFT) and is done by the opcode pvsynth.2  In this case, it is just
a test: to see if everything works, to hear the results of different window sizes, to check the
latency. But potentially you can insert any other pvs opcode(s) in between this entrance and
exit:

 

PITCH SHIFTING

Simple pitch shifting can be done by the opcode pvscale. All the frequency data in the f-signal
are scaled by a certain value. Multiplying by 2 results in transposing an octave upwards;
multiplying by 0.5 in transposing an octave downwards. For accepting cent values instead of
ratios as input, the cent opcode can be used.

EXAMPLE 04I02.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example by joachim heintz
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

gifftsize =         1024
gioverlap =         gifftsize / 4
giwinsize =         gifftsize
giwinshape =        1; von-Hann window

instr 1 ;scaling by a factor
ain       soundin  "fox.wav"
fftin     pvsanal  ain, gifftsize, gioverlap, giwinsize, giwinshape
fftscal   pvscale  fftin, p4
aout      pvsynth  fftscal
          out      aout
endin

instr 2 ;scaling by a cent value
ain       soundin  "fox.wav"
fftin     pvsanal  ain, gifftsize, gioverlap, giwinsize, giwinshape
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fftscal   pvscale  fftin, cent(p4)
aout      pvsynth  fftscal
          out      aout/3
endin

</CsInstruments>
<CsScore>
i 1 0 3 1; original pitch
i 1 3 3 .5; octave lower
i 1 6 3 2 ;octave higher
i 2 9 3 0
i 2 9 3 400 ;major third
i 2 9 3 700 ;fifth
e
</CsScore>
</CsoundSynthesizer>

Pitch shifting via FFT resynthesis is very simple in general, but more or less complicated in
detail. With speech for instance, there is a problem because of the formants. If you simply
scale the frequencies, the formants are shifted, too, and the sound gets the typical "Mickey-
Mousing" effect. There are some parameters in the pvscale opcode, and some other pvs-
opcodes which can help to avoid this, but the result always depends on the individual sounds
and on your ideas.

TIME STRETCH/COMPRESS 

As the Fourier transformation seperates the spectral information from the progression in
time, both elements can be varied independently. Pitch shifting via the pvscale opcode, as in
the previous example, is independent from the speed of reading the audio data. The
complement is changing the time without changing the pitch: time stretching or time
compression.

The simplest way to alter the speed of a samples sound is using pvstanal (which is new in
Csound 5.13). This opcode transforms a sound which is stored in a function table, in an f-signal,
and time manipulations are simply done by altering the ktimescal parameter.

Example 04I03.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example by joachim heintz
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

;store the sample "fox.wav" in a function table (buffer)
gifil     ftgen     0, 0, 0, 1, "fox.wav", 0, 0, 1

;general values for the pvstanal opcode
giamp     =         1 ;amplitude scaling
gipitch   =         1 ;pitch scaling
gidet     =         0 ;onset detection
giwrap    =         0 ;no loop reading
giskip    =         0 ;start at the beginning
gifftsiz  =         1024 ;fft size
giovlp    =         gifftsiz/8 ;overlap size
githresh  =         0 ;threshold

instr 1 ;simple time stretching / compressing
fsig      pvstanal  p4, giamp, gipitch, gifil, gidet, giwrap, giskip, gifftsiz, giovlp, githresh
aout      pvsynth   fsig
          out       aout
endin

instr 2 ;automatic scratching
kspeed    randi     2, 2, 2 ;speed randomly between -2 and 2
kpitch    randi     p4, 2, 2 ;pitch between 2 octaves lower or higher
fsig      pvstanal  kspeed, 1, octave(kpitch), gifil
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aout      pvsynth   fsig
aenv      linen     aout, .003, p3, .1
          out       aout
endin

</CsInstruments>
<CsScore>
;         speed
i 1 0 3   1
i . + 10   .33
i . + 2   3
s
i 2 0 10 0;random scratching without ...
i . 11 10 2 ;... and with pitch changes
</CsScore>
</CsoundSynthesizer>

CROSS SYNTHESIS 

Working in the frequency domain makes it possible to combine or "cross" the spectra of two
sounds. As the Fourier transform of an analysis frame results in a frequency and an amplitude
value for each frequency "bin", there are many different ways of performing cross synthesis.
The most common methods are:

Combine the amplitudes of sound A with the frequencies of sound B. This is the classical
phase vocoder approach. If the frequencies are not completely from sound B, but can be
scaled between A and B, the crossing is more flexible and adjustable to the sounds being
used. This is what pvsvoc does. 
Combine the frequencies of sound A with the amplitudes of sound B. Give more flexibility
by scaling the amplitudes between A and B: pvscross.
Get the frequencies from sound A. Multiply the amplitudes of A and B. This can be
described as spectral filtering. pvsfilter gives a flexible portion of this filtering effect. 

This is an example for phase vocoding. It is nice to have speech as sound A, and a rich sound,
like classical music, as sound B. Here the "fox" sample is being played at half speed and "sings"
through the music of sound B:  

EXAMPLE 04I04.csd

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example by joachim heintz
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

;store the samples in function tables (buffers)
gifilA    ftgen     0, 0, 0, 1, "fox.wav", 0, 0, 1
gifilB    ftgen     0, 0, 0, 1, "ClassGuit.wav", 0, 0, 1

;general values for the pvstanal opcode
giamp     =         1 ;amplitude scaling
gipitch   =         1 ;pitch scaling
gidet     =         0 ;onset detection
giwrap    =         1 ;loop reading
giskip    =         0 ;start at the beginning
gifftsiz  =         1024 ;fft size
giovlp    =         gifftsiz/8 ;overlap size
githresh  =         0 ;threshold

instr 1
;read "fox.wav" in half speed and cross with classical guitar sample
fsigA     pvstanal  .5, giamp, gipitch, gifilA, gidet, giwrap, giskip, gifftsiz, giovlp, githresh
fsigB     pvstanal  1, giamp, gipitch, gifilB, gidet, giwrap, giskip, gifftsiz, giovlp, githresh
fvoc      pvsvoc    fsigA, fsigB, 1, 1 
aout      pvsynth   fvoc
aenv      linen     aout, .1, p3, .5
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          out       aout
endin

</CsInstruments>
<CsScore>
i 1 0 11
</CsScore>
</CsoundSynthesizer>

The next example introduces pvscross:

EXAMPLE 04I05.csd 

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example by joachim heintz
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

;store the samples in function tables (buffers)
gifilA    ftgen     0, 0, 0, 1, "BratscheMono.wav", 0, 0, 1
gifilB    ftgen     0, 0, 0, 1, "fox.wav", 0, 0, 1

;general values for the pvstanal opcode
giamp     =         1 ;amplitude scaling
gipitch   =         1 ;pitch scaling
gidet     =         0 ;onset detection
giwrap    =         1 ;loop reading
giskip    =         0 ;start at the beginning
gifftsiz  =         1024 ;fft size
giovlp    =         gifftsiz/8 ;overlap size
githresh  =         0 ;threshold

instr 1
;cross viola with "fox.wav" in half speed
fsigA     pvstanal  1, giamp, gipitch, gifilA, gidet, giwrap, giskip, gifftsiz, giovlp, githresh
fsigB     pvstanal  .5, giamp, gipitch, gifilB, gidet, giwrap, giskip, gifftsiz, giovlp, githresh
fcross    pvscross  fsigA, fsigB, 0, 1 
aout      pvsynth   fcross
aenv      linen     aout, .1, p3, .5
          out       aout
endin

</CsInstruments>
<CsScore>
i 1 0 11
</CsScore>
</CsoundSynthesizer>

The last example shows spectral filtering via pvsfilter. The well-known "fox" (sound A) is now
filtered by the viola (sound B). Its resulting intensity depends on the amplitudes of sound B,
and if the amplitudes are strong enough, you hear a resonating effect: 

EXAMPLE 04I06.csd 
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<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example by joachim heintz
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

;store the samples in function tables (buffers)
gifilA    ftgen     0, 0, 0, 1, "fox.wav", 0, 0, 1
gifilB    ftgen     0, 0, 0, 1, "BratscheMono.wav", 0, 0, 1

;general values for the pvstanal opcode
giamp     =         1 ;amplitude scaling
gipitch   =         1 ;pitch scaling
gidet     =         0 ;onset detection
giwrap    =         1 ;loop reading
giskip    =         0 ;start at the beginning
gifftsiz  =         1024 ;fft size
giovlp    =         gifftsiz/4 ;overlap size
githresh  =         0 ;threshold

instr 1
;filters "fox.wav" (half speed) by the spectrum of the viola (double speed)
fsigA     pvstanal  .5, giamp, gipitch, gifilA, gidet, giwrap, giskip, gifftsiz, giovlp, githresh
fsigB     pvstanal  2, 5, gipitch, gifilB, gidet, giwrap, giskip, gifftsiz, giovlp, githresh
ffilt     pvsfilter fsigA, fsigB, 1 
aout      pvsynth   ffilt
aenv      linen     aout, .1, p3, .5
          out       aout
endin

</CsInstruments>
<CsScore>
i 1 0 11
</CsScore>
</CsoundSynthesizer> 

There are much more ways of working with the pvs opcodes. Have a look at the Signal
Processing II section of the Opcodes Overview to find some hints. 

1. All soundfiles used in this manual are free and can be downloaded at www.csound-
tutorial.net^

2. For some cases it is good to have pvsadsyn as an alternative, which is using a bank of
oscillators for resynthesis.^
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35. RECORD AND PLAY SOUNDFILES

PLAYING SOUNDFILES FROM DISK - DISKIN2

The simplest way of playing a sound file from Csound is to use the diskin2 opcode. This opcode
reads audio directly from the hard drive location where it is stored, i.e. it does not pre-load
the sound file at initialization time. This method of sound file playback is therefore good for
playing back very long, or parts of very long, sound files. It is perhaps less well suited to
playing back sound files where dense polyphony, multiple iterations and rapid random access
to the file is required. In these situations reading from a function table or buffer is preferable.

diskin2 has additional parameters for speed of playback, and interpolation; these will be
discussed in the section playback speed and direction.

   EXAMPLE 06A01.csd   

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
;example written by Iain McCurdy

sr  =  44100
ksmps  =  32
nchnls  =  1 

  instr 1; play audio from disk using diskin2 opcode
kSpeed  init     1; playback speed
iSkip   init     0; inskip into file (in seconds)
iLoop   init     0; looping switch (0=off 1=on)
; READ AUDIO FROM DISK
a1      diskin2  "loop.wav", kSpeed, iSkip, iLoop
        out      a1; send audio to outputs
  endin

</CsInstruments>

<CsScore>
i 1 0 6
e
</CsScore>

</CsoundSynthesizer>

WRITING AUDIO TO DISK

The traditional method of rendering Csound's audio to disk is to specify a sound file as the
audio destination in the Csound command or under <CsOptions>, in fact before real-time
performance became a possibility this was the only way in which Csound was used. With this
method, all audio that is piped to the output using out, outs etc. will be written to this file. The
number of channels that the file will conatain will be determined by the number of channels
specified in the orchestra header using 'nchnls'. The disadvantage of this method is that we
cannot simultaneously listen to the audio in real-time.

   EXAMPLE 06A02.csd    

<CsoundSynthesizer>

<CsOptions>
;audio output destinatoin is given as a sound file (wav format specified)
;audio destination cannot simultaneously be live output when using this method to record
-oWriteToDisk1.wav -W
</CsOptions>
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<CsInstruments>
;example written by Iain McCurdy

sr     =  44100
ksmps  =  32
nchnls =  1 
0dbfs  =  1

giSine  ftgen  0, 0, 4096, 10, 1 ; a sine wave

  instr 1; a simple tone generator
aEnv    expon    0.2, p3, 0.001; a percussive amplitude envelope
aSig    poscil   aEnv, cpsmidinn(p4), giSine; audio oscillator
        out      aSig; send audio to output
  endin

</CsInstruments>

<CsScore>
; two chords
i 1   0 5 60
i 1 0.1 5 65
i 1 0.2 5 67
i 1 0.3 5 71

i 1   3 5 65
i 1 3.1 5 67
i 1 3.2 5 73
i 1 3.3 5 78
e
</CsScore>

</CsoundSynthesizer>

WRITING AUDIO TO DISK WITH SIMULTANEOUS REATIME
AUDIO OUTPUT - FOUT 

The newer method and of writing audio to a sound file which permits simultaneous real time
output is the use of the fout opcode. Because this opcode is used within the orchestra we
have a little more work to do to ensire that all the audio generated by Csound is piped
through fout, but the advantage is that we have many more options with regard to how and
when this is done. With fout we can choose between many different file formats, details of
these can be found in fout's entry in the Csound Manual.

   EXAMPLE 06A03.csd    

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
;example written by Iain McCurdy

sr      =       44100
ksmps   =       32
nchnls  =       1 
0dbfs   =       1

giSine  ftgen  0, 0, 4096, 10, 1 ; a sine wave
gaSig   init   0; set initial value for global audio variable (silence)

  instr 1; a simple tone generator
aEnv    expon    0.2, p3, 0.001; percussive amplitude envelope
aSig    poscil   aEnv, cpsmidinn(p4), giSine; audio oscillator
gaSig   =        gaSig + aSig; accumulate this note with the global audio variable
  endin

  instr 2; write to a file (always on)
; USE FOUT TO WRITE TO A FILE ON DISK
; FORMAT 4 RESULTS IN A 16BIT WAV
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; NUMBER OF CHANNELS IS DETERMINED BY THE NUMBER OF AUDIO VARIABLES SUPPLIED TO fout
        fout     "WriteToDisk2.wav", 4, gaSig
        out      gaSig; send audio for all notes combined to the output
        clear    gaSig; clear global audio variable to prevent run away accumulation
  endin

</CsInstruments>

<CsScore>
; activate recording instrument to encapsulate the entire performance
i 2 0 8.3

; two chords
i 1   0 5 60
i 1 0.1 5 65
i 1 0.2 5 67
i 1 0.3 5 71

i 1   3 5 65
i 1 3.1 5 67
i 1 3.2 5 73
i 1 3.3 5 78
e
</CsScore>

</CsoundSynthesizer>

36. RECORD AND PLAY BUFFERS

PLAYING AUDIO FROM RAM - FLOOPER2

Csound offers many opcodes for playing back sound files that have first been loaded into a
function table (and therefore are loaded into RAM). Some of these offer higher quality at the
expense of computation speed some are older and less fully featured.

One of the newer and easier to use opcodes for this task is flooper2. As its name might
suggest it is intended for the playback of files with looping. flooper2 can also apply a cross-
fade between the end and the beginning of the loop in order to smooth the transition where
looping takes place.

In the following example a sound file that has been loaded into a GEN01 function table is played
back using flooper2. flooper2 also includes a parameter for modulating playback speed/pitch –
this will be discussed in the section playback speed and direction. There is also the option of
modulating the loop points at k-rate. In this example the entire file is simply played and
looped.

   EXAMPLE 06B01.csd  

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
;example written by Iain McCurdy

sr  =  44100
ksmps  =  32
nchnls  =  1 
0dbfs   =       1

; STORE AUDIO IN RAM USING GEN01 FUNCTION TABLE
giSoundFile   ftgen   0, 0, 1048576, 1, "loop.wav", 0, 0, 0

  instr 1; play audio from function table using flooper2 opcode
kAmp         init      1; amplitude parameter
kPitch       init      1; pitch/speed parameter
kLoopStart   init      0; point where looping begins (in seconds) - in this case the very beginning of the file
kLoopEnd     =         nsamp(giSoundFile)/sr; point where looping ends (in seconds) - in this case the end of the file
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kCrossFade   =         0; cross-fade time
; READ AUDIO FROM FUNCTION TABLE USING flooper2 OPCODE
aSig         flooper2  kAmp, kPitch, kLoopStart, kLoopEnd, kCrossFade, giSoundFile
             out       aSig; send audio to output
  endin

</CsInstruments>

<CsScore>
i 1 0 6
</CsScore>

</CsoundSynthesizer>

CSOUND'S BUILT-IN RECORD-PLAY BUFFER - SNDLOOP

Csound has an opcode called sndloop which provides a simple method of recording some audio
into a buffer and then playing it back immediately. The duration of audio storage required is
defined when the opcode is initialized. In the following example two seconds is provided. Once
activated, as soon as two seconds of audio has been completed, sndloop immediately begins
playing back in a loop. sndloop allows us to modulate the speed/pitch of the played back audio
as well as providing the option of defining a crossfade time between the end and the beginning
of the loop. In the example pressing 'r' on the computer keyboard activates record followed by
looped playback, pressing 's' stops record or playback, pressing '+' increases the speed and
therefore the pitch of playback and pressing '-' decreases the speed/pitch of playback.

   EXAMPLE 06B02.csd  

 <CsoundSynthesizer>

<CsOptions>
; audio in and out are required
-iadc -odac -d -m0
</CsOptions>

<CsInstruments>
;example written by Iain McCurdy

sr  =  44100
ksmps  =  32
nchnls  =  1 
0dbfs = 1 ; maximum amplitude regardless of bit depth

  instr 1
; PRINT INSTRUCTIONS
           prints  "Press 'r' to record, 's' to stop playback, '+' to increase pitch, '-' to decrease pitch.\\n"
; SENSE KEYBOARD ACTIVITY
kKey sensekey; sense activity on the computer keyboard
aIn        inch    1; read audio from first input channel
kPitch     init    1; initialize pitch parameter
iDur       init    2; inititialize duration of loop parameter
iFade      init    0.05 ;initialize crossfade time parameter
 if kKey = 114 then; if 'r' has been pressed...
kTrig      =       1; set trigger to begin record-playback process
 elseif kKey = 115 then; if 's' has been pressed...
kTrig      =       0; set trigger to deactivate sndloop record-playback process
 elseif kKey = 43 then; if '+' has been pressed...
kPitch     =       kPitch + 0.02; increment pitch parameter
 elseif kKey = 95 then; if ''-' has been pressed
kPitch     =       kPitch - 0.02; decrement pitch parameter
 endif; end of conditional branch
; CREATE SNDLOOP INSTANCE
aOut, kRec sndloop aIn, kPitch, kTrig, iDur, iFade; (kRec output is not used)
           out     aOut; send audio to output
  endin

</CsInstruments>

<CsScore>
i 1 0 3600; sense keyboard activity instrument
</CsScore>

</CsoundSynthesizer>
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RECORDING AUDIO TO A FUNCTION TABLE WITH
SUBSEQUENT PLAYBACK

Writing to and reading from buffers can also be achieved through the use of Csound's opcodes
for table reading and writing operations. Although the procedure is a little more complicated
than that required for sndloop it is ultimately more flexible. In the example separate
instruments are used for recording to the table and for playing back from the table. Another
instrument which runs constantly scans for activity on the computer keyboard and activates
the record or playback instruments accordingly. For writing to the table we will use the tablew
opcode and for reading from the table we will use the table opcode (if we were to modulate
the playback speed we would need to use one of Csound's interpolating variations of table
such as tablei or table3. Csound writes individual values to table locations according to an index
we give it the rate at which Csound carries out this operation depends on whether we are
using an i, k or a-rate version of tablew. When writing to or reading from a table at k or a-rate
we probably want our index parameter to be some sort of a moving function so than values
are written or read in a sequential fashion. In this example the line opcode is used to trace a
trajectory through the function table but other opcode choices here could be phasor, poscil,
jspline, randomi etc. When using Csound's table operation opcodes we first need to create that
table, either in the orchestra header or in the score. The duration of the audio buffer can be
calculated from the size of the table. In this example the table is 2^17 points long, that is
131072 points. The duration in seconds is this number divided by the sample rate which in our
example is 44100Hz. Therefore maximum storage duration for this example is 131072/44100
which is around 2.9 seconds.

   EXAMPLE 06B03.csd    

<CsoundSynthesizer>

<CsOptions>
; audio in and out are required
-iadc -odac -d -m0
</CsOptions>

<CsInstruments>
;example written by Iain McCurdy

sr  =  44100
ksmps  =  32
nchnls  =  1 
0dbfs = 1 ; maximum amplitude regardless of bit depth

giBuffer ftgen  0, 0, 2^17, 7, 0; table for audio data storage
maxalloc 2,1; allow only one instance of the recordsing instrument at a time

  instr 1; sense keyboard activity and start record or playback instruments accordingly
           prints  "Press 'r' to record, 'p' for playback.\\n"
iTableLen  =       ftlen(giBuffer); derive buffer function table length in points
idur       =       iTableLen / sr; derive storage time potential of buffer function table
kKey sensekey; sense activity on the computer keyboard
  if kKey=114 then; if ASCCI value of 114 is output, i.e. 'r' has been pressed...
event "i", 2, 0, idur, iTableLen; activate recording instrument for the duration of the buffer storage potential. Pass it table length in point as a p-field variable
  endif; end of conditional branch
 if kKey=112 then; if ASCCI value of 112 is output, i.e. 'p' has been pressed...
event "i", 3, 0, idur, iTableLen; activate recording instrument for the duration of the buffer storage potential. Pass it table length in point as a p-field variable
 endif; end of conditional branch
  endin

  instr 2; record to buffer
iTableLen  =        p4; read in value from p-field (length of function table in samples)
;PRINT PROGRESS INFORMATION TO TERMINAL
           prints   "recording"
           printks  ".", 0.25; print a '.' every quarter of a second
krelease   release; sense when note is in final performance pass (output=1)
 if krelease=1 then; if note is in final performance pass and about to end...
           printks  "\\ndone\\n", 0; print a message bounded by 'newlines'
 endif; end of conditional branch
; WRITE TO TABLE
ain        inch     1; read audio from live input channel 1
andx       line     0, p3, iTableLen; create a pointer for writing to table
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           tablew   ain, andx, giBuffer ;write audio to audio storage table
endin

  instr 3; playback from buffer
iTableLen  =        p4; read in value from p-field (length of function table in samples)
;PRINT PROGRESS INFORMATION TO TERMINAL
           prints   "playback"
           printks  ".", 0.25; print a '.' every quarter of a second
krelease   release; sense when note is in final performance pass (output=1)
 if krelease=1 then; if note is in final performance pass and about to end...
           printks  "\\ndone\\n", 0; print a message bounded by 'newlines'
 endif; end of conditional branch
; READ FROM TABLE
aNdx       line     0, p3, iTableLen; create a pointer for reading from the table
a1         table    aNdx, giBuffer ;read audio to audio storage table
           out      a1; send audio to output
  endin

</CsInstruments>

<CsScore>
i 1 0 3600; sense keyboard activity instrument
</CsScore>

</CsoundSynthesizer>

ENCAPSULATING RECORD AND PLAY BUFFER
FUNCTIONALITY TO A UDO

Let's see now how we can embed the recording and playing of buffers into a User Defined
Opcode. For being flexible in the size of the buffer, we will use the tabw opcode for writing
audio data to a buffer. tabw writes to a table of any size and does not need a power-of-two
table size like tablew. 
An empty table (buffer) of any size can be created with a negative number as size. A table for
recording 10 seconds of audio data can be created in this way: 

giBuf1    ftgen    0, 0, -(10*sr), 2, 0

You can decide whether you want to assign a certain number to the table, or you let Csound
do this job, and call the table via its variable, in this case giBuf1. So let's start with writing a
UDO for creating a mono buffer, and another UDO for creating a stereo buffer: 

 opcode BufCrt1, i, io
ilen, inum xin
ift       ftgen     inum, 0, -(ilen*sr), 2, 0
          xout      ift
 endop

 opcode BufCrt2, ii, io
ilen, inum xin
iftL      ftgen     inum, 0, -(ilen*sr), 2, 0
iftR      ftgen     inum, 0, -(ilen*sr), 2, 0
          xout      iftL, iftR
 endop 

This simplifies the procedure of creating a record/play buffer, because the user is just asked
for the length of the buffer. If he likes, he can also give a number, but by default Csound will
assign this number. This statement will create an empty stereo table for 5 seconds of
recording: 

iBufL,iBufR BufCrt2   5

A first, simple version of a UDO for recording will just write the incoming audio to sequential
locations of the table. This can be done by setting the ksmps value to 1 inside this UDO
(setksmps 1), so that each audio sample has its own discrete k-value. Then we can directly
assign the write index for the table via the statement andx=kndx, and increase the index by
one for the next k-cycle. An additional k-input turns recording on and of: 

 opcode BufRec1, 0, aik
ain, ift, krec  xin

193



          setksmps  1
if krec == 1 then ;record as long as krec=1
kndx      init      0
andx      =         kndx
          tabw      ain, andx, ift
kndx      =         kndx+1
endif
 endop

The reading procedure is simple, too. Actually we can use the same code and just replace the
opcode for writing (tabw) with the opcode for reading (tab): 

 opcode BufPlay1, a, ik
ift, kplay  xin
          setksmps  1
if kplay == 1 then ;play as long as kplay=1
kndx      init      0
andx      =         kndx
aout      tab       andx, ift
kndx      =         kndx+1
endif
 endop

So - let's use these first simple UDOs in a Csound instrument. Press the "r" key as long as you
want to record, and the "p" key for playing back. Note that you must disable the key repeats
on your computer keyboard for this example (in QuteCsound, disable "Allow key repeats" in
Configuration -> General). 

   EXAMPLE 06B04.csd  

<CsoundSynthesizer>
<CsOptions>
-i adc -o dac -d -m0
</CsOptions>
<CsInstruments>
;example written by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

  opcode BufCrt1, i, io
ilen, inum xin
ift       ftgen     inum, 0, -(ilen*sr), 2, 0
          xout      ift
  endop

  opcode BufRec1, 0, aik
ain, ift, krec  xin
          setksmps  1
imaxindx  =         ftlen(ift)-1 ;max index to write
knew      changed   krec
if krec == 1 then ;record as long as krec=1
 if knew == 1 then ;reset index if restarted
kndx      =         0
 endif
kndx      =         (kndx > imaxindx ? imaxindx : kndx)
andx      =         kndx
          tabw      ain, andx, ift
kndx      =         kndx+1
endif
  endop

  opcode BufPlay1, a, ik
ift, kplay  xin
          setksmps  1
imaxindx  =         ftlen(ift)-1 ;max index to read
knew      changed   kplay
if kplay == 1 then ;play as long as kplay=1
 if knew == 1 then ;reset index if restarted
kndx      =         0
 endif
kndx      =         (kndx > imaxindx ? imaxindx : kndx)
andx      =         kndx
aout      tab       andx, ift
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kndx      =         kndx+1
endif
          xout      aout
  endop

  opcode KeyStay, k, kkk
;returns 1 as long as a certain key is pressed
key, k0, kascii    xin ;ascii code of the key (e.g. 32 for space)
kprev     init      0 ;previous key value
kout      =         (key == kascii || (key == -1 && kprev == kascii) ? 1 : 0)
kprev     =         (key > 0 ? key : kprev)
kprev     =         (kprev == key && k0 == 0 ? 0 : kprev)
          xout      kout
  endop

  opcode KeyStay2, kk, kk
;combines two KeyStay UDO's (this way is necessary because just one sensekey opcode is possible in an orchestra)
kasci1, kasci2 xin ;two ascii codes as input
key,k0    sensekey
kout1     KeyStay   key, k0, kasci1
kout2     KeyStay   key, k0, kasci2
          xout      kout1, kout2
  endop

instr 1
ain        inch      1 ;audio input on channel 1
iBuf       BufCrt1   3 ;buffer for 3 seconds of recording
kRec,kPlay KeyStay2  114, 112 ;define keys for record and play
           BufRec1   ain, iBuf, kRec ;record if kRec=1
aout       BufPlay1  iBuf, kPlay ;play if kPlay=1
           out       aout ;send out
endin

</CsInstruments>
<CsScore>
i 1 0 1000
</CsScore>
</CsoundSynthesizer>

Let's realize now a more extended and easy to operate version of these two UDO's for
recording and playing a buffer. The wishes of a user might be the following:

Recording: 

allow recording not just from the beginning of the buffer, but also from any arbitrary
starting point kstart 
allow circular recording (wrap around) if the end of the buffer has been reached: kwrap=1

Playing:

play back with different speed kspeed (negaitve speed means playing backwards) 
start playback at any point of the buffer kstart 
end playback at any point of the buffer kend 
allow certain modes of wraparound kwrap while playing:

kwrap=0 stops at the defined end point of the buffer
kwrap=1 repeats playback between defined end and start points
kwrap=2 starts at a the defined starting point but wraps between end point and
beginning of the buffer
kwrap=3 wraps between kstart and the end of the table

The following example provides versions of BufRec and BufPlay which do this job. We will use
the table3 opcode instead of the simple tab or table opcodes in this case, because we want to
translate any number of samples in the table to any number of output samples by different
speed values:
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As you see, for higher or lower speed values than the original record speed, we must
interpolate in between certain sample values, if we want to keep the original shape of the
wave as truely as possible. This job is done in a good quality by table3 with cubic interpolation.

It is in the nature of recording and playing buffers, that the interactive component is dominant.
Actually, we need interactive devices for doing these jobs:

starting and stopping record

adjusting the start and end points of recording
do or avoid wraparound while recording
starting and stopping playback
adjusting the start and end points of playback
adjusting wraparound in playback at one of the specified modes (1 - 4) 
applying volume at playback

These interactive devices can be widgets, midi, osc or something else. As we want to provide
here examples which can be used with any Csound frontend, we must abandon the live input
except the live audio, and triggering the record or play events by hitting the space bar of the
computer keyboard. See, for instance, the QuteCsound version of this example for a more
interactive version.

   EXAMPLE 06B05.csd   

<CsoundSynthesizer>
<CsOptions>
-i adc -o dac -d
</CsOptions>
<CsInstruments>
;example written by joachim heintz
sr = 44100
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ksmps = 32
nchnls = 2
0dbfs = 1

  opcode BufCrt2, ii, io ;creates a stereo buffer
ilen, inum xin ;ilen = length of the buffer (table) in seconds
iftL      ftgen     inum, 0, -(ilen*sr), 2, 0
iftR      ftgen     inum, 0, -(ilen*sr), 2, 0
          xout      iftL, iftR
  endop

  opcode BufRec1, k, aikkkk ;records to a buffer
ain, ift, krec, kstart, kend, kwrap xin
  setksmps 1
kendsmps =  kend*sr ;end point in samples
kendsmps =  (kendsmps == 0 || kendsmps > ftlen(ift) ? ftlen(ift) : kendsmps)
kfinished =  0
knew  changed krec ;1 if record just started
 if krec == 1 then
  if knew == 1 then
kndx  =  kstart * sr - 1 ;first index to write
  endif
  if kndx >= kendsmps-1 && kwrap == 1 then
kndx  =  -1
  endif
  if kndx < kendsmps-1 then
kndx  =  kndx + 1
andx  =  kndx
  tabw  ain, andx, ift
  else
kfinished =  1
  endif
 endif
   xout  kfinished
  endop

  opcode BufRec2, k, aaiikkkk ;records to a stereo buffer
ainL, ainR, iftL, iftR, krec, kstart, kend, kwrap xin
kfin      BufRec1     ainL, iftL, krec, kstart, kend, kwrap
kfin      BufRec1     ainR, iftR, krec, kstart, kend, kwrap
          xout        kfin
  endop

  opcode BufPlay1, ak, ikkkkkk
ift, kplay, kspeed, kvol, kstart, kend, kwrap xin
;kstart = begin of playing the buffer in seconds
;kend = end of playing in seconds. 0 means the end of the table
;kwrap = 0: no wrapping. stops at kend (positive speed) or kstart (negative speed). this makes just sense if the direction does not change and you just want to play the table once
;kwrap = 1: wraps between kstart and kend
;kwrap = 2: wraps between 0 and kend
;kwrap = 3: wraps between kstart and end of table
;CALCULATE BASIC VALUES
kfin  init  0
iftlen  =  ftlen(ift)/sr ;ftlength in seconds
kend  =  (kend == 0 ? iftlen : kend) ;kend=0 means end of table
kstart01 =  kstart/iftlen ;start in 0-1 range
kend01  =  kend/iftlen ;end in 0-1 range
kfqbas  =  (1/iftlen) * kspeed ;basic phasor frequency
;DIFFERENT BEHAVIOUR DEPENDING ON WRAP:
if kplay == 1 && kfin == 0 then
 ;1. STOP AT START- OR ENDPOINT IF NO WRAPPING REQUIRED (kwrap=0)
 if kwrap == 0 then
kfqrel  =  kfqbas / (kend01-kstart01) ;phasor freq so that 0-1 values match distance start-end
andxrel phasor  kfqrel ;index 0-1 for distance start-end
andx  =  andxrel * (kend01-kstart01) + (kstart01) ;final index for reading the table (0-1)
kfirst  init  1 ;don't check condition below at the first k-cycle (always true)
kndx  downsamp andx
kprevndx init  0
 ;end of table check:
  ;for positive speed, check if this index is lower than the previous one
  if kfirst == 0 && kspeed > 0 && kndx < kprevndx then
kfin  =  1
 ;for negative speed, check if this index is higher than the previous one
  else
kprevndx =  (kprevndx == kstart01 ? kend01 : kprevndx)
   if kfirst == 0 && kspeed < 0 && kndx > kprevndx then
kfin  =  1
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   endif
kfirst  =  0 ;end of first cycle in wrap = 0
  endif
 ;sound out if end of table has not yet reached
asig  table3  andx, ift, 1 
kprevndx =  kndx ;next previous is this index
 ;2. WRAP BETWEEN START AND END (kwrap=1)
 elseif kwrap == 1 then
kfqrel  =  kfqbas / (kend01-kstart01) ;same as for kwarp=0
andxrel phasor  kfqrel
andx  =  andxrel * (kend01-kstart01) + (kstart01)
asig  table3  andx, ift, 1 ;sound out
 ;3. START AT kstart BUT WRAP BETWEEN 0 AND END (kwrap=2)
 elseif kwrap == 2 then
kw2first init  1
  if kw2first == 1 then ;at first k-cycle:
  reinit  wrap3phs ;reinitialize for getting the correct start phase
kw2first =  0
  endif
kfqrel  =  kfqbas / kend01 ;phasor freq so that 0-1 values match distance start-end
wrap3phs:
andxrel phasor  kfqrel, i(kstart01) ;index 0-1 for distance start-end
  rireturn ;end of reinitialization
andx  =  andxrel * kend01 ;final index for reading the table
asig  table3  andx, ift, 1 ;sound out
 ;4. WRAP BETWEEN kstart AND END OF TABLE(kwrap=3)
 elseif kwrap == 3 then
kfqrel  =  kfqbas / (1-kstart01) ;phasor freq so that 0-1 values match distance start-end
andxrel phasor  kfqrel ;index 0-1 for distance start-end
andx  =  andxrel * (1-kstart01) + kstart01 ;final index for reading the table
asig  table3  andx, ift, 1 
 endif
else ;if either not started or finished at wrap=0
asig  =  0 ;don't produce any sound
endif
    xout  asig*kvol, kfin
  endop

  opcode BufPlay2, aak, iikkkkkk ;plays a stereo buffer
iftL, iftR, kplay, kspeed, kvol, kstart, kend, kwrap xin
aL,kfin   BufPlay1     iftL, kplay, kspeed, kvol, kstart, kend, kwrap
aR,kfin   BufPlay1     iftR, kplay, kspeed, kvol, kstart, kend, kwrap
          xout         aL, aR, kfin
  endop

  opcode In2, aa, kk ;stereo audio input
kchn1, kchn2 xin
ain1      inch      kchn1
ain2      inch      kchn2
          xout      ain1, ain2
  endop

  opcode Key, kk, k
;returns '1' just in the k-cycle a certain key has been pressed (kdown) or released (kup)
kascii    xin ;ascii code of the key (e.g. 32 for space)
key,k0    sensekey
knew      changed   key
kdown     =         (key == kascii && knew == 1 && k0 == 1 ? 1 : 0)
kup       =         (key == kascii && knew == 1 && k0 == 0 ? 1 : 0)
          xout      kdown, kup
  endop

instr 1
giftL,giftR BufCrt2   3 ;creates a stereo buffer for 3 seconds
gainL,gainR In2     1,2 ;read input channels 1 and 2 and write as global audio
          prints    "PLEASE PRESS THE SPACE BAR ONCE AND GIVE AUDIO INPUT ON CHANNELS 1 AND 2.\n"
          prints    "AUDIO WILL BE RECORDED AND THEN AUTOMATICALLY PLAYED BACK IN SEVERAL MANNERS.\n"
krec,k0   Key       32
 if krec == 1 then
          event     "i", 2, 0, 10
 endif
endin

instr 2
kfin      BufRec2   gainL, gainR, giftL, giftR, 1, 0, 0, 0 ;records the whole buffer and returns 1 at the end
  if kfin == 0 then
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          printks   "Recording!\n", 1
  endif
 if kfin == 1 then
ispeed    random    -2, 2
istart    random    0, 1
iend      random    2, 3
iwrap     random    0, 1.999
iwrap     =         int(iwrap)
          printks   "Playing back with speed = %.3f, start = %.3f, end = %.3f, wrap = %d\n", p3, ispeed, istart, iend, iwrap
aL,aR,kf  BufPlay2  giftL, giftR, 1, ispeed, 1, istart, iend, iwrap
  if kf == 0 then
          printks   "Playing!\n", 1
  endif
 endif
krel      release
 if kfin == 1 && kf == 1 || krel == 1 then
          printks   "PRESS SPACE BAR AGAIN!\n", p3
          turnoff
 endif
          outs      aL, aR
endin

</CsInstruments>
<CsScore>
i 1 0 1000
e
</CsScore>
</CsoundSynthesizer>
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37. RECEIVING EVENTS BY MIDIIN
Csound provides a variety of opcodes, such as cpsmidi, ampmidi and ctrl7 which allow for
transparent interpretation of incoming midi data. These opcodes allow us to read in midi
information without us having to worry about parsing status bytes and things like that.
Occasionally when we are involved in more complex midi interaction, it might be advantageous
for us to scan all raw midi information that is coming into Csound. The midiin opcode allows us
to do this.

In the next example a simple midi monitor is constructed. Incoming midi events are printed to
the terminal with some formatting to make them readable. We can disable Csound's default
instrument triggering mechanism (which in this example we don't want) by giving the line:

massign 0,0 

just after the header statement.

For this example to work you will need to ensure that you have activated live midi input within
Csound (either by using the -M flag or from within the QuteCsound configuration menu) and
that you have a midi keyboard or controller connected. (You may also want to include the -m0
flag which will disable some of Csound's additional messaging output and therefore allow our
midi printout to be presented more clearly.) 

The status byte tells us what sort of midi information has been received. For example, a value
of 144 tells us that a midi note event has been received, a value of 176 tells us that a midi
controller event has been received, a value of 224 tells us that pitch bend has been received
and so on.

The meaning of the two data bytes depends on what sort of status byte has been received.
For example if a midi note event has been received then data byte 1 gives us the note velocity
and data byte 2 gives us the note number, if a midi controller event has been received then
data byte 1 gives us the controller number and data byte 2 gives us the controller value.  

   EXAMPLE 07A01.csd 

<CsoundSynthesizer>
<CsOptions>
-Ma ;activates all midi devices
</CsOptions>
<CsInstruments>
;Example by Iain McCurdy

;no audio so no 'sr' or 'nchnls'
ksmps = 32

 ;using massign with these arguments disables Csound's default instrument triggering
massign 0,0

  instr 1
kstatus, kchan, kdata1, kdata2  midiin; read in midi
ktrigger  changed  kstatus, kchan, kdata1, kdata2; trigger if midi data changes
 if  ktrigger=1&&kstatus!=0 then; conditionally branch when trigger is received and when status byte is something other than zero
printks "status:%d%tchannel:%d%tdata1:%d%tdata2:%d%n", 0, kstatus, kchan, kdata1, kdata2; print midi data to the terminal with formatting
 endif
  endin

</CsInstruments>

<CsScore>
i 1 0 3600; run midi scanning for 1 hour
</CsScore>

</CsoundSynthesizer>
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The principle advantage of the midiin opcode is that, unlike opcodes such as cpsmidi, ampmidi
and ctrl7 which only receive specific midi data types on a specific channel, midiin listens to all
incoming data including system exclusive. In situations where elaborate Csound instrument
triggering mappings that are beyond the default triggering mechanism's capabilities, are
required then a use for midiin might be found. 

38. TRIGGERING INSTRUMENT INSTANCES

CSOUND'S DEFAULT SYSTEM OF INSTRUMENT
TRIGGERING VIA MIDI 

Csound has a default system for instrument triggering via midi. Provided a midi keyboard has
been connected and the appropriate commmand line flags for midi input have been set (see
configuring midi for further information) or the appropriate  settings have been made in
QuteCsound's configuration menu, then midi notes received on midi channel 1 will trigger
instrument 1, notes on channel 2 will trigger instrument 2 and so on. Instruments will turn on
and off in sympathy with notes being pressed and released on the midi keyboard and Csound
will correctly unravel polyphonic layering and turn on and off only the correct layer of the
same instrument begin played. Midi activated notes can be thought of as 'held' notes, similar
to notes activated in the score with a negative duration (p3). Midi activated notes will sustain
indefinitely as long as the performance time will allow until a corresponding note off has been
received - this is unless this infinite p3 duration is overwritten within the instrument itself by
p3 begin explicitly defined.

The following example confirms this default mapping of midi channels to instruments. You will
need a midi keyboard that allows you to change the midi channel on which it is transmmitting.
Besides a written confirmation to the console of which instrument is begin triggered, there is
an audible confirmation in that instrument 1 plays single pulses, instrument 2 plays sets of two
pulses and instrument 3 plays sets of three pulses. The example does not go beyond three
instruments. If notes are received on midi channel 4 and above, because corresonding
instruments do not exist, notes on any of these channels will be directed to instrument 1. 

   EXAMPLE 07B01.csd  

<CsoundSynthesizer>
<CsOptions>
-Ma -odac ;activates all midi devices and real time sound output
</CsOptions>
<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

gisine ftgen 0,0,2^12,10,1

  instr 1; 1 impulse (midi channel 1)
prints "instrument/midi channel: %d%n",p1; print instrument number to terminal
reset:
     timout 0, 1, impulse; jump to pulse generation section for 1 second
     reinit reset; reninitialize pass from label 'reset'
impulse:
aenv expon     1, 0.3, 0.0001; a short percussive amplitude envelope
aSig poscil    aenv, 500, gisine
     out       aSig
     rireturn
  endin

  instr 2; 2 impulses (midi channel 2)
prints "instrument/midi channel: %d%n",p1; print instrument number to terminal
reset:
     timout 0, 1, impulse; jump to pulse generation section for 1 second
     reinit reset; reninitialize pass from label 'reset'
impulse:
aenv expon     1, 0.3, 0.0001; a short percussive amplitude envelope
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aSig poscil    aenv, 500, gisine
a2   delay     aSig, 0.15
     out       aSig+a2
     rireturn
  endin

  instr 3; 3 impulses (midi channel 3)
prints "instrument/midi channel: %d%n",p1; print instrument number to terminal
reset:
     timout 0, 1, impulse; jump to pulse generation section for 1 second
     reinit reset; reninitialize pass from label 'reset'
impulse:
aenv expon     1, 0.3, 0.0001; a short percussive amplitude envelope
aSig poscil    aenv, 500, gisine
a2   delay     aSig, 0.15
a3   delay     a2, 0.15
     out       aSig+a2+a3
     rireturn
  endin

</CsInstruments>
<CsScore>
f 0 300
e
</CsScore>
<CsoundSynthesizer>

USING MASSIGN TO MAP MIDI CHANNELS TO
INSTRUMENTS

We can use the massign opcode, which is used just after the header statement, to explicitly
map midi channels to specific instruments and thereby overrule Csound's default mappings.
massign takes two input arguments, the first defines the midi channel to be redirected and the
second stipulates which instrument it should be directed to. The following example is identical
to the previous one except that the massign statements near the top of the orchestra jumble
up the default mappings. Midi notes on channel 1 will be mapped to instrument 3, notes on
channel 2 to instrument 1 and notes on channel 3 to instrument 2. Undefined channel
mappings will be mapped according to the default arrangement and once again midi notes on
channels for which an instrument does not exist will be mapped to instrument 1. 

   EXAMPLE 07B02.csd  

<CsoundSynthesizer>
<CsOptions>
-Ma -odac
</CsOptions>
<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

gisine ftgen 0,0,2^12,10,1

massign 1,3
massign 2,1
massign 3,2

  instr 1; 1 impulse (midi channel 1)
iChn midichn; discern what midi channel this instrument was activated on
prints "channel:%d%tinstrument: %d%n",iChn,p1; print instrument number and midi channel to terminal
reset:
     timout 0, 1, impulse; jump to pulse generation section for 1 second
     reinit reset; reninitialize pass from label 'reset'
impulse:
aenv expon     1, 0.3, 0.0001; a short percussive amplitude envelope
aSig poscil    aenv, 500, gisine
     out       aSig
     rireturn
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  endin

  instr 2; 2 impulses (midi channel 2)
iChn midichn; discern what midi channel this instrument was activated on
prints "channel:%d%tinstrument: %d%n",iChn,p1; print instrument number and midi channel to terminal
reset:
     timout 0, 1, impulse; jump to pulse generation section for 1 second
     reinit reset; reninitialize pass from label 'reset'
impulse:
aenv expon     1, 0.3, 0.0001; a short percussive amplitude envelope
aSig poscil    aenv, 500, gisine
a2   delay     aSig, 0.15
     out       aSig+a2
     rireturn
  endin

  instr 3; 3 impulses (midi channel 3)
iChn midichn; discern what midi channel this instrument was activated on
prints "channel:%d%tinstrument: %d%n",iChn,p1; print instrument number and midi channel to terminal
reset:
     timout 0, 1, impulse; jump to pulse generation section for 1 second
     reinit reset; reninitialize pass from label 'reset'
impulse:
aenv expon     1, 0.3, 0.0001; a short percussive amplitude envelope
aSig poscil    aenv, 500, gisine
a2   delay     aSig, 0.15
a3   delay     a2, 0.15
     out       aSig+a2+a3
     rireturn
  endin

</CsInstruments>
<CsScore>
f 0 300
e
</CsScore>
<CsoundSynthesizer>

massign also has a couple of additional functions that may come in useful. A channel number
of zero is interpretted as meaning 'any'. The following instruction will map notes on any
channel to instrument 1.

massign 0,1

An instrument number of zero is interpretted as meaning 'none' so the following instruction will
instruct Csound to ignore triggering for notes received on any channel.

massign 0,0

 The above feature is useful when we want to scan midi data from an already active
instrument using the midiin opcode, as we did in EXAMPLE 0701.csd.

USING MULTIPLE TRIGGERING 

Csound's event/event_i opcode (see the Triggering Instrument Events chapter) makes it
possible to trigger any other instrument from a midi-triggered one. As you can assign a
fractional number to an instrument, you can distinguish the single instances from each other.
This is an example for using fractional instrument numbers.

   EXAMPLE 07B03.csd

<CsoundSynthesizer>
<CsOptions>
-Ma
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz, using code of Victor Lazzarini
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

          massign   0, 1 ;assign all incoming midi to instr 1
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  instr 1 ;global midi instrument, calling instr 2.cc.nnn (c=channel, n=note number)
inote     notnum    ;get midi note number
ichn      midichn   ;get midi channel
instrnum  =         2 + ichn/100 + inote/100000 ;make fractional instr number
           event_i   "i", instrnum, 0, -1, ichn, inote ;call with indefinite duration
kend      release   ;get a "1" if instrument is turned off
 if kend == 1 then
          event     "i", -instrnum, 0, 1 ;then turn this instance off
 endif
  endin

  instr 2
ichn      =         int(frac(p1)*100)
inote     =         round(frac(frac(p1)*100)*1000)
          prints    "instr %f: ichn = %f, inote = %f%n", p1, ichn, inote
          printks   "instr %f playing!%n", 1, p1
  endin

</CsInstruments>
<CsScore>
f 0 36000
e
</CsScore>
</CsoundSynthesizer>

In this case, it is more like a toy, because you use the fractional instrument number just for
decoding an information in instrument 2 you already have in instrument 1 ... - But imagine you
want to call several instruments depending on some regions on your keyboard. Then you need
to change just the line

instrnum  =         2 + ichn/100 + inote/100000

to this:

 if inote < 48 then
instrnum  =         2
 elseif inote < 72 then
instrnum  =         3
 else
instrnum  =         4
 endif
instrnum  =         instrnum + ichn/100 + inote/100000

In this case you will call for any key below C3 instrument 2, for any key between C3 and B4
instrument 3, and for any higher key instrument 4.

By this multiple triggering you are also able to trigger more than one instrument at the same
time (which is not possible by the massign opcode). This is an example using a User Defined
Opcode (see the UDO chapter of this manual):

   EXAMPLE 07B04.csd

<CsoundSynthesizer>
<CsOptions>
-Ma
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz, using code of Victor Lazzarini
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

          massign   0, 1 ;assign all incoming midi to instr 1
giInstrs  ftgen     0, 0, -5, -2, 2, 3, 4, 10, 100 ;instruments to be triggered

 opcode MidiTrig, 0, io
;triggers the first inum instruments in the function table ifn by a midi event, with fractional numbers containing channel and note number information
ifn, inum  xin ;if inum=0 or not given, all instrument numbers in ifn are triggered
inum      =         (inum == 0 ? ftlen(ifn) : inum)
inote     notnum
ichn      midichn
iturnon   =         0
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turnon:
iinstrnum tab_i     iturnon, ifn
if iinstrnum > 0 then
ifracnum  =         iinstrnum + ichn/100 + inote/100000
         event_i   "i", ifracnum, 0, -1
endif
         loop_lt   iturnon, 1, inum, turnon
kend      release
if kend == 1 then
kturnoff  =         0
turnoff:
kinstrnum tab       kturnoff, ifn
 if kinstrnum > 0 then
kfracnum  =         kinstrnum + ichn/100 + inote/100000
         event     "i", -kfracnum, 0, 1
         loop_lt   kturnoff, 1, inum, turnoff
 endif
endif
 endop

 instr 1 ;global midi instrument
         MidiTrig  giInstrs, 2; triggers the first two instruments in the giInstrs table
 endin

 instr 2
ichn      =         int(frac(p1)*100)
inote     =         round(frac(frac(p1)*100)*1000)
         prints    "instr %f: ichn = %f, inote = %f%n", p1, ichn, inote
         printks   "instr %f playing!%n", 1, p1
 endin

 instr 3
ichn      =         int(frac(p1)*100)
inote     =         round(frac(frac(p1)*100)*1000)
         prints    "instr %f: ichn = %f, inote = %f%n", p1, ichn, inote
         printks   "instr %f playing!%n", 1, p1
 endin

</CsInstruments>
<CsScore>
f 0 36000
e
</CsScore>
</CsoundSynthesizer>

 WORKING WITH CONTROLLERS

SCANNING MIDI CONTINUOUS CONTROLLERS

The most useful opcode for reading in midi continuous controllers is ctrl7. ctrl7's input
arguments allow us to specify midi channel and controller number of the controller to be
scanned in addition to giving us the option to rescale the received midi values between a new
minimum and maximum value as defined by the 3rd and 4th input arguments.

The following example scans midi controller 1 on channel 1 and prints values received to the
console. The minimum and maximum values are rescaled between 0 and 127 therefore they
are not actually rescaled at all. Note that controller 1 is also the modulation wheel on a midi
keyboard.

  EXAMPLE 07C01.csd 

<CsoundSynthesizer>
<CsOptions>
-Ma
</CsOptions>
<CsInstruments>
;Example by Iain McCurdy
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;this example does not use audio so 'sr' and 'nchnls' have been omitted
ksmps = 32

  instr 1
kCtrl    ctrl7    1,1,0,127; read in midi controller #1 on channel 1
kTrigger changed  kCtrl; if 'kCtrl' changes generate a trigger ('bang')
 if kTrigger=1 then
printks "Controller Value: %d%n", 0, kCtrl; print kCtrl to console only when its value changes
 endif
  endin

</CsInstruments>
<CsScore>
i 1 0 300
e
</CsScore>
<CsoundSynthesizer>

There are also 14 bit and 21 bit versions of ctrl7 (ctrl14 and ctrl21) which improve upon the 7 bit
resolution of ctrl7 but hardware that outputs 14 or 21 bit controller information is rare so
these opcodes are probably rarely used.

SCANNING PITCH BEND AND AFTERTOUCH

We can scan pitch bend and aftertouch in a similar way using the opcodes pchbend and
aftouch. Once again we can specify minimum and maximum values with which to re-range the
output but these input arguments are optional and the following example uses the default
values of -3 to 1 for pitch bend and 0 to 127 for aftertouch. The next example merely prints
out values for pitch bend and aftertouch received to the console as the previous example did
for continuous controllers but one thing to bear in mind this time is that for the pchbend
opcode to function the Csound instrument that contains it needs to have been activated by a
MIDI event. You will need to play a midi note on your keyboard and then move the pitch bend
wheel.

  EXAMPLE 07C02.csd

<CsoundSynthesizer>
<CsOptions>
-Ma
</CsOptions>
<CsInstruments>
;Example by Iain McCurdy

;this example does not use audio so 'sr' and 'nchnls' have been omitted
ksmps = 32

  instr 1
kPchBnd pchbend; read in pitch bend information
kTrig1  changed kPchBnd; if 'kPchBnd' changes generate a trigger ('bang')
 if kTrig1=1 then
printks "Pitch Bend Value: %f%n", 0, kPchBnd; print kPchBnd to console only when its value changes
 endif

kAfttch aftouch; read in aftertouch information
kTrig2  changed kAfttch; if 'kAfttch' changes generate a trigger ('bang')
 if kTrig2=1 then
printks "Aftertouch Value: %d%n", 0, kAfttch; print kAfttch to console only when its value changes
 endif
  endin

</CsInstruments>
<CsScore>
f 0 300
e
</CsScore>
<CsoundSynthesizer>

INITIALIZING MIDI CONTROLLERS
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It may be useful to be able to define the beginning value of a midi controller that will be used
in an orchestra - that is, the value it will adopt until its corresponding hardware control has
been moved. Until a controller has been moved its value in Csound defaults to its minimum
setting unless additional initialization has been carried out. It is important to be aware that
midi controllers only send out information when they are moved, when lying idle they send out
no information. As an example, if we imagine we have an Csound instrument in which the
output volume is controlled by a midi controller it might prove to be slightly frustrating that
this instrument will, each time the orchestra is launched, remain silent until the volume control
is moved. This frustration might become greater when many midi controllers are begin utilized.
It would be more useful to be able to define the starting value of each of these controllers.
The initc7 opcode allows us to define the starting value of a midi controller until its hardware
control has been moved. If initc7 is placed within the instrument itself it will be re-initialized
each time the instrument is called, if it is placed in instrument 0 (just after the header
statements) the it will only be initialized when the orchestra is first launched. The latter case
is probably most useful.

In the following example a simple synthesizer is implemented. Midi controller 1 controls the
output volume of this instrument but the initc7 statement near the top of the orchestra
ensures that this control does not default to its minimum setting. The arguments that initc7
takes are for midi channel, controller number and intitial value. Initial value is defined within
the range 0-1, therefore value of 1 set this controller to its maximum value (midi value 127),
and value of 0.5 sets it to its halfway value (midi value 64) and so on.

Additionally this example uses the cpsmidi opcode to scan in midi pitch and the ampmidi
opcode to scan in note velocity.

  EXAMPLE 07C03.csd

<CsoundSynthesizer>
<CsOptions>
-Ma -odac
</CsOptions>
<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine ftgen 0,0,2^12,10,1
initc7 1,1,1; initialize controller 1 on midi channel 1 to its maximum level

  instr 1
iCps cpsmidi; read in midi pitch in cycles-per-second
iAmp ampmidi 1; read in note velocity - re-range to be from 0 to 1
kVol ctrl7   1,1,0,1; read in controller 1, channel 1. Re-range to be from 0 to 1
aSig poscil  iAmp*kVol, iCps, giSine
     out     aSig
  endin

</CsInstruments>
<CsScore>
f 0 300
e
</CsScore>
<CsoundSynthesizer>

SMOOTHING 7-BIT QUANTIZATION IN MIDI CONTROLLERS
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A problem we encounter with 7 bit midi controllers is the poor resolution that they offer us. 7
bit means that we have 2 to the power of 7 possible values; therefore 128 possible values,
which is rather inadequate for defining the frequency of an oscillator over a number of
octaves, the cutoff frequency of a filter or a volume control. We quickly become aware of the
parameter that is being controlled moving up in steps - not so much of a 'continuous' control
after all. We may also experience clicking artefacts, sometimes called 'zipper noise', as the
value changes. There are some things we can do to address this problem however. We can
filter the controller signal within Csound so that the sudden changes that occur between steps
along the controller's travel are smoothed using additional interpolating values - we must be
careful not to smooth excessively otherwise the response of the controller will become
sluggish. Any k-rate compatible lowpass filter can be used for this task but the portk opcode is
particularly useful as it allows us to define the amount of smoothing as a time taken to glide
to half the required value rather than having to deal with a cutoff frequency. Additionally this
'half time' value can be varied as a k-rate value which provides an advantage availed of in the
following example.

This example takes the simple synthesizer of the previous example as its starting point. The
volume control which is controlled by midi controller 1 on channel 1 is passed through a portk
filter. The 'half time' for portk ramps quickly up to its required value of 0.01 through the use of
a linseg statement in the previous line. This is done so that when a new note begins the
volume control jumps immediately to its required value rather than gliding up from zero due to
the effect of the portk filter. Try this example with the portk half time defined as a constant
to hear the difference. To further smooth the volume control, it is converted to an a-rate
variable through the use of the interp opcode which, as well as performing this conversion,
interpolates values in the gaps between k-cycles.

  EXAMPLE 07C04.csd

<CsoundSynthesizer>
<CsOptions>
-Ma -odac
</CsOptions>
<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine   ftgen    0,0,2^12,10,1                      
         initc7   1,1,1; initialize controller 1 on midi channel 1 to its maximum level

  instr 1
iCps      cpsmidi ;read in midi pitch in cycles-per-second
iAmp      ampmidi 1; read in note velocity - re-range to be from 0 to 1
kVol      ctrl7   1,1,0,1; read in controller 1, channel 1. Re-range to be from 0 to 1
kPortTime linseg  0,0.001,0.01; create a value that quickly ramps up to 0.01
kVol      portk   kVol, kPortTime; create a new version of kVol that has been filtered (smoothed) using portk
aVol      interp  kVol; create an a-rate version of kVol. Use intepolation to smooth this signal even further
aSig      poscil  iAmp*aVol, iCps, giSine     
          out     aSig
  endin

</CsInstruments>
<CsScore>
f 0 300
e
</CsScore>
<CsoundSynthesizer>

All of the techniques introduced in this section are combined in the final example which
includes a 2-semitone pitch bend and tone control which is controlled by aftertouch. For tone
generation this example uses the gbuzz opcode.

  EXAMPLE 07C05.csd

<CsoundSynthesizer>
<CsOptions>
-Ma -odac
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</CsOptions>
<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine   ftgen    0,0,2^12,10,1
         initc7   1,1,1; initialize controller 1 on midi channel 1 to its maximum level

  instr 1
iOct      octmidi; read in midi pitch in Csound's 'oct' format
iAmp      ampmidi 0.1; read in note velocity - re-range to be from 0 to 0.2
kVol      ctrl7   1,1,0,1; read in controller 1, channel 1. Re-range to be from 0 to 1
kPortTime linseg  0,0.001,0.01; create a value that quickly ramps up to 0.01
kVol      portk   kVol, kPortTime; create a new version of kVol that has been filtered (smoothed) using portk
aVol      interp  kVol; create an a-rate version of kVol. Use intepolation to smooth this signal even further
iBndRange =       2; pitch bend range in semitones
imin      =       0; equilibrium position
imax      =       iBndRange * 1/12; max pitch displacement (in oct format)
kPchBnd   pchbend imin, imax; pitch bend variable (in oct format)
kPchBnd   portk   kPchBnd, kPortTime; create a new version of kPchBnd that has been filtered (smoothed) using portk
aEnv      linsegr 0,0.005,1,0.1,0; amplitude envelope with release stage
kMul      aftouch 0.4,0.85; read in a value that will be used with gbuzz as a kind of tone control
kMul      portk   kMul,kPortTime; create a new version of kPchBnd that has been filtered (smoothed) using portk
aSig      gbuzz   iAmp*aVol*aEnv, cpsoct(iOct+kPchBnd), 70,0,kMul,giSine
          out     aSig
  endin

</CsInstruments>
<CsScore>
f 0 300
e
</CsScore>
<CsoundSynthesizer>

40. MIDI OUTPUT
Csound's ability to output midi data in realtime can open up many possibilities. We can relay
the Csound score to a hardware synthesizer so that it plays the notes in our score instead of
a Csound instrument. We can algorthmically generate streams of notes within the orchestra
and have these played by the external device. We could even route midi data internally to
another piece of software. Csound could be used as a device to transform incoming midi data,
transforming, transposing or arpeggiating incoming notes before they are output again. Midi
output could also be used to preset faders on a motorized fader box (such as the Behringer
BCF 2000) to their correct initial locations.

INITIATING REALTIME MIDI OUTPUT

The command line flag for realtime midi output is -Q. Just as when setting up an audio input or
output device or a midi input device we must define the desired device number after the flag.
When in doubt what midi output devices we have on our system we can always specify an 'out
of range' device number (e.g. -Q999) in which case Csound will not run but will instead give an
error and provide us with a list of available devices and their corresponding numbers. We can
then insert an appropriate device number.

MIDIOUT - OUTPUTTING RAW MIDI DATA 
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The analog of the opcode for the input of raw midi data, midiin, is midiout. midiout will output
a midi note with its given input arguments once every k period - this could very quickly lead to
clogging of incoming midi data in the device to which midi is begin sent unless measures are
taken to prevent the midiout code from begin executed on every k pass. In the following
example this is dealt with by turning off the instrument as soon as the midiout line has been
executed just once by using the turnoff opcode. Alternative approaches would be to set the
status byte to zero after the first k pass or to embed the midiout within a conditional (if...
then...) so that its rate of execution can be controlled in some way. 

Another thing to be aware of is that midi notes do not contain any information about note
duration; instead the device playing the note waits until it receives a corresonding note-off
instruction on the same midi channel and with the same note number before stopping the
note. When working with midiout we must also be aware of this. The status byte for a midi
note-off is 128 but it is more common for note-offs to be expressed as a note-on (status byte
144) with zero velocity. In the following example two notes (and corresonding note offs) are
send to the midi output - the first note-off makes use of the zero velocity convention
whereas the second makes use of the note-off status byte. Hardware and software synths
should respond similarly to both. One advantage of the note-off message using status byte
128 is that we can also send a note-off velocity, i.e. how forcefully we release the key. Only
more expensive midi keyboards actually sense and send note-off velocity and it is even rarer
for hardware to respond to received note-off velocities in a meaningful way. Using Csound as a
sound engine we could respond to this data in a creative way however. 

In order for the following example to work you must connect a midi sound module or keyboard
receiving on channel 1 to the midi output of your computer. You will also need to set the
appropriate device number after the '-Q' flag.

  EXAMPLE 07E01.csd 

<CsoundSynthesizer>

<CsOptions>
; amend device number accordingly
-Q999
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

ksmps = 32 ;no audio so sr and nchnls omitted

  instr 1
;arguments for midiout are read from p-fields
istatus   init      p4
ichan     init      p5
idata1    init      p6
idata2    init      p7
          midiout   istatus, ichan, idata1, idata2; send raw midi data
          turnoff; turn this instrument off to prevent repeated iterations of midiout
  endin

</CsInstruments>

<CsScore>
;p1 p2 p3   p4 p5 p6 p7
i 1 0 0.01 144 1  60 100; note on
i 1 2 0.01 144 1  60   0; note off (using velocity zero)

i 1 3 0.01 144 1  60 100; note on
i 1 5 0.01 128 1  60 100; note off (using 'note off' status byte)
</CsScore>

</CsoundSynthesizer>

The use of separate score events for note-ons and note-offs is rather a hassle. It would be
more sensible to use the Csound note duration (p3) to define when the midi note-off is sent.
The next example does this by utilizing a release flag generated by the release opcode
whenever a note ends and sending the note-off then. 
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  EXAMPLE 07E02.csd  

<CsoundSynthesizer>

<CsOptions>
; amend device number accordingly
-Q999
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

ksmps = 32 ;no audio so sr and nchnls omitted

  instr 1
;arguments for midiout are read from p-fields
istatus   init      p4
ichan     init      p5
idata1    init      p6
idata2    init      p7
kskip     init      0
 if kskip=0 then
          midiout   istatus, ichan, idata1, idata2; send raw midi data (note on)
kskip     =         1; ensure that the note on will only be executed once
 endif
krelease  release; normally output is zero, on final k pass output is 1
 if krelease=1 then; i.e. if we are on the final k pass...
          midiout   istatus, ichan, idata1, 0; send raw midi data (note off)
 endif
  endin

</CsInstruments>

<CsScore>
;p1 p2 p3   p4 p5 p6 p7
i 1 0    4 144 1  60 100
i 1 1    3 144 1  64 100
i 1 2    2 144 1  67 100
f 0 5; extending performance time prevents note-offs from being lost
</CsScore>

</CsoundSynthesizer>

Obviously midiout is not limited to only sending only midi note information but instead this
information could include continuous controller information, pitch bend, system exclusive data
and so on. The next example, as well as playing a note, sends controller 1 (modulation) data
which rises from zero to maximum (127) across the duration of the note. To ensure that
unnessessary midi data is not sent out, the output of the line function is first converted into
integers, and midiout for the continuous controller data is only executed whenever this integer
value changes. The function that creates this stream of data goes slightly above this
maximum value (it finishes at a value of 127.1) to ensure that a rounded value of 127 is actually
achieved.

In practice it may be necessary to start sending the continuous controller data slightly before
the note-on to allow the hardware time to respond. 

  EXAMPLE 07E03.csd  

 <CsoundSynthesizer>

<CsOptions>
; amend device number accordingly
-Q999
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

ksmps = 32 ;no audio so sr and nchnls omitted

  instr 1
; play a midi note
; read in values from p-fields
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ichan     init      p4
inote     init      p5
iveloc    init      p6
kskip     init      0; 'skip' flag will ensure that note-on is executed just once
 if kskip=0 then
          midiout   144, ichan, inote, iveloc; send raw midi data (note on)
kskip     =         1; ensure that the note on will only be executed once by flipping flag
 endif
krelease  release; normally output is zero, on final k pass output is 1
 if krelease=1 then; i.e. if we are on the final k pass...
          midiout   144, ichan, inote, 0; send raw midi data (note off)
 endif

; send continuous controller data
iCCnum    =         p7
kCCval    line      0, p3, 127.1; continuous controller data function
kCCval    =         int(kCCval); convert data function to integers
ktrig     changed   kCCval; generate a trigger each time kCCval (integers) changes
 if ktrig=1 then; if kCCval has changed
          midiout   176, ichan, iCCnum, kCCval; send a continuous controller message
 endif
  endin

</CsInstruments>

<CsScore>
;p1 p2 p3   p4 p5 p6  p7
i 1 0  5    1  60 100 1
f 0 7; extending performance time prevents note-offs from being lost
</CsScore>

</CsoundSynthesizer>

MIDION - OUTPUTTING MIDI NOTES MADE EASIER

midiout is the most powerful opcode for midi output but if we are only interested in sending
out midi notes from an instrument then the midion opcode simplifies the procedure as the
following example demonstrates by playing a simple major arpeggio.

  EXAMPLE 07E04.csd

<CsoundSynthesizer>

<CsOptions>
; amend device number accordingly
-Q999
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

ksmps = 32 ;no audio so sr and nchnls omitted

  instr 1
; read values in from p-fields
kchn    =       p4
knum    =       p5
kvel    =       p6
        midion  kchn, knum, kvel; send a midi note
  endin

</CsInstruments>

<CsScore>
;p1 p2  p3  p4 p5 p6
i 1 0   2.5 1 60  100
i 1 0.5 2   1 64  100
i 1 1   1.5 1 67  100
i 1 1.5 1   1 72  100
f 0 30; extending performance time prevents note-offs from being lost
</CsScore>

</CsoundSynthesizer>
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Changing any of midion's k-rate input arguments in realtime will force it to stop the current
midi note and send out a new one with the new parameters.

midion2 allows us to control when new notes are sent (and the current note is stopped)
through the use of a trigger input. The next example uses midion2 to algorithmically generate
a melodic line. New note generation is controlled by a metro, the rate of which undulates
slowly through the use of a randomi function.

  EXAMPLE 07E05.csd

<CsoundSynthesizer>

<CsOptions>
; amend device number accordingly
-Q999
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

ksmps = 32 ;no audio so sr and nchnls omitted

  instr 1
; read values in from p-fields
kchn    =        p4
knum    random   48,72.99; note numbers will be chosen randomly across a 2 octave range
kvel    random   40, 115; velocities are chosen randomly
krate   randomi  1,2,1; rate at which new notes will be output
ktrig   metro    krate^2; 'new note' trigger
        midion2  kchn, int(knum), int(kvel), ktrig; send a midi note whenever ktrig=1
  endin

</CsInstruments>

<CsScore>
i 1 0 20 1
f 0 21; extending performance time prevents the final note-off from being lost
</CsScore>

</CsoundSynthesizer>

midion and midion2 generate monophonic melody lines with no gaps between notes.

moscil works in a slightly different way and allows us to explicitly define note durations as well
as the pauses between notes thereby permitting the generation of more staccato melodic
lines. Like midion and midion2, moscil will not generate overlapping notes (unless two or more
instances of it are concurrent). The next example algorithmically generates a melodic line using
moscil.

  EXAMPLE 07E06.csd

<CsoundSynthesizer>

<CsOptions>
; amend device number accordingly
-Q999
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

ksmps = 32 ;no audio so sr and nchnls omitted

seed 0; random number generators seeded by system clock

  instr 1
; read value in from p-field
kchn    =         p4
knum    random    48,72.99; note numbers will be chosen randomly across a 2 octave range
kvel    random    40, 115; velocities are chosen randomly
kdur    random    0.2, 1; note durations will chosen randomly from between the given limits
kpause  random    0, 0.4; pauses between notes will be chosen randomly from between the given limits
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        moscil    kchn, knum, kvel, kdur, kpause; send a stream of midi notes
  endin

</CsInstruments>

<CsScore>
;p1 p2 p3 p4
i 1 0  20 1
f 0 21; extending performance time prevents the final note-off from being lost
</CsScore>

</CsoundSynthesizer>

MIDI FILE OUTPUT

As well as (or instead of) outputting midi in realtime, Csound can render data from all of its
midi output opcodes to a midi file. To do this we use the '--midioutfile=' flag followed by the
desired name for our file. For example:

<CsOptions>
-Q2 --midioutfile=midiout.mid
</CsOptions>

will simultaneously stream realtime midi to midi output device number 2 and render to a file
named 'midiout.mid' which will be saved in our home directory. 

41. READING MIDI FILES
Instead of using either the standard Csound score or live midi events as input for a orchestra
Csound can read a midi file and use the data contained within it as if it were a live midi input.

The command line flag to instigate reading from a midi file is '-F' followed by the name of the
file or the complete path to the file if it is not in the same directory as the .csd file. Midi
channels will be mapped to instrument according to the rules and options discussed in
Triggering Instrument Instances and all controllers can be interpretted as desired using the
techniques discussed in Working with Controllers. One thing we need to be concerned with is
that without any events in our standard Csound score our performance will terminate
immedately. To circumvent this problem we need some sort of dummy event in our score to
fool Csound into keeping going until our midi file has completed. Something like the following,
placed in the score, is often used.

f 0 3600

This dummy 'f' event will force Csound to wait for 3600 second (1 hour) before terminating
performance. It doesn't really matter what number of seconds we put in here, as long as it is
more than the number of seconds duration of the midi file. Alternatively a conventional 'i'
score event can also keep performance going; sometimes we will have, for example, a reverb
effect running throughout the performance which can also prevent Csound from terminating.  

The following example plays back a midi file using Csound's 'fluidsynth' family of opcodes to
facilitate playing soundfonts (sample libraries). For more information on these opcodes please
consult the Csound Reference Manual. In order to run the example you will need to download a
midi file and two (ideally contrasting) soundfonts. Adjust the references to these files in the
example accordingly. Free midi files and soundfont are readily available on the internet. I am
suggesting that you use contrasting soundfonts, such as a marimba and a trumpet, so that
you can easily hear the parsing of midi channels in the midi file to different Csound
instruments. In the example channels 1,3,5,7,9,11,13 and 15 play back using soundfont 1 and
channels 2,4,6,8,10,12,14 and 16 play back using soundfont 2. When using fluidsynth in Csound
we normally use an 'always on' instrument to gather all the audio from the various soundfonts
(in this example instrument 99) which also conveniently keeps performance going while our
midi file plays back.

  EXAMPLE 07D01.csd 
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<CsoundSynthesizer>
<CsOptions>
;'-F' flag reads in a midi file
-F AnyMIDIfile.mid
</CsOptions>
<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

sr = 44100
ksmps = 32
nchnls = 2

giEngine     fluidEngine; start fluidsynth engine
iSfNum1      fluidLoad          "ASoundfont.sf2", giEngine, 1; load a soundfont
iSfNum2      fluidLoad          "ADifferentSoundfont.sf2", giEngine, 1; load a different soundfont
             fluidProgramSelect giEngine, 1, iSfNum1, 0, 0; direct each midi channel to a particular soundfont
             fluidProgramSelect giEngine, 3, iSfNum1, 0, 0
             fluidProgramSelect giEngine, 5, iSfNum1, 0, 0
             fluidProgramSelect giEngine, 7, iSfNum1, 0, 0
             fluidProgramSelect giEngine, 9, iSfNum1, 0, 0
             fluidProgramSelect giEngine, 11, iSfNum1, 0, 0
             fluidProgramSelect giEngine, 13, iSfNum1, 0, 0
             fluidProgramSelect giEngine, 15, iSfNum1, 0, 0
             fluidProgramSelect giEngine, 2, iSfNum2, 0, 0
             fluidProgramSelect giEngine, 4, iSfNum2, 0, 0
             fluidProgramSelect giEngine, 6, iSfNum2, 0, 0
             fluidProgramSelect giEngine, 8, iSfNum2, 0, 0
             fluidProgramSelect giEngine, 10, iSfNum2, 0, 0
             fluidProgramSelect giEngine, 12, iSfNum2, 0, 0
             fluidProgramSelect giEngine, 14, iSfNum2, 0, 0
             fluidProgramSelect giEngine, 16, iSfNum2, 0, 0

  instr 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 ;fluid synths for midi channels 1-16
iKey         notnum; read in midi note number
iVel         ampmidi            127; read in key velocity
             fluidNote          giEngine, p1, iKey, iVel; apply note to relevant soundfont
  endin

  instr 99; gathering of fluidsynth audio and audio output
aSigL, aSigR fluidOut           giEngine; read all audio from the given soundfont
             outs               aSigL, aSigR; send audio to outputs
  endin
</CsInstruments>
<CsScore>
i 99 0 3600; audio output instrument also keeps performance going
e
</CsScore>
<CsoundSynthesizer>

Midi file input can be combined with other Csound inputs from the score or from live midi and
also bear in mind that a midi file doesn't need to contain midi note events, it could instead
contain, for example, a sequence of controller data used to automate parameters of effects
during a live performance.

Rather than to directly play back a midi file using Csound instruments it might be useful to
import midi note events as a standard Csound score. This way events could be edited within
the Csound editor or several score could be combined. The following example takes a midi file
as input and outputs standard Csound .sco files of the events contained therein. For
convenience each midi channel is output to a separate .sco file, therefore up to 16 .sco files
will be created. Multiple .sco files can be later recombined by using #include... statements or
simply by copy and paste.

The only tricky aspect of this example is that note-ons followed by note-offs need to be
sensed and calculated as p3 duration values. This is implemented by sensing the note-off by
using the release opcode and at that moment triggering a note in another instrument with the
required score data. It is this second instrument that is responsible for writing this data to a
score file. Midi channels are rendered as p1 values, midi note numbers as p4 and velocity
values as p5. 
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  EXAMPLE 07D02.csd  

<CsoundSynthesizer>

<CsOptions>
-F InputMidiFile.mid
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

;ksmps needs to be 10 to ensure accurate rendering of timings
ksmps = 10

massign 0,1

  instr 1
iChan       midichn
iCps        cpsmidi; read pitch in frequency from midi notes
iVel        veloc 0, 127; read in velocity from midi notes
kDur        timeinsts; running total of duration of this note
kRelease    release; sense when note is ending
 if kRelease=1 then; if note is about to end
;           p1  p2  p3    p4     p5    p6
event "i",  2,  0, kDur, iChan, iCps, iVel ; send full note data to instr 2
 endif
  endin

  instr 2
iDur        =        p3
iChan       =        p4
iCps        =        p5
iVel        =        p6
iStartTime  times; read current time since the start of performance
SFileName   sprintf  "Channel%d.sco",iChan; form file name for this channel (1-16) as a string variable
            fprints  SFileName, "i%d\\t%f\\t%f\\t%f\\t%d\\n",iChan,iStartTime-iDur,iDur,iCps,iVel; write a line to the score for this channel's .sco file
  endin

</CsInstruments>
<CsScore>
f 0 480; ensure that this duration is as long or longer that the duration of the input midi file
e
</CsScore>
</CsoundSynthesizer>

The example above ignores continuous controller data, pitch bend and aftertouch. The second
example on the page in the Csound Manual for the opcode fprintks renders all midi data to a
score file. 

217

http://www.csounds.com/manual/html/index.html
http://www.csounds.com/manual/html/fprintks.html
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42. OPEN SOUND CONTROL - NETWORK
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42. OPEN SOUND CONTROL - NETWORK
COMMUNICATION
Open Sound Control (OSC) is a network protocol format for musical control data
communication. A few of its advantages compared to MIDI are, that it's more accurate,
quicker and much more flexible. With OSC you can easily send messages to other software
independent if it's running on the same machine or over network. There is OSC support in
software like Max/Msp, Chuck or SuperCollider.

OSC messages contain an IP adress with port information and the data-package which will be
send over network. In Csound, there are two opcodes, which provide access to network
communication called OSCsend, OSClisten.

Example 08A01.csd 

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>
sr = 48000
ksmps = 32
nchnls = 2
0dbfs = 1

; localhost means communication on the same machine, otherwise you need
; an IP adress
#define IPADDRESS # "localhost" #
#define S_PORT   # 47120 #
#define R_PORT   # 47120 #

turnon 1000  ; starts instrument 1000 immediately
turnon 1001  ; starts instrument 1001 immediately
 

instr 1000  ; this instrument sends OSC-values
 kValue1 randomh 0, 0.8, 4
  kNum randomh 0, 8, 8
  kMidiKey tab (int(kNum)), 2
  kOctave randomh 0, 7, 4
 kValue2 = cpsmidinn (kMidiKey*kOctave+33)
 kValue3 randomh 0.4, 1, 4
 Stext sprintf "%i", $S_PORT
 OSCsend   kValue1+kValue2, $IPADDRESS, $S_PORT, "/QuteCsound", "fff", kValue1, kValue2, kValue3
endin

instr 1001  ; this instrument receives OSC-values 
 kValue1Received init 0.0
 kValue2Received init 0.0
 kValue3Received init 0.0
 Stext sprintf "%i", $R_PORT
 ihandle OSCinit $R_PORT
 kAction  OSClisten ihandle, "/QuteCsound", "fff", kValue1Received, kValue2Received, kValue3Received
  if (kAction == 1) then 
   printk2 kValue2Received
   printk2 kValue1Received
   
  endif
 aSine poscil3 kValue1Received, kValue2Received, 1
 ; a bit reverbration
 aInVerb = aSine*kValue3Received
 aWetL, aWetR freeverb aInVerb, aInVerb, 0.4, 0.8
outs aWetL+aSine, aWetR+aSine
endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1
f 2 0 8 -2      0 2 4 7 9 11 0 2

219



e 3600
</CsScore>
</CsoundSynthesizer>
; example by Alex Hofmann (Mar. 2011)
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43. CSOUND IN PD

INSTALLING 

You can embed Csound in PD via the external csoundapi~, which has been written by Victor
Lazzarini. This external is part of the Csound distribution. For instance, on OSX, you find it in
the following path: 

/Library/Frameworks/CsoundLib.framework/Versions/5.2/Resources/PD/csoundapi~.pd_darwin

Put this file in a folder which is in PD's search path. For PD-extended, it's by default
~/Library/Pd. But you can put it anywhere. Just make sure that the location is specified in PD's
Preferences > Path... menu. 

If this is done, you should be able to call the csoundapi~ object in PD. Just open a PD window,
put a new object, and type in "csoundapi~": 

  

CONTROL DATA

You can send control data from PD to your Csound instrument via the keyword "control" in a
message box. In your Csound code, you must receive the data via invalue or chnget. This is a
simple example:

EXAMPLE 09A01.csd 

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz

sr = 44100
nchnls = 2
0dbfs = 1
ksmps = 8

giSine    ftgen     0, 0, 2^10, 10, 1

instr 1
kFreq     invalue   "freq"
kAmp      invalue   "amp"
aSin      oscili    kAmp, kFreq, giSine
          outs      aSin, aSin
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endin

</CsInstruments>
<CsScore>
i 1 0 10000
</CsScore>
</CsoundSynthesizer>

Save this file under the name "control.csd". Save a PD window in the same folder and create
the following patch:

 

Note that for invalue channels, you first must register these channels by a "set" message.

As you see, the first two outlets of the csoundapi~ object are the signal outlets for the audio
channels 1 and 2. The third outlet is an outlet for control data (not used here, see below). The
rightmost outlet sends a bang when the score has been finished.

LIVE INPUT

Audio streams from PD can be received in Csound via the inch opcode. As many input
channels there are, as many audio inlets are created in the csoundapi~ object. The following
CSD uses two audio inputs:

EXAMPLE 09A02.csd  

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
0dbfs = 1
ksmps = 8
nchnls = 2

instr 1
aL        inch      1
aR        inch      2
kcfL      randomi   100, 1000; center frequency
kcfR      randomi   100, 1000; for band pass filter
aFiltL    butterbp  aL, kcfL, kcfL/10
aoutL     balance   aFiltL, aL
aFiltR    butterbp  aR, kcfR, kcfR/10
aoutR     balance   aFiltR, aR
          outch     1, aoutL
          outch     2, aoutR
endin

</CsInstruments>
<CsScore>
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i 1 0 10000
</CsScore>
</CsoundSynthesizer>

The corresponding PD patch is extremely simple:

 

MIDI

The csoundapi~ object receives MIDI data via the keyword "midi". Csound is able to trigger
instrument instances in receiving a "note on" message, and turning them off in receiving a
"note off" message (or a note-on message with velocity=0). So this is a very simple way to
build a synthesizer with arbitrary polyphonic output:

This is the corresponding midi.csd. It must contain the options -+rtmidi=null -M0 in the
<CsOptions> tag. It's an FM synth which changes the modulation index according to the
verlocity: the more you press a key, the higher the index, and the more partials you get. The
ratio is calculated randomly between two limits which can be adjusted.

EXAMPLE 09A03.csd  

<CsOptions>
-+rtmidi=null -M0
</CsOptions>
<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz
sr      =  44100
ksmps   =  8
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nchnls  =  2
0dbfs = 1

giSine    ftgen     0, 0, 2^10, 10, 1

instr 1
iFreq     cpsmidi   ;gets frequency of a pressed key
iAmp      ampmidi   8;gets amplitude and scales 0-8
iRatio    random    .9, 1.1; ratio randomly between 0.9 and 1.1
aTone     foscili   .1, iFreq, 1, iRatio/5, iAmp+1, giSine; fm
aEnv      linenr    aTone, 0, .01, .01; for avoiding clicks at the end of a note
          outs      aEnv, aEnv
endin

</CsInstruments>
<CsScore>
f 0 36000; play for 10 hours
e
</CsScore>
</CsoundSynthesizer>

SCORE EVENTS

Score events can be sent from PD to Csound by a message with the keyword event. You can
send any kind of score events, like instrument calls or function table statements. The following
example triggers Csound's instrument 1 whenever you press the message box on the top.
Different sounds can be selected by sending f events (building/replacing a function table) to
Csound.

EXAMPLE 09A04.csd

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 8
nchnls = 2
0dbfs = 1

          seed      0; each time different seed
giSine    ftgen     1, 0, 2^10, 10, 1; function table 1

instr 1
iDur      random    0.5, 3
p3        =         iDur
iFreq1    random    400, 1200
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iFreq2    random    400, 1200
idB       random    -18, -6
kFreq     linseg    iFreq1, iDur, iFreq2
kEnv      transeg   ampdb(idB), p3, -10, 0
aTone     oscili    kEnv, kFreq, 1
          outs      aTone, aTone
endin

</CsInstruments>
<CsScore>
f 0 36000; play for 10 hours
e
</CsScore>
</CsoundSynthesizer>

CONTROL OUTPUT

If you want Csound to give any sort of control data to PD, you can use the opcodes outvalue
or chnset. You will receive this data at the second outlet from the right of the csoundapi~
object. This is a simple example: 

 

EXAMPLE 09A05.csd  

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz

sr = 44100
nchnls = 2
0dbfs = 1
ksmps = 8

instr 1
ktim      times
kphas     phasor    1
          outvalue  "time", ktim
          outvalue  "phas", kphas*127
endin

</CsInstruments>
<CsScore>
i 1 0 30
</CsScore>
</CsoundSynthesizer> 

SETTINGS
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Make sure that the Csound vector size given by the ksmps value, is not larger than the
internal PD vector size. It should be a power of 2. I'd recommend to start with ksmps=8. If
there are performance problems, try to increase this value to 16, 32, or 64.

The csoundapi~ object runs by default if you turn on audio in PD. You can stop it by sending a
"run 0" message, and start it again with a "run 1" message.

You can recompile the .csd file of a csoundapi~ object by sending a "reset" message.

By default, you see all the messages of Csound in the PD window. If you don't want to see
them, send a "message 0" message. "message 1" prints the output again.

If you want to open a new .csd file in the csoundapi~ object, send the message "open",
followed by the path of the .csd file you want to load.

A "rewind" message rewinds the score without recompilation. The message "offset", followed
by a number, offsets the score playback by an amount of seconds. 

44. CSOUND IN MAXMSP
The information contained within this document pertains to csound~ v1.0.7.  

INTRODUCTION

Csound can be embedded in a Max patch using the csound~ object. This allows you to
synthesize and process audio, MIDI, or control data with Csound. 

INSTALLING

Before installing csound~, install Csound5. csound~ needs a normal Csound5 installation in
order to work. You can download Csound5 from here.

Once Csound5 is installed, download the csound~ zip file from here.
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INSTALLING ON MAC OS X

1. Expand the zip file and navigate to binaries/MacOSX/.
2. Choose an mxo file based on what kind of CPU you have (intel or ppc) and which type of

floating point numbers are used in your Csound5 version (double or float). The name of
the Csound5 installer may give a hint with the letters "f" or "d" or explicitly with the
words "double" or "float". However, if you do not see a hint, then that means the
installer contains both, in which case you only have to match your CPU type.

3. Copy the mxo file to:
Max 4.5: /Library/Application Support/Cycling '74/externals/
Max 4.6: /Applications/MaxMSP 4.6/Cycling'74/externals/
Max 5: /Applications/Max5/Cycling '74/msp-externals/

4. Rename the mxo file to "csound~.mxo".
5. If you would like to install the help patches, navigate to the help_files folder and copy all

files to:
Max 4.5: /Applications/MaxMSP 4.5/max-help/
Max 4.6: /Applications/MaxMSP 4.6/max-help/
Max 5: /Applications/Max5/Cycling '74/msp-help/

INSTALLING ON WINDOWS

1. Expand the zip file and navigate to binaries\Windows\.
2. Choose an mxe file based on the type of floating point numbers used in your Csound5

version (double or float). The name of the Csound5 installer may give a hint with the
letters "f" or "d" or explicitly with the words "double" or "float".

3. Copy the mxe file to:
Max 4.5: C:\Program Files\Common Files\Cycling '74\externals\
Max 4.6: C:\Program Files\Cycling '74\MaxMSP 4.6\Cycling '74\externals\
Max 5: C:\Program Files\Cycling '74\Max 5.0\Cycling '74\msp-externals\

4. Rename the mxe file to "csound~.mxe".
5. If you would like to install the help patches, navigate to the help_files folder and copy all

files to:
Max 4.5: C:\Program Files\Cycling '74\MaxMSP 4.5\max-help\
Max 4.6: C:\Program Files\Cycling '74\MaxMSP 4.6\max-help\
Max 5: C:\Program Files\Cycling '74\Max 5.0\Cycling '74\msp-help\

KNOWN ISSUES

On Windows (only), various versions of Csound5 have a known incompatibility with csound~
that has to do with the fluid opcodes. How can you tell if you're affected? Here's how: if you
stop a Csound performance (or it stops by itself) and you click on a non-MaxMSP or non-Live
window and it crashes, then you are affected. Until this is fixed, an easy solution is to
remove/delete fluidOpcodes.dll from your plugins or plugins64 folder. Here are some common
locations for that folder:

C:\Program Files\Csound\plugins
C:\Program Files\Csound\plugins64 

CREATING A CSOUND~ PATCH
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1. Create the following patch: 

 
2. Save as "helloworld.maxpat" and close it.
3. Create a text file called "helloworld.csd" within the same folder as your patch.
4. Add the following to the text file: 

EXAMPLE 09B01.csd  

<CsoundSynthesizer>
<CsInstruments>
;Example by Davis Pyon
sr     = 44100
ksmps  = 32
nchnls = 2
0dbfs  = 1

instr 1
aNoise noise .1, 0
       outch 1, aNoise, 2, aNoise
endin

</CsInstruments>
<CsScore>
f0 86400
i1 0 86400
e
</CsScore>
</CsoundSynthesizer>
    

5. Open the patch, press the bang button, then press the speaker icon.

At this point, you should hear some noise. Congratulations! You created your first csound~
patch.

You may be wondering why we had to save, close, and reopen the patch. This is needed in
order for csound~ to find the csd file. In effect, saving and opening the patch allows csound~
to "know" where the patch is. Using this information, csound~ can then find csd files specified
using a relative pathname (e.g. "helloworld.csd"). Keep in mind that this is only necessary for
newly created patches that have not been saved yet. By the way, had we specified an
absolute pathname (e.g. "C:/Mystuff/helloworld.csd"), the process of saving and reopening
would have been unnecessary.

The "@scale 0" argument tells csound~ not to scale audio data between Max and Csound. By
default, csound~ will scale audio to match 0dB levels. Max uses a 0dB level equal to one, while
Csound uses a 0dB level equal to 32768. Using "@scale 0" and adding the statement "0dbfs =
1" within the csd file allows you to work with a 0dB level equal to one everywhere. This is
highly recommended.

AUDIO I/O

All csound~ inlets accept an audio signal and some outlets send an audio signal. The number of
audio outlets is determined by the arguments to the csound~ object. Here are four ways to
specify the number of inlets and outlets:
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[csound~ @io 3]
[csound~ @i 4 @o 7]
[csound~ 3]
[csound~ 4 7]

"@io 3" creates 3 audio inlets and 3 audio outlets. "@i 4 @o 7" creates 4 audio inlets and 7
audio outlets. The third and fourth lines accomplish the same thing as the first two. If you
don't specify the number of audio inlets or outlets, then csound~ will have two audio inlets and
two audio oulets. By the way, audio outlets always appear to the left of non-audio outlets.
Let's create a patch called audio_io.maxpat that demonstrates audio i/o:

Here is the corresponding text file (let's call it audio_io.csd):

EXAMPLE 09B02.csd 

<CsoundSynthesizer>
<CsInstruments>
;Example by Davis Pyon
sr     = 44100
ksmps  = 32
nchnls = 3
0dbfs  = 1

instr 1
aTri1 inch 1
aTri2 inch 2
aTri3 inch 3
aMix  = (aTri1 + aTri2 + aTri3) * .2
      outch 1, aMix, 2, aMix
endin

</CsInstruments>
<⁞CsScore>
f0 86400
i1 0 86400
e
</CsScore>
</CsoundSynthesizer>

In audio_io.maxpat, we are mixing three triangle waves into a stereo pair of outlets. In
audio_io.csd, we use inch and outch to receive and send audio from and to csound~. inch and
outch both use a numbering system that starts with one (the left-most inlet or outlet).

Notice the statement "nchnls = 3" in the orchestra header. This tells the Csound compiler to
create three audio input channels and three audio output channels. Naturally, this means that
our csound~ object should have no more than three audio inlets or outlets.

CONTROL MESSAGES

Control messages allow you to send numbers to Csound. It is the primary way to control
Csound parameters at i-rate or k-rate. To control a-rate (audio) parameters, you must use
and audio inlet. Here are two examples:

control frequency 2000
c resonance .8
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Notice that you can use either "control" or "c" to indicate a control message. The second
argument specifies the name of the channel you want to control and the third argument
specifies the value.

The following patch and text file demonstrates control messages:

EXAMPLE 09B03.csd  

<CsoundSynthesizer>
<CsInstruments>
;Example by Davis Pyon
sr     = 44100
ksmps  = 32
nchnls = 2
0dbfs  = 1

giSine ftgen 1, 0, 16384, 10, 1 ; Generate a sine wave table.

instr 1
kPitch chnget "pitch"
kMod   invalue "mod"
aFM    foscil .2, cpsmidinn(kPitch), 2, kMod, 1.5, giSine
       outch 1, aFM, 2, aFM
endin
</CsInstruments>
<CsScore>
f0 86400
i1 0 86400
e
</CsScore>
</CsoundSynthesizer>

In the patch, notice that we use two different methods to construct control messages. The
"pak" method is a little faster than the message box method, but do whatever looks best to
you. You may be wondering how we can send messages to an audio inlet (remember, all inlets
are audio inlets). Don't worry about it. In fact, we can send a message to any inlet and it will
work.

In the text file, notice that we use two different opcodes to receive the values sent in the
control messages: chnget and invalue. chnget is more versatile (it works at i-rate and k-
rate, and it accepts strings) and is a tiny bit faster than invalue. On the other hand, the
limited nature of invalue (only works at k-rate, never requires any declarations in the header
section of the orchestra) may be easier for newcomers to Csound.

MIDI

csound~ accepts raw MIDI numbers in it's first inlet. This allows you to create Csound
instrument instances with MIDI notes and also control parameters using MIDI Control Change.
csound~ accepts all types of MIDI messages, except for: sysex, time code, and sync. Let's look
at a patch and text file that uses MIDI:
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EXAMPLE 09B04.csd 

<CsoundSynthesizer>
<CsInstruments>
;Example by Davis Pyon
sr     = 44100
ksmps  = 32
nchnls = 2
0dbfs  = 1

massign 0, 0 ; Disable default MIDI assignments.
massign 1, 1 ; Assign MIDI channel 1 to instr 1.

giSine ftgen 1, 0, 16384, 10, 1 ; Generate a sine wave table.

instr 1
iPitch cpsmidi
kMod   midic7 1, 0, 10
aFM    foscil .2, iPitch, 2, kMod, 1.5, giSine
       outch 1, aFM, 2, aFM
endin
</CsInstruments>
<CsScore>
f0 86400
e
</CsScore>
</CsoundSynthesizer>

In the patch, notice how we're using midiformat to format note and control change lists into
raw MIDI bytes. The "1" argument for midiformat specifies that all MIDI messages will be on
channel one.

In the text file, notice the massign statements in the header of the orchestra. "massign 0,0"
tells Csound to clear all mappings between MIDI channels and Csound instrument numbers.
This is highly recommended because forgetting to add this statement may cause confusion
somewhere down the road. The next statement "massign 1,1" tells Csound to map MIDI
channel one to instrument one.

To get the MIDI pitch, we use the opcode cpsmidi. To get the FM modulation factor, we use
midic7 in order to read the last known value of MIDI CC number one (mapped to the range
[0,10]).

Notice that in the score section of the text file, we no longer have the statement "i1 0 86400"
as we had in earlier examples. This is a good thing as you should never instantiate an
instrument via both MIDI and score events (at least that has been this writer's experience).

EVENTS
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To send Csound events (i.e. score statements), use the "event" or "e" message. You can send
any type of event that Csound understands. The following patch and text file demonstrates
how to send events: 

 

EXAMPLE 09B05.csd 

<CsoundSynthesizer>
<CsInstruments>
;Example by Davis Pyon
sr     = 44100
ksmps  = 32
nchnls = 2
0dbfs  = 1

instr 1
  iDur = p3
  iCps = cpsmidinn(p4)
 iMeth = 1
       print iDur, iCps, iMeth
aPluck pluck .2, iCps, iCps, 0, iMeth 
       outch 1, aPluck, 2, aPluck
endin
</CsInstruments>
<CsScore>
f0 86400
e
</CsScore>
</CsoundSynthesizer>

In the patch, notice how the arguments to the pack object are declared. The "i1" statement
tells Csound that we want to create an instance of instrument one. There is no space
between "i" and "1" because pack considers "i" as a special symbol signifying an integer. The
next number specifies the start time. Here, we use "0" because we want the event to start
right now. The duration "3." is specified as a floating point number so that we can have non-
integer durations. Finally, the number "64" determines the MIDI pitch. You might be wondering
why the pack object output is being sent to a message box. This is good practice as it will
reveal any mistakes you made in constructing an event message. 

In the text file, we access the event parameters using p-statements. We never access p1
(instrument number) or p2 (start time) because they are not important within the context of
our instrument. Although p3 (duration) is not used for anything here, it is often used to create
audio envelopes. Finally, p4 (MIDI pitch) is converted to cycles-per-second. The print
statement is there so that we can verify the parameter values.
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CSOUND VIA TERMINAL
45. CSOUND VIA TERMINAL
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45. CSOUND VIA TERMINAL
coming in the next release ... 
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CSOUND FRONTENDS
46. QUTECSOUND
47. WINXOUND
48. BLUE
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46. QuteCsound
QuteCsound is a free, cross-platform graphical frontend to Csound. It features syntax
highlighting, code completion and a graphical widget editor for realtime control of Csound. It
comes with many useful code examples, from basic tutorials to complex synthesizers and
pieces written in Csound. It also features an integrated Csound language help display.

QuteCsound can be used as a code editor tailored for Csound, as it facilitates running and
rendering Csound files without the need of typing on the command line using the Run and
Render buttons.

In the widget editor panel, you can create a variety of widgets to control Csound. To link the
value from a widget, you first need to set its channel, and then use the Csound opcode
invalue. To send values to widgets, e.g. for data display, you need to use the outvalue opcode.
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  QuteCsound also offers convenient facilities for score editing in a spreadsheet like
environment which can be transformed using Python scripting.

You will find more detailed information and video tutorials in the QuteCsound home page at
http://qutecsound.sourceforge.net. 
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47. WinXound
WinXound Description: 
WinXound is a free and open-source Front-End GUI Editor for CSound 5, CSoundAV, 
CSoundAC, with Python and Lua support, developed by Stefano Bonetti. 
It runs on Microsoft Windows, Apple Mac OsX and Linux. 
WinXound is optimized to work with the new CSound 5 compiler. 

WinXound Features:

Edit CSound, Python and Lua files (csd, orc, sco, py, lua) with Syntax Highlight and
Rectangular Selection;
Run CSound, CSoundAV, CSoundAC, Python and Lua compilers;
Run external language tools (QuteCsound, Idle, or other GUI Editors);
CSound analysis user friendly GUI;
Integrated CSound manual help;
Possibilities to set personal colors for the syntax highlighter;
Convert orc/sco to csd or csd to orc/sco;
Split code into two windows horizontally or vertically;
CSound csd explorer (File structure for Tags and Instruments);
CSound Opcodes autocompletion menu;
Line numbers;
Bookmarks;
...and much more ... (Download it!) 

Web Site and Contacts: 
- Web: winxound.codeplex.com 
- Email: stefano_bonetti@tin.it (or stefano_bonetti@alice.it)

  
REQUIREMENTS 

System requirements for Microsoft Windows:

Supported: Xp, Vista, Seven (32/64 bit versions);
(Note: For Windows Xp you also need the Microsoft Framework .Net version 2.0 or
major. You can download it from www.microsoft.com site);
CSound 5: http://sourceforge.net/projects/csound - (needed for CSound and LuaJit
compilers);
Not requested but suggested: CSoundAV by Gabriel Maldonado
(http://www.csounds.com/maldonado/);
Requested to work with Python: Python compiler (http://www.python.org/download/) 

System requirements for Apple Mac OsX:

Osx 10.5 or major;
CSound 5: http://sourceforge.net/projects/csound - (needed for CSound compiler);

System requirements for Linux:

Gnome environment or libraries;
Please, read carefully the "ReadMe" file in the source code. 

INSTALLATION AND USAGE 

Microsoft Windows Installation and Usage:
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Download and install the Microsoft Framework .Net version 2.0 or major (only for
Windows Xp);
Download and install the latest version of CSound 5
(http://sourceforge.net/projects/csound);
Download the WinXound zipped file, decompress it where you want (see the (*)note
below), and double-click on "WinXound_Net" executable;
(*)note: THE WINXOUND FOLDER MUST BE LOCATED IN A PATH WHERE YOU HAVE
FULL READ AND WRITE PERMISSION (for example in your User Personal folder). 

Apple Mac OsX Installation and Usage:

Download and install the latest version of CSound 5
(http://sourceforge.net/projects/csound);
Download the WinXound zipped file, decompress it and drag WinXound.app to your
Applications folder (or where you want). Launch it from there.

Linux Installation and Usage:

Download and install the latest version of CSound 5 for your distribution;
Ubuntu (32/64 bit): Download the WinXound zipped file, decompress it in a location where
you have the full read and write permissions;
To compile the source code: 
1) Before to compile WinXound you need to install: 
- gtkmm-2.4 (libgtkmm-2.4-dev) >= 2.12 
- vte (libvte-dev) 
- webkit-1.0 (libwebkit-dev) 

2) To compile WinXound open the terminal window, go into the uncompressed
"winxound_gtkmm" directory and type: 
./configure 
make 

3) To use WinXound without installing it: 
make standalone 
./bin/winxound 
[Note: WinXound folder must be located in a path where you have full read and write
permission.] 

4) To install WinXound: 
make install

Source Code:

Windows: The source code is written in C# using Microsoft Visual Studio C# Express
Edition 2008.
OsX: The source code is written in Cocoa and Objective-C using XCode 3.2 version.
Linux: The source code is written in C++ (Gtkmm) using Anjuta.

Note: The TextEditor is entirely based on the wonderful SCINTILLA text control by Neil Hodgson
(http://www.scintilla.org). 

Screenshots: 

Look at: winxound.codeplex.com 
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Credits: 
Many thanks for suggestions and debugging help to Roberto Doati, Gabriel Maldonado, Mark
Jamerson, Andreas Bergsland, Oeyvind Brandtsegg, Francesco Biasiol, Giorgio Klauer, Paolo
Girol, Francesco Porta, Eric Dexter, Menno Knevel, Joseph Alford, Panos Katergiathis, James
Mobberley, Fabio Macelloni, Giuseppe Silvi, Maurizio Goina, Andrés Cabrera, Peiman Khosravi,
Rory Walsh and Luis Jure. 

48. BLUE
blue is a Java-based music composition environment for use with Csound.  It provides higher
level abstractions such as a timeline, GUI-based instruments, score generating soundObjects
like pianoRolls, scripting, and more.  It is available at:

http://blue.kunstmusik.com 
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49. CSOUND UTILITIES
coming in the next release ... 
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50. THE CSOUND API
The basic Csound API is the C API. To use the Csound C API, you have to include csound.h in
your source file and to link your code with libcsound. Here is an example of the csound
command written using the Csound C API:

#include <csound/csound.h>

int main(int argc, char **argv)
{
  CSOUND *csound = csoundCreate(NULL);
  int result = csoundCompile(csound, argc, argv);
  if (result == 0) {
    result = csoundPerform(csound);
  }
  csoundDestroy(csound);
  return (result >= 0 ? 0 : result);
}

First we create an instance of Csound, getting an opaque pointer that will be passed to most C
API functions we will use. Then we compile the orc, sco pair of files or the csd file given as
input argument through the argv parameter of the main function. If the compilation is
successful (result == 0), we call the csoundPerform function. Finally, when csoundPerform
returns, we destroy our instance before ending the program.

On a linux system, with libcsound named libcsound64 (double version of the csound library),
supposing that all include and library paths are set correctly, we would build the above
example with the following command:

gcc -DUSE_DOUBLE -o csoundCommand csoundCommand.c -lcsound64

The C API has been wrapped in a C++ class for convenience. This gives the Csound basic C++
API. With this API, the above example would become:

#include <csound/csound.hpp>

int main(int argc, char **argv)
{
  Csound *cs = new Csound();
  int result = cs->Compile(argc, argv);
  if (result == 0) {
    result = cs->Perform();
  }
  return (result >= 0 ? 0 : result);
}

Here, we get a pointer to a Csound object instead of the csound opaque pointer. We call
methods of this object instead of C functions, and we don't need to call csoundDestroy in the
end of the program, because the C++ object destruction mechanism takes care of this. On our
linux system, the example would be built with the following command:

g++ -DUSE_DOUBLE -o csoundCommandCpp csoundCommand.cpp -lcsound64

The Csound API has been wrapped to other languages. The Csound Python API wraps the
Csound API to the Python language. To use this API, you have to import the csnd module. The
csnd module is normally installed in the site-packages or dist-packages directory of your
python distribution as a csnd.py file. Our csound command example becomes:

import sys
import csnd

def csoundCommand(args):
    csound = csnd.Csound()
    arguments = csnd.CsoundArgVList()
    for s in args:
        arguments.Append(s)
    result = csound.Compile(arguments.argc(), arguments.argv())
    if result == 0:
        result = csound.Perform()
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    return result

def main():
    csoundCommand(sys.argv)

if __name__ =='__main__':
    main()

We use a Csound object (remember Python has OOp features). Note the use of the
CsoundArgVList helper class to wrap the program input arguments into a C++ manageable
object. In fact, the Csound class has syntactic sugar (thanks to method  overloading) for the
Compile method. If you have less than six string arguments to pass to this method, you can
pass them directly. But here, as we don't know the number of arguments to our csound
command, we use the more general mechanism of the CsoundArgVList helper class.

The Csound Java API wraps the Csound API to the Java language. To use this API, you have to
import the csnd package. The csnd package is located in the csnd.jar archive which has to be
known from your Java path. Our csound command example becomes:

import csnd.*;

public class CsoundCommand
{
  private Csound csound = null;
  private CsoundArgVList arguments = null;

  public CsoundCommand(String[] args) {
    csound = new Csound();
    arguments = new CsoundArgVList();
    arguments.Append("dummy");
    for (int i = 0; i < args.length; i++) {
      arguments.Append(args[i]);
    }
    int result = csound.Compile(arguments.argc(), arguments.argv());
    if (result == 0) {
      result = csound.Perform();
    }
    System.out.println(result);
  }

  public static void main(String[] args) {
    CsoundCommand csCmd = new CsoundCommand(args);
  }
}

Note the "dummy" string as first argument in the arguments list. C, C++ and Python expect
that the first argument in a program argv input array is implicitly the name of the calling
program. This is not the case in Java: the first location in the program argv input array
contains the first command line argument if any.  So we have to had this "dummy" string
value in the first location of the arguments array so that the C API function called by our
csound.Compile method is happy.

This illustrates a fundamental point about the Csound API. Whichever API wrapper is used
(C++, Python, Java, etc), it is the C API which is working under the hood. So a thorough
knowledge of the Csound C API is highly recommended if you plan to use the Csound API in any
of its different flavours. The main source of information about the Csound C API is the
csound.h header file which is fully commented.

On our linux system, with csnd.jar located in /usr/local/lib/csound/java, our Java Program would
be compiled and run with the following commands:

javac -cp /usr/local/lib/csound/java/csnd.jar CsoundCommand.java
java -cp /usr/local/lib/csound/java/csnd.jar:. CsoundCommand

There are too an extended Csound C++ API, which adds to the Csound C++ API a CsoundFile
class, the CsoundAC C++ API, which provides a class hierarchy for doing algorithmic
composition using Michael Gogins' concept of music graphs, and API wrappers for the LISP, LUA
and HASKELL languages.
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In this introductory chapter we will focus on the basic C++ API, and the Python and Java API.

SCORE EVENTS 

CHANNEL I/O

CALLBACKS

THE THREADING ISSUE

CONCLUSION
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52. USING PYTHON INSIDE CSOUND
coming in the next release ...

For now, have a look at Andrés Cabrera, Using Python inside Csound, An introduction to the
Python opcodes, Csound Journal Issue 6, Spring 2007:
http://www.csounds.com/journal/issue6/pythonOpcodes.html 
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53. OPCODE GUIDE: OVERVIEW
If you run Csound from the command line with the option -z, you get a list of all opcodes.
Currently (Csound 5.13), the total number of all opcodes is about 1500. There are some
overviews and outlines for giving the user some help to find the opcodes which he needs for
his task; particularily the Opcodes Overview and the Opcode Quick Reference of the Canonical
Csound Manual .

This is another attempt to give some orientation. Compared to the above mentioned ones,
not all opcodes are listed, but the listed ones are commented briefly. Some opcodes appear
more than once, which is done with intent, because there are different contextes in which you
need the ftgen opcode, for instance. As the outline here is different from the overviews
mentioned above, you may be able to find better or worse what you are looking for. So use
this guide together with other sources and you should be able to find what you need.

 

BASIC SIGNAL PROCESSING

OSCILLATORS AND PHASORS

STANDARD OSCILLATORS

(oscils)  poscil  poscil3  oscili  oscil3  more 

DYNAMIC SPRECTRUM OSCILLATORS

buzz  gbuzz  mpulse  vco  vco2   

PHASORS

phasor  syncphasor  

RANDOM AND NOISE GENERATORS

(seed)  rand  randi  randh  rnd31  random  ( randomi /randomh)  pinkish  more   

ENVELOPES

SIMPLE STANDARD ENVELOPES

linen  linenr  adsr  madsr  more  

ENVELOPES BY LINEAR AND EXPONENTIAL GENERATORS 

linseg  expseg  transeg  ( linsegr  expsegr  transegr)  more  

ENVELOPES BY FUNCTION TABLES
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DELAYS

AUDIO DELAYS

vdelay  vdelayx  vdelayw  

delayr  delayw  deltap  deltapi  deltap3  deltapx  deltapxw  deltapn    

CONTROL DELAYS

delk  vdel_k  

FILTERS

Compare Standard Filters and Specialized Filters overviews. 

LOW PASS FILTERS

tone  tonex  butlp  clfilt   

HIGH PASS FILTERS

atone  atonex  buthp  clfilt   

BAND PASS AND RESONANT FILTERS

reson  resonx  resony  resonr  resonz  butbp   

BAND REJECT FILTERS

areson  butbr   

FILTERS FOR SMOOTHING CONTROL SIGNALS

port  portk  

REVERB

(pconvolve)  freeverb  reverbsc  reverb  nreverb  babo   

255

http://www.csounds.com/manual/html/vdelay.html
http://www.csounds.com/manual/html/vdelayx.html
http://www.csounds.com/manual/html/vdelayw.html
http://www.csounds.com/manual/html/delayr.html
http://www.csounds.com/manual/html/delayw.html
http://www.csounds.com/manual/html/deltap.html
http://www.csounds.com/manual/html/deltapi.html
http://www.csounds.com/manual/html/deltap3.html
http://www.csounds.com/manual/html/deltapx.html
http://www.csounds.com/manual/html/deltapxw.html
http://www.csounds.com/manual/html/deltapn.html
http://www.csounds.com/manual/html/delayk.html
http://www.csounds.com/manual/html/delayk.html
http://www.csounds.com/manual/html/SigmodStandard.html
http://www.csounds.com/manual/html/SigmodSpeciali.html
http://www.csounds.com/manual/html/tone.html
http://www.csounds.com/manual/html/tonex.html
http://www.csounds.com/manual/html/butterlp.html
http://www.csounds.com/manual/html/clfilt.html
http://www.csounds.com/manual/html/atone.html
http://www.csounds.com/manual/html/atonex.html
http://www.csounds.com/manual/html/butterhp.html
http://www.csounds.com/manual/html/clfilt.html
http://www.csounds.com/manual/html/reson.html
http://www.csounds.com/manual/html/resonx.html
http://www.csounds.com/manual/html/resony.html
http://www.csounds.com/manual/html/resonr.html
http://www.csounds.com/manual/html/resonz.html
http://www.csounds.com/manual/html/butterbp.html
http://www.csounds.com/manual/html/areson.html
http://www.csounds.com/manual/html/butterbp.html
http://www.csounds.com/manual/html/port.html
http://www.csounds.com/manual/html/portk.html
http://www.csounds.com/manual/html/pconvolve.html
http://www.csounds.com/manual/html/freeverb.html
http://www.csounds.com/manual/html/reverbsc.html
http://www.csounds.com/manual/html/reverb.html
http://www.csounds.com/manual/html/nreverb.html
http://www.csounds.com/manual/html/babo.html


SIGNAL MEASUREMENT, DYNAMIC PROCESSING, SAMPLE LEVEL
OPERATIONS

AMPLITUDE MEASUREMENT AND FOLLOWING

rms  balance  follow  follow2  peak  max_k   

PITCH ESTIMATION

ptrack  pitch  pitchamdf  pvscent   

TEMPO ESTIMATION

tempest   

DYNAMIC PROCESSING

compress  dam  clip  

SAMPLE LEVEL OPERATIONS

limit  samphold  vaget  vaset   

 SPATIALIZATION

PANNING

pan2  pan   

VBAP

vbaplsinit  vbap4  vbap8  vbap16  

AMBISONICS

bformenc1  bformdec1   

BINAURAL / HRTF

hrtfstat  hrtfmove  hrtfmove2  hrtfer  

ADVANCED SIGNAL PROCESSING
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MODULATION AND DISTORTION

FREQUENCY MODULATION

foscil  foscili  

crossfm  crossfmi  crosspm  crosspmi  crossfmpm  crossfmpmi  

DISTORTION AND WAVE SHAPING

distort  distort1  powershape  polynomial  chebyshevpoly   

FLANGING, PHASING, PHASE SHAPING

flanger  harmon  phaser1  phaser2  pdclip  pdhalf  pdhalfy  

DOPPLER SHIFT

doppler  

GRANULAR SYNTHESIS

partikkel  others  sndwarp  

CONVOLUTION

pconvolve  ftconv  dconv   

FFT AND SPECTRAL PROCESSING

REALTIME ANALYSIS AND RESYNTHESIS 

pvsanal  pvstanal  pvsynth  pvsadsyn   

WRITING FFT DATA TO A FILE AND READING FROM IT

pvsfwrite  pvanal  pvsfread  pvsdiskin  

WRITING FFT DATA TO A BUFFER AND READING FROM IT 

pvsbuffer  pvsbufread  pvsftw  pvsftr   

FFT INFO 

pvsinfo  pvsbin  pvscent   

MANIPULATING FFT SIGNALS 

pvscale  pvshift  pvsbandp  pvsbandr  pvsmix  pvscross  pvsfilter  pvsvoc 
pvsmorph pvsfreeze  pvsmaska  pvsblur  pvstencil  pvsarp  pvsmooth  

PHYSICAL MODELS AND FM INSTRUMENTS

WAVEGUIDE PHYSICAL MODELLING

see here  and here  

FM INSTRUMENT MODELS

see here    
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DATA

BUFFER / FUNCTION TABLES

CREATING FUNCTION TABLES (BUFFERS)

ftgen  GEN Routines  

WRITING TO TABLES

tableiw  / tablew     tabw_i  / tabw 

READING FROM TABLES 

table  / tablei  / table3     tab_i  / tab 

SAVING TABLES TO FILES 

ftsave  / ftsavek    TableToSF    

READING TABLES FROM FILES

ftload  / ftloadk     GEN23   

SIGNAL INPUT/OUTPUT, SAMPLE AND LOOP PLAYBACK,
SOUNDFONTS

SIGNAL INPUT AND OUTPUT

inch  ;  outch  out  outs  ;  monitor  

SAMPLE PLAYBACK WITH OPTIONAL LOOPING

flooper2  sndloop   

SOUNDFONTS AND FLUID OPCODES

fluidEngine  fluidSetInterpMethod  fluidLoad  fluidProgramSelect  fluidNote 
fluidCCi  fluidCCk  fluidControl  fluidOut  fluidAllOut  

FILE INPUT AND OUTPUT

SOUND FILE INPUT 

soundin  diskin  diskin2  mp3in  (GEN01)  

SOUND FILE QUERIES 

filelen  filesr  filenchnls  filepeak  filebit   

SOUND FILE OUTPUT 

fout  

NON-SOUNDFILE INPUT AND OUTPUT 

readk   GEN23   dumpk   fprints / fprintks   ftsave  / ftsavek    ftload  / ftloadk 
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CONVERTERS OF DATA TYPES 

I <- K 

i(k)  

K <- A 

downsamp   max_k   

A <- K

upsamp  interp   

PRINTING AND STRINGS 

SIMPLE PRINTING 

print  printk  printk2  puts  

FORMATTED PRINTING 

prints  printf_i  printks  printf   

STRING VARIABLES 

sprintf  sprintfk  strset  strget   

STRING MANIPULATION AND CONVERSION

see here  and here    

REALTIME INTERACTION

MIDI

OPCODES FOR USE IN MIDI-TRIGGERED INSTRUMENTS 

massign  pgmassign  notnum  cpsmidi  veloc  ampmidi  midichn  pchbend 
aftouch  polyaft  

OPCODES FOR USE IN ALL INSTRUMENTS

ctrl7  ( ctrl14/ctrl21) initc7  ctrlinit  ( initc14/initc21)  midiin  midiout   

OPEN SOUND CONTROL AND NETWORK

OPEN SOUND CONTROL

OSCinit  OSClisten  OSCsend   

REMOTE INSTRUMENTS

remoteport  insremot  insglobal  midiremot  midiglobal   

NETWORK AUDIO

socksend  sockrecv    
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HUMAN INTERFACES

WIDGETS

FLTK overview here   

KEYS

sensekey  

MOUSE

xyin  

WII

wiiconnect  wiidata  wiirange  wiisend  

P5 GLOVE

p5gconnect  p5gdata 

INSTRUMENT CONTROL

SCORE PARAMETER ACCESS

p(x)  pindex  pset  passign  pcount   

TIME AND TEMPO

TIME READING

times/timek     timeinsts/timeinstk   date/dates    setscorepos   

TEMPO READING

tempo  miditempo  tempoval   

DURATION MODIFICATIONS

ihold  xtratim  

TIME SIGNAL GENERATORS

metro  mpulse  

CONDITIONS AND LOOPS

changed  trigger  if  loop_lt/loop_le/loop_gt/loop_ge  

PROGRAM FLOW

init  igoto  kgoto  timout   reinit/rigoto/rireturn  

EVENT TRIGGERING

event_i  / event    scoreline_i  / scoreline    schedkwhen   seqtime /seqtime2  
timedseq   
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INSTRUMENT SUPERVISION

INSTANCES AND ALLOCATION

active  maxalloc  prealloc   

TURNING ON AND OFF

turnon    turnoff/turnoff2   mute   remove   exitnow   

NAMED INSTRUMENTS

nstrnum 

SIGNAL EXCHANGE AND MIXING

CHN OPCODES

chn_k  / chn_a  / chn_S    chnset   chnget   chnmix   chnclear  

ZAK?  

MATH

MATHEMATICAL CALCULATIONS

ARITHMETIC OPERATIONS

+    -    *    /    ^   %  

exp(x)    log(x)   log10(x)   sqrt(x)  

abs(x)  int(x)  frac(x)  

round(x)  ceil(x)  floor(x)  

TRIGONOMETRIC FUNCTIONS

sin(x)   cos(x)   tan(x)  

sinh(x)   cosh(x)   tanh(x)  

sininv(x)   cosinv(x)   taninv(x)   taninv2(x)  

LOGIC OPERATORS

&&    ||   
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CONVERTERS

MIDI TO FREQUENCY 

cpsmidi  cpsmidinn   more 

FREQUENCY TO MIDI

F2M   F2MC  (UDO's) 

CENT VALUES TO FREQUENCY 

cent   

AMPLITUDE CONVERTERS

ampdb  ampdbfs  dbamp  dbfsamp  

SCALING 

Scali   Scalk   Scala  (UDO's) 

PYTHON AND SYSTEM

PYTHON OPCODES

pyinit  pyrun  pyexec  pycall  pyeval  pyassign  

SYSTEM OPCODES

getcfg   system/system_i  

PLUGINS 

PLUGIN HOSTING

LADSPA

dssiinit  dssiactivate  dssilist  dssiaudio  dssictls   

VST

vstinit   vstaudio/vstaudiog   vstmidiout   vstparamset/vstparamget   vstnote  
vstinfo  vstbankload   vstprogset   vstedit  

EXPORTING CSOUND FILES TO PLUGINS 

 

54. OPCODE GUIDE: BASIC SIGNAL
PROCESSING
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OSCILLATORS AND PHASORS

STANDARD OSCILLATORS

oscils is a very simple sine oscillator which can be used for quick tests. It needs
no function table, but provides just i-rate arguments.

ftgen generates a function table, which is needed by any oscillator except oscils.
The GEN Routines fill the function table with any desired waveform, either a sine
wave or any other curve. Compare the function table chapter of this manual for
more information. 

poscil can be recommended as standard oscillator because it is very precise also
for long tables and low frequencies. It provides linear interpolation, any rate for
the input arguments, and works also for non-power-of-two tables. poscil3 provides
cubic interpolation, but has just k-rate input. Other common oscillators are oscili
and oscil3. They are less precise than poscil/poscili, but you can skip the
initialization which can be useful in certain situations. The oscil opcode does not
provide any interpolation, so it should usually be avoided. More Csound oscillators
can be found here.

DYNAMIC SPECTRUM OSCILLATORS

buzz and gbuzz generate a set of harmonically related sine resp. cosine partials.

mpulse generates a set of impulses.

vco and vco2 implement band-limited, analog modeled oscillators with different
standard waveforms.

PHASORS

phasor produces the typical moving phase values between 0 and 1. The more
complex syncphasor lets you synchronize more than one phasor precisely.

RANDOM AND NOISE GENERATORS

seed sets the seed value for the majority of the Csound random generators (seed 0
generates each time another random output, while any other seed value generates the
same random chain on each new run). 

rand is the usual opcodes for bipolar random values. If you give 1 as input argument
(called "amp"), you will get values between -1 and +1. randi interpolates between values
which are generated in a (variable) frequency. randh holds the value until the next one is
generated. You can control the seed value by an input argument (a value greater than 1
seeds from current time), you can decide whether to use a 16bit or a 31bit random
number, and you can add an offset. 

rnd31 can be used for alle rates of variables (i-rate variables are not supported by rand).
It gives the user also control over the random distribution, but has no offset parameter.

random is often very convenient to use, because you have a minimum and a maximum
value as input argument, instead of a range like rand and rnd31. It can also be used for
all rates, but you have no direct seed input, and the randomi/randomh variants always
start from the lower border, instead anywhere between the borders.

pinkish produces pink noise at audio-rate (white noise is produced by rand).

There are much more random opcodes. Here is an overview. It is also possible to use
some GEN Routines for generating random distributions. They can be found in the GEN
Routines overview.
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ENVELOPES

SIMPLE STANDARD ENVELOPES

linen applies a linear rise (fade in) and decay (fade out) to a signal. It is very easy
to use, as you put the raw audio signal in and get the enveloped signal out.

linenr does the same for any note which's duration is not fixed at the beginning,
like MIDI notes or any real time events. linenr begins to fade out exactly when the
instrument is turned off, adding an extra time after this turnoff.

adsr calculates the classical attack-decay-sustain-release envelope. The result is
to be multiplied with the audio signal to get the enveloped signal.

madsr does the same for a realtime note (like explained above for linenr).

Other standard envelope generators can be found in the Envelope Generators
overview of the Canonical Csound Manual.

ENVELOPES BY LINEAR AND EXPONENTIAL GENERATORS 

linseg creates one or more segments of lines between specified points.

expseg does the same with exponential segments. Note that zero values are
illegal.

transeg is very flexible to use, because you can specify the shape of the curve for
each segment (continuous transitions from convex to linear to concave).

All these opcodes have a -r variant (linsegr, expsegr, transegr) for MIDI or other
live events.

More opcodes can be found in this overview.

ENVELOPES BY FUNCTION TABLES

Any curve, or parts of it, of any function table, can be used as envelope. Just
create a function table by ftgen resp. by a GEN Routine. Then read the function
table, or a part of it, by an oscillator, and multiply the result with the audio signal
you want to envelope.  

264

http://www.csounds.com/manual/html/linen.html
http://www.csounds.com/manual/html/linen.html
http://www.csounds.com/manual/html/linenr.html
http://www.csounds.com/manual/html/adsr.html
http://www.csounds.com/manual/html/madsr.html
http://www.csounds.com/manual/html/SiggenEnvelope.html
http://www.csounds.com/manual/html/linseg.html
http://www.csounds.com/manual/html/expseg.html
http://www.csounds.com/manual/html/transeg.html
http://www.csounds.com/manual/html/linsegr.html
http://www.csounds.com/manual/html/expsegr.html
http://en.flossmanuals.net/bin/view/Csound/transegr
http://www.csounds.com/manual/html/SiggenLineexp.html
http://www.csounds.com/manual/html/ftgen.html
http://www.csounds.com/manual/html/ScoreGenRef.html


DELAYS

AUDIO DELAYS

The vdelay familiy of opcodes is easy to use and implement all necessary
features to work with delays:

vdelay implements a variable delay at audio rate with linear interpolation.

vdelay3 offers cubic interpolation.

vdelayx has an even higher quality interpolation (and is by this reason slower).
vdelayxs lets you input and output two channels, and vdelayxq four.

vdelayw changes the position of the write tap in the delay line instead of the read
tap. vdelayws is for stereo, and vdelaywq for quadro.

The delayr/delayw opcodes establishes a delay line in a more complicated way.
The advantage is that you can have as many taps in one delay line as you need.

delayr establishes a delay line and reads from it.

delayw writes an audio signal to the delay line.

deltap, deltapi, deltap3, deltapx and deltapxw are working similar to the
relevant opcodes of the vdelay family (see above).

deltapn offers a tap delay measured in samples, not seconds.

CONTROL DELAYS

delk and vdel_k let you delay any k-signal by some time interval (usable for
instance as a kind of wait mode).
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FILTERS

Csound has an extremely rich collection of filters and they are good available on the
Csound Manual pages for Standard Filters and Specialized Filters. So here some most
frequently used filters are mentioned, and some tips are given. Note that filters usually
change the signal level, so you will need the balance opcode.

LOW PASS FILTERS

tone is a first order recursive low pass filter. tonex implements a series of tone
filters. 

butlp is a seond order low pass Butterworth filter.

clfilt lets you choose between different types and poles numbers.

HIGH PASS FILTERS

atone is a first order recursive high pass filter. atonex implements a series of
atone filters. 

buthp is a second order high pass Butterworth filter.

clfilt lets you choose between different types and poles numbers. 

BAND PASS AND RESONANT FILTERS

reson is a second order resonant filter. resonx implements a series of reson
filters, while resony emulates a bank of second order bandpass filters in parallel.
resonr and resonz are variants of reson with variable frequency response. 

butbp is a second order band-pass Butterworth filter.

BAND REJECT FILTERS

areson is the complement of the reson filter.  

butbr is a band-reject butterworth filter.

FILTERS FOR SMOOTHING CONTROL SIGNALS

port and portk are very frequently used to smooth control signals which are
received by MIDI or widgets.

REVERB

Note that you can work easily in Csound with convolution reverbs based on impulse
response files, for instance with pconvolve. 

freeverb is the implementation of Jezar's well-known free (stereo) reverb.

reverbsc is a stereo FDN reverb, based on work of Sean Costello.

reverb and nreverb are the traditional Csound reverb units.

babo is a physical model reverberator ("ball within the box").

266

http://www.csounds.com/manual/html/SigmodStandard.html
http://www.csounds.com/manual/html/SigmodSpeciali.html
http://www.csounds.com/manual/html/balance.html
http://www.csounds.com/manual/html/tone.html
http://www.csounds.com/manual/html/tone.html
http://www.csounds.com/manual/html/tonex.html
http://www.csounds.com/manual/html/butterlp.html
http://www.csounds.com/manual/html/clfilt.html
http://www.csounds.com/manual/html/atone.html
http://www.csounds.com/manual/html/atone.html
http://www.csounds.com/manual/html/atonex.html
http://www.csounds.com/manual/html/butterhp.html
http://www.csounds.com/manual/html/clfilt.html
http://www.csounds.com/manual/html/reson.html
http://www.csounds.com/manual/html/reson.html
http://www.csounds.com/manual/html/resonx.html
http://www.csounds.com/manual/html/resony.html
http://www.csounds.com/manual/html/resonr.html
http://www.csounds.com/manual/html/resonz.html
http://www.csounds.com/manual/html/butterbp.html
http://www.csounds.com/manual/html/areson.html
http://www.csounds.com/manual/html/areson.html
http://www.csounds.com/manual/html/butterbp.html
http://www.csounds.com/manual/html/port.html
http://www.csounds.com/manual/html/port.html
http://www.csounds.com/manual/html/portk.html
http://www.csounds.com/manual/html/pconvolve.html
http://www.csounds.com/manual/html/freeverb.html
http://www.csounds.com/manual/html/reverbsc.html
http://www.csounds.com/manual/html/reverb.html
http://www.csounds.com/manual/html/nreverb.html
http://www.csounds.com/manual/html/babo.html


SIGNAL MEASUREMENT, DYNAMIC PROCESSING,
SAMPLE LEVEL OPERATIONS

AMPLITUDE MEASUREMENT AND FOLLOWING

rms determines the root-mean-square amplitude of an audio signal.

balance adjusts the amplitudes of an audio signal according to the rms amplitudes
of another audio signal. 

follow / follow2 are envelope followers which report the average amplitude in a
certain time span (follow) or according to an attack/decay rate (follow2). 

peak reports the highest absolute amplitude value received. 

max_k outputs the local maximum or minimum value of an incoming audio signal,
checked in a certain time interval.

PITCH ESTIMATION

ptrack, pitch and pitchamdf track the pitch of an incoming audio signal, using
different methods. 

pvscent calculates the spectral centroid for FFT streaming signals (see below
under "FFT And Spectral Processing")

TEMPO ESTIMATION

tempest estimates the tempo of beat patterns in a control signal.  

DYNAMIC PROCESSING

compress compresses, limits, expands, ducks or gates an audio signal. 

dam is a dynamic compressor/expander. 

clip clips an a-rate signal to a predefined limit, in a “soft” manner.

SAMPLE LEVEL OPERATIONS

limit sets the lower and upper limits of an incoming value (all rates). 

samphold performs a sample-and-hold operation on its a- or k-input. 

vaget / vaset allow getting and setting certain samples of an audio vector at k-
rate.
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 SPATIALIZATION

PANNING

pan2 distributes a mono audio signal across two channels, with different envelope
options. 

pan distributes a mono audio signal amongst four channels.

VBAP

vbaplsinit configures VBAP output according to loudspeaker parameters for a 2-
or 3-dimensional space. 

vbap4 / vbap8 / vbap16 distributes an audio signal among up to 16 channels, with
k-rate control over azimut, elevation and spread.

AMBISONICS

bformenc1 encodes an audio signal to the Ambisonics B format. 

bformdec1 decodes Ambisonics B format signals to loudspeaker signals in different
possible configurations.

BINAURAL / HRTF

hrtfstat, hrtfmove and hrtfmove2 are opcodes for creating 3d binaural audio for
headphones. hrtfer is an older implementation, using an external file. 
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MODULATION AND DISTORTION

FREQUENCY MODULATION

foscil and foscili implement composite units for FM in the Chowning setup. 

crossfm, crossfmi, crosspm, crosspmi, crossfmpm and crossfmpmi are
different units for frequency and/or phase modulation.

DISTORTION AND WAVE SHAPING

distort and distort1 perform waveshaping by a function table (distort) or by
modified hyperbolic tangent distortion (distort1). 

powershape waveshapes a signal by raising it to a variable exponent.

polynomial efficiently evaluates a polynomial of arbitrary order.

chebyshevpoly efficiently evaluates the sum of Chebyshev polynomials of
arbitrary order. 

GEN03, GEN13, GEN14 and GEN15 are also used for Waveshaping.

FLANGING, PHASING, PHASE SHAPING

flanger implements a user controllable flanger.

harmon analyzes an audio input and generates harmonizing voices in synchrony. 

phaser1 and phaser2 implement first- or second-order allpass filters arranged in a
series. 

pdclip, pdhalf and pdhalfy are useful for phase distortion synthesis.

DOPPLER SHIFT

doppler lets you calculate the doppler shift depending on the position of the sound
source and the microphone.

GRANULAR SYNTHESIS

partikkel is the most flexible opcode for granular synthesis. You should be able to do
everything you like in this field. The only drawback is the large number of input
arguments, so you may want to use other opcodes for certain purposes.

You can find a list of other relevant opcodes here. 

sndwarp focusses granular synthesis on time stretching and/or pitch modifications.
Compare waveset and the pvs-opcodes pvsfread, pvsdiskin, pvscale, pvshift for other
implementations of time and/or pitch modifications.

CONVOLUTION

pconvolve performs convolution based on a uniformly partitioned overlap-save
algorithm. 

ftconv is similar to pconvolve, but you can also use parts of the impulse response file,
instead of reading the whole file. 

dconv performs direct convolution. 
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FFT AND SPECTRAL PROCESSING
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REALTIME ANALYSIS AND RESYNTHESIS 

pvsanal performs a Fast Fourier Transformation of an audio stream (a-signal) and
stores the result in an f-variable.

pvstanal creates an f-signal directly from a sound file which is stored in a function
table (usually via GEN01).  

pvsynth performs an Inverse FFT (takes a f-signal and returns an audio-signal).

pvsadsyn is similar to pvsynth, but resynthesizes with a bank of oscillators,
instead of direct IFFT.

WRITING FFT DATA TO A FILE AND READING FROM IT

pvsfwrite writes an f-signal (= the FFT data) from inside Csound to a file. This file
has the PVOCEX format and its name ends on .pvx.

pvanal does actually the same as Csound Utility (a seperate program which can be
called in QuteCsound or via the Terminal). In this case, the input is an audio file.

pvsfread reads the FFT data from an extisting .pvx file. This file can be generated
by the Csound Utility pvanal. Reading the file is done by a time pointer.

pvsdiskin is similar to pvsfread, but reading is done by a speed argument.

WRITING FFT DATA TO A BUFFER AND READING FROM IT 

pvsbuffer writes a f-signal to a circular buffer (and creates it).

pvsbufread reads a f-signal from a buffer which was created by pvsbuffer.

pvsftw writes amplitude and/or frequency data from a f-signal to a function table.

pvsftr transforms amplitude and/or frequency data from a function table to a f-
signal.

FFT INFO 

pvsinfo gets info either from a realtime f-signal or from a .pvx file.

pvsbin gets the amplitude and frequency values from a single bin of a f-signal.

pvscent calculates the spectral centroid of a signal. 

MANIPULATING FFT SIGNALS 

pvscale transposes the frequency components of a f-stream by simple
multiplication.

pvshift changes the frequency components of a f-stream by adding a shift value,
starting at a certain bin.

pvsbandp and pvsbandr applies a band pass and band reject filter to the
frequency components of a f-signal.

pvsmix, pvscross, pvsfilter, pvsvoc and pvsmorph perform different methods
of cross synthesis between two f-signals.

pvsfreeze freezes the amplitude and/or frequency of a f-signal according to a k-
rate trigger.

pvsmaska, pvsblur, pvstencil, pvsarp, pvsmooth perform other manipulations
on a stream of FFT data.
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PHYSICAL MODELS AND FM INSTRUMENTS

WAVEGUIDE PHYSICAL MODELLING

see here  and here  

FM INSTRUMENT MODELS

see here    
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BUFFER / FUNCTION TABLES

See the chapter about function tables for more detailled information.  

CREATING FUNCTION TABLES (BUFFERS)

ftgen generates any function table. The GEN Routines are used to fill a function
table with different kind of data, like soundfiles, envelopes, window functions and
much more.

WRITING TO TABLES

tableiw /
tablew: Write values to a function table at i-rate (tableiw), k-rate and a-rate
(tablew). These opcodes provide many options and are safe because of boundary
check, but you may have problems with non-power-of-two tables.

tabw_i / tabw: Write values to a function table at i-rate (tabw_i), k-rate or a-rate
(tabw). Offer less options than the tableiw/tablew opcodes, but work also for non-
power-of-two tables. They do not provide a boundary check, which makes them
fast but also give the user the resposability not writing any value off the table
boundaries.

READING FROM TABLES 

table / tablei / table3: Read values from a function table at any rate, either by
direct indexing (table), or by linear (tablei) or cubic (table3) interpolation. These
opcodes provide many options and are safe because of boundary check, but you
may have problems with non-power-of-two tables.

tab_i / tab: Read values from a function table at i-rate (tab_i), k-rate or a-rate
(tab). Offer no interpolation and less options than the table opcodes, but they
work also for non-power-of-two tables. They do not provide a boundary check,
which makes them fast but also give the user the resposability not reading any
value off the table boundaries.

SAVING TABLES TO FILES 

ftsave / ftsavek: Save a function table as a file, at i-time (ftsave) or k-time
(ftsavek). This can be a text file or a binary file, but not a soundfile. If you want to
save a soundfile, use the User Defined Opcode TableToSF. 

READING TABLES FROM FILES

ftload / ftloadk: Load a function table which has been written by ftsave/ftsavek.

GEN23 transfers a text file into a function table. 
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SIGNAL INPUT/OUTPUT, SAMPLE AND LOOP
PLAYBACK, SOUNDFONTS

SIGNAL INPUT AND OUTPUT

inch read the audio input from any channel of your audio device. Make sure you
have the nchnls value in the orchestra header set properly. 

outch writes any audio signal(s) to any output channel(s). If Csound is in realtime
mode (by the flag '-o dac' or by the 'Render in Realtime' mode of a frontend like
QuteCsound), the output channels are the channels of your output device. If
Csound is in 'Render to file' mode (by the flag '-o mysoundfile.wav' or the the
frontend's choice), the output channels are the channels of the soundfile which is
being written. Make sure you have the nchnls value in the orchestra header set
properly to get the number of channels you wish to have.

out and outs are frequently used for mono and stereo output. They always write
to channel 1 (out) resp. 1 and 2 (outs). 

monitor can be used (in an instrument with the highest number) to get the sum of
all audio on the different output channels.

SAMPLE PLAYBACK WITH OPTIONAL LOOPING

flooper2 is a function-table-based crossfading looper. 

sndloop records input audio and plays it back in a loop with user-defined duration
and crossfade time. 

Note that there are also User Defined Opcodes for sample playback of buffers /
function tables.

SOUNDFONTS AND FLUID OPCODES

fluidEngine instantiates a FluidSynth engine. 

fluidSetInterpMethod sets an interpolation method for a channel in a FluidSynth
engine. 

fluidLoad loads SoundFonts. 

fluidProgramSelect assigns presets from a SoundFont to a FluidSynth engine's
MIDI channel. 

fluidNote plays a note on a FluidSynth engine's MIDI channel. 

fluidCCi sends a controller message at i-time to a FluidSynth engine's MIDI
channel. 

fluidCCk sends a controller message at k-rate to a FluidSynth engine's MIDI
channel. 

fluidControl plays and controls loaded Soundfonts (using 'raw' MIDI messages). 

fluidOut receives audio from a single FluidSynth engine. 

fluidAllOut receives audio from all FluidSynth engines.
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FILE INPUT AND OUTPUT

SOUND FILE INPUT 

soundin reads from a soundfile (up to 24 channels). Make sure that the sr value in
the orchestra header matches the sample rate of your soundfile, or you will get
higher or lower pitched sound. 

diskin is like soundin, but can also alter the speed of reading (resulting in higher or
lower pitches) and you have an option to loop the file. 

diskin2 is like diskin, but automatically converts the sample rate of the soundfile
if it does not match the sample rate of the orchestra, and it offers different
interpolation methods for reading the soundfile at altered speed.

GEN01 reads soundfile into a function table (buffer).

mp3in lets you play mp3 sound files. 

SOUND FILE QUERIES 

filelen returns the length of a soundfile in seconds.

filesr returns the sample rate of a soundfile.

filenchnls returns the number of channels of a soundfile.

filepeak returns the peak absolute value of a soundfile, either of one specified
channel, or from all channels. Make sure you have set 0dbfs to 1; otherwise you
will get values relative to Csound's default 0dbfs value of 32768.

filebit returns the bit depth of a soundfile.

SOUND FILE OUTPUT 

Keep in mind that Csound always writes output to a file if you have set the '-o'
flag to the name of a soundfile (or if you choose 'render to file' in a frontend like
QuteCound). 

fout writes any audio signal(s) to a file, regardless Csound is in realtime or render-
to-file mode. So you can record your live performance with this opcode.

NON-SOUNDFILE INPUT AND OUTPUT 

readk can read data from external files (for instance a text file) and transform
them to k-rate values. 

GEN23 transfers a text file into a function table.

dumpk writes k-rate signals to a text file.

fprints / fprintks write any formatted string to a file. If you call this opcode
several times during one performance, the strings are appended. If you write to an
already existing file, the file will be overwritten. 

ftsave / ftsavek: Save a function table as a binary or text file, in a specific
format.

ftload / ftloadk: Load a function table which has been written by ftsave/ftsavek.
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CONVERTERS OF DATA TYPES 

I <- K 

i(k) returns the value of a k-variable at init-time. This can be useful to get the
value of GUI controllers, or when using the reinit feature.

K <- A 

downsamp converts an a-rate signal to a k-rate signal, with optional averaging. 

max_k returns the maximum of an a-rate signal in a certain time span, with
different options of calculation 

A <- K

upsamp converts a k-rate signal to an a-rate signal by simple repetitions. It is the
same as the statement asig=ksig. 

interp converts a k-rate signal to an a-rate signal by interpolation.
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PRINTING AND STRINGS 

SIMPLE PRINTING 

print is a simple opcode for printing i-variables. Note that the printed numbers are
rounded to 3 decimal places.

printk is its counterpart for k-variables. The itime argument specifies the time in
seconds between printings (itime=0 means one printout in each k-cycle which is
usually some thousand printings per second).

printk2 prints a k-variable whenever it has changed.

puts prints S-variables. The ktrig argument lets you print either at i-time or at k-
time.

FORMATTED PRINTING 

prints lets you print a format string at i-time. The format is similar to the C-style
syntax (verweis). There is no %s format, therefore no string variables can be
printed.

printf_i is very similar to prints. It also works at init-time. The advantage in
comparision to prints is the ability of printing string variables. On the other hand, 
you need a trigger and at least one input argument.

printks is like prints, but takes k-variables, and like at printk you must specify a
time between printing.

printf is like printf_i, but works at k-rate.

STRING VARIABLES 

sprintf works like printf_i, but stores the output in a string variable, instead of
printing it out.

sprintfk is the same for k-rate arguments.

strset links any string with a numeric value.

strget transforms a strset number back to a string.

STRING MANIPULATION AND CONVERSION

There are many opcodes for analysing, manipulating and conversing strings. There
is a good overview in the Canonical Csound Manual on this and that page.
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MIDI

OPCODES FOR USE IN MIDI-TRIGGERED INSTRUMENTS 

massign assigns certain midi channels to instrument numbers. See the Triggering
Instrument Instances chapter for more information.

pgmassign assigns certain program changes to instrument numbers. 

notnum gets the midi number of the key which has been pressed and activated
this instrument instance. 

cpsmidi converts this note number to the frequency in cycles per second (Hertz).

veloc and ampmidi get the velocity of the key which has been pressed and
activated this instrument instance.

midichn returns the midi channel number from which the note was activated.

pchbend gets the pitch bend information.

aftouch and polyaft get the aftertouch information.

OPCODES FOR USE IN ALL INSTRUMENTS

ctrl7 gets the values of a usual (7bit) controller and scales it. ctrl14 and ctrl21 can
be used for high definition controllers.

initc7 or ctrlinit set the initial value of 7bit controllers. Use initc14 and initc21 for
high definition devices. 

midiin gives access to all incoming midi events. 

midiout writes any event to the midi out port.
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OPEN SOUND CONTROL AND NETWORK

OPEN SOUND CONTROL

OSCinit initializes a port for later use of the OSClisten opcode.

OSClisten receives messages of the port which was initialized by OSCinit.

OSCsend sends messages to a port.

REMOTE INSTRUMENTS

remoteport defines the port for use with the remote system. 

insremot will send note events from a source machine to one destination. 

insglobal will send note events from a source machine to many destinations. 

midiremot will send midi events from a source machine to one destination. 

midiglobal will broadcast the midi events to all the machines involved in the
remote concert.

NETWORK AUDIO

socksend sends audio data to other processes using the low-level UDP or TCP
protocols. 

sockrecv receives audio data from other processes using the low-level UDP or
TCP protocols.
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HUMAN INTERFACES

WIDGETS

The FLTK Widgets are integrated in Csound. Information and examples can be
found here.

QuteCsound implements a more modern and easy-to-use system for widgets. The
communication between the widgets and Csound is done via invalue (or chnget)
and outvalue (or chnset).

KEYS

sensekey gets the input of your computer keys.

MOUSE

xyin can get the mouse position if your frontend does not provide this sensing
otherwise.

WII

wiiconnect reads data from a number of external Nintendo Wiimote controllers.

wiidata reads data fields from a number of external Nintendo Wiimote controllers.

wiirange sets scaling and range limits for certain Wiimote fields. 

wiisend sends data to one of a number of external Wii controllers.

P5 GLOVE

p5gconnect reads data from an external P5 Glove controller. 

p5gdata reads data fields from an external P5 Glove controller.
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SCORE PARAMETER ACCESS

p(x) gets the value of a specified p-field. (So, 'p(5)' and 'p5' both return the value of the
fifth parameter in a certain score line, but in the former case you can insert a variable
to specify the p-field. 

pindex does actually the same, but as an opcode instead of an expression. 

pset sets p-field values in case there is no value from a scoreline. 

passign assigns a range of p-fields to i-variables. 

pcount returns the number of p-fields belonging to a note event.

TIME AND TEMPO

TIME READING

times / timek return the time in seconds (times) or in control cycles (timek) since
the start of the current Csound performance. 

timeinsts / timeinstk return the time in seconds (timeinsts) or in control cycles
(timeinstk) since the start of the instrument in which they are defined. 

date / dates return the number of seconds since 1 January 1970, using the
operating system's clock; either as a number (date) or as a string (dates). 

setscorepos sets the playback position of the current score performance to a
given position.

TEMPO READING

tempo allows the performance speed of Csound scored events to be controlled
from within an orchestra. 

miditempo returns the current tempo at k-rate, of either the midi file (if
available) or the score.

tempoval reads the current value of the tempo.

DURATION MODIFICATIONS

ihold causes a finite-duration note to become a 'held' note. 

xtratim extend the duration of the current instrument instance.

TIME SIGNAL GENERATORS

metro outputs a metronome-like control signal in a variable frequency.

mpulse generates an impulse for one sample (as audio-signal), followed by a
variable time span.

CONDITIONS AND LOOPS

changed reports whether a k-variable (or at least one of some k-variables) has
changed.

trigger informs whether a k-rate signal crosses a certain threshold.

if branches conditionally at initialization or during performance time.

loop_lt, loop_le, loop_gt and loop_ge perform loops either at i- or k-time.
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PROGRAM FLOW

init initializes a k- or a-variable (assigns a value to a k- or a-variable which is valid at i-
time). 

igoto jumps to a label at i-time. 

kgoto jumps to a label at k-time. 

timout jumps to a label for a given time. Can be used in conjunction with reinit to
perform time loops (see the chapter about Control Structures for more information). 

reinit / rigoto / rireturn forces a certain section of code to be reinitialized (= i-rate
variables are renewed).

EVENT TRIGGERING

event_i / event: Generate an instrument event at i-time (event_i) or at k-time (event).
Easy to use, but you cannot send a string to the subinstrument.

scoreline_i / scoreline: Generate an instrument at i-time (scoreline_i) or at k-time
(scoreline). Like event_i/event, but you can send to more than one instrument but unlike
event_i/event you can send strings. On the other hand, you must usually preformat your
scoreline-string using sprintf.

schedkwhen triggers an instrument event at k-time if a certain condition is given. 

seqtime / seqtime2 can be used to generate a trigger signal according to time values in
a function table.

timedseq is an event-sequencer in which time can be controlled by a time-pointer.
Sequence data are stored into a table.

INSTRUMENT SUPERVISION

INSTANCES AND ALLOCATION

active returns the number of active instances of an instrument. 

maxalloc limits the number of allocations (instances) of an instrument. 

prealloc creates space for instruments but does not run them.

TURNING ON AND OFF

turnon activates an instrument for an indefinite time. 

turnoff / turnoff2 enables an instrument to turn itself, or another instrument,
off. 

mute mutes/unmutes new instances of a given instrument. 

remove removes the definition of an instrument as long as it is not in use. 

exitnow exits csound as fast as possible, with no cleaning up.

NAMED INSTRUMENTS

nstrnum returns the number of a named instrument.
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SIGNAL EXCHANGE AND MIXING

CHN OPCODES

chn_k, chn_a, and chn_S declare a control, audio, or string channel. Note that
this can be done implicitely in most cases by chnset/chnget.

chnset writes a value (i, k, S or a) to a software channel (which is identified by a
string as its name).

chnget gets the value of a named software channel.

chnmix writes audio data to an named audio channel, mixing to the previous
output. 

chnclear clears an audio channel of the named software bus to zero.

ZAK  
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MATHEMATICAL CALCULATIONS

ARITHMETIC OPERATIONS 

+, -, *, /, ^, % are the usual signs for addition, subtraction, multiplication, division,
raising to a power and modulo. The precedence is like in common mathematics (a
"*" binds stronger than "+" etc.), but you can change this behaviour with
parentheses: 2^(1/12) returns 2 raised by 1/12 (= the 12st root of 2), while 2^1/12
returns 2 raised by 1, and the result divided by 12.

exp(x), log(x), log10(x) and sqrt(x) return e raised to the xth power, the natural
log of x, the base 10 log of x, and the square root of x. 

abs(x) returns the absolute value of a number. 

int(x) and frac(x) return the integer respective the fractional part of a number. 

round(x), ceil(x), floor(x) round a number to the nearest, the next higher or the
next lower integer.

TRIGONOMETRIC FUNCTIONS

sin(x), cos(x), tan(x) perform a sine, cosine or tangent function. 

sinh(x), cosh(x), tanh(x) perform a hyperbolic sine, cosine or tangent function. 

sininv(x), cosinv(x), taninv(x) and taninv2(x) perform the arcsine, arccosine and
arctangent functions.

LOGIC OPERATORS

&& and ||  are the symbols for a logical "and" respective "or". Note that you can
use here parentheses for defining the precedence, too, for instance: if (ival1 < 10
&& ival2 > 5) || (ival1 > 20 && ival2 < 0) then ...

284

http://www.csounds.com/manual/html/adds.html
http://www.csounds.com/manual/html/subtracts.html
http://www.csounds.com/manual/html/multiplies.html
http://www.csounds.com/manual/html/divides.html
http://www.csounds.com/manual/html/raises.html
http://www.csounds.com/manual/html/modulus.html
http://www.csounds.com/manual/html/exp.html
http://www.csounds.com/manual/html/log.html
http://www.csounds.com/manual/html/log10.html
http://www.csounds.com/manual/html/sqrt.html
http://www.csounds.com/manual/html/abs.html
http://www.csounds.com/manual/html/int.html
http://www.csounds.com/manual/html/frac.html
http://www.csounds.com/manual/html/round.html
http://www.csounds.com/manual/html/ceil.html
http://www.csounds.com/manual/html/floor.html
http://www.csounds.com/manual/html/sin.html
http://www.csounds.com/manual/html/cos.html
http://www.csounds.com/manual/html/tan.html
http://www.csounds.com/manual/html/sinh.html
http://www.csounds.com/manual/html/cosh.html
http://www.csounds.com/manual/html/tanh.html
http://www.csounds.com/manual/html/sininv.html
http://www.csounds.com/manual/html/cosinv.html
http://www.csounds.com/manual/html/taninv.html
http://www.csounds.com/manual/html/taninv2.html
http://www.csounds.com/manual/html/opand.html
http://www.csounds.com/manual/html/opand.html
http://www.csounds.com/manual/html/opor.html


CONVERTERS

MIDI TO FREQUENCY 

cpsmidi converts a MIDI note number from a triggered instrument to the
frequency in Hertz.

cpsmidinn does the same for any input values (i- or k-rate).

Other opcodes convert to Csonund's pitch- or octave-class system. They can be
found here.

FREQUENCY TO MIDI

Csound has no own opcode for the conversion of a frequency to a midi note
number, because this is a rather simple calculation. You can find a User Defined
Opcode for rounding to the next possible midi note number or for the exact
translation to a midi note number and a cent value as fractional part.

CENT VALUES TO FREQUENCY 

cent converts a cent value to a multiplier. For instance, cent(1200) returns 2,
cent(100) returns 1.059403. If you multiply this with the frequency you reference
to, you get frequency of the note which corresponds to the cent interval.

AMPLITUDE CONVERTERS

ampdb returns the amplitude equivalent of the dB value. ampdb(0) returns 1,
ampdb(-6) returns 0.501187, and so on.

ampdbfs returns the amplitude equivalent of the dB value, according to what has
been set as 0dbfs (1 is recommended, the default is 15bit = 32768). So ampdbfs(-
6) returns 0.501187 for 0dbfs=1, but 16422.904297 for 0dbfs=32768.

dbamp returns the decibel equivalent of the amplitude value, where an amplitude
of 1 is the maximum. So dbamp(1) -> 0 and dbamp(0.5) -> -6.020600.

dbfsamp returns the decibel equivalent of the amplitude value set by the 0dbfs
statement. So dbfsamp(10) is 20.000002 for 0dbfs=0 but -70.308998 for
0dbfs=32768.

SCALING 

Scaling of signals from an input range to an output range, like the "scale" object in
Max/MSP, is not implemented in Csound, because it is a rather simple calculation. It
is available as User Defined Opcode: Scali (i-rate), Scalk (k-rate) or Scala (a-rate).

PYTHON AND SYSTEM
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PYTHON OPCODES

pyinit initializes the Python interpreter. 

pyrun runs a Python statement or block of statements.

pyexec executes a script from a file at k-time, i-time or if a trigger has been received.

pycall invokes the specified Python callable at k-time or i-time.

pyeval evaluates a generic Python expression and stores the result in a Csound k- or i-
variable, with optional trigger.

pyassign assigns the value of the given Csound variable to a Python variable possibly
destroying its previous content.

SYSTEM OPCODES

getcfg returns various Csound configuration settings as a string at init time.

system / system_i call an external program via the system call.

PLUGINS 

PLUGIN HOSTING

LADSPA

dssiinit loads a plugin.

dssiactivate activates or deactivates a plugin if it has this facility.

dssilist lists all available plugins found in the LADSPA_PATH and DSSI_PATH global
variables.

dssiaudio processes audio using a plugin.

dssictls sends control information to a plugin's control port.

VST

vstinit loads a plugin.

vstaudio / vstaudiog return a plugin's output.

vstmidiout sends midi data to a plugin.

vstparamset / vstparamget sends and receives automation data to and from the
plugin.

vstnote sends a midi note with a definite duration.

vstinfo outputs the parameter and program names for a plugin.

vstbankload loads an .fxb bank.

vstprogset sets the program in a .fxb bank.

vstedit opens the GUI editor for the plugin, when available.

EXPORTING CSOUND FILES TO PLUGINS 
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http://www.csounds.com/manual/html/dssiaudio.html
http://www.csounds.com/manual/html/dssictls.html
http://www.csounds.com/manual/html/vstinit.html
http://www.csounds.com/manual/html/vstinit.html
http://www.csounds.com/manual/html/vstaudio.html
http://www.csounds.com/manual/html/vstaudio.html
http://www.csounds.com/manual/html/vstmidiout.html
http://www.csounds.com/manual/html/vstparamset.html
http://www.csounds.com/manual/html/vstparamget.html
http://www.csounds.com/manual/html/vstnote.html
http://www.csounds.com/manual/html/vstinfo.html
http://www.csounds.com/manual/html/vstbankload.html
http://www.csounds.com/manual/html/vstprogset.html
http://www.csounds.com/manual/html/vstedit.html
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60. GLOSSARY
 

control cycle, control period or k-loop is a pass during the performance of an instrument, in
which all k- and a-variables are renewed. The time for one control cycle is measured in
samples and determined by the ksmps constant in the orchestra header. If your sample rate
is 44100 and your ksmps value is 10, the time for one control cycle is 1/4410 = 0.000227
seconds. See the chapter about Initialization And Performance Pass for more information.

 

control rate or k-rate (kr) is the number of control cycles per second. It can be calculated as
the relationship of the sample rate sr and the number of samples in one control period ksmps.
If your sample rate is 44100 and your ksmps value is 10, your control rate is 4410, so you have
4410 control cycles per second. 

 

dummy f-statement see f-statement

f-statement or function table statement is a score line which starts with a "f" and
generates a function table. See the chapter about function tables for more information. A
dummy f-statement is a statement like "f 0 3600" which looks like a function table
statement, but instead of generating any table, it serves just for running Csound for a certain
time (here 3600 seconds = 1 hour).

 

i-time or init-time or i-rate signify the time in which all the variables starting with an "i" get
their values. These values are just given once for an instrument call. See the chapter about
Initialization And Performance Pass for more information.

 

k-loop see control cycle 

 

k-time is the time during the performance of an instrument, after the initialization. Variables
starting with a "k" can alter their values in each ->control cycle. See the chapter about
Initialization And Performance Pass for more information.

 

k-rate see control rate 

 

performance pass see control cycle 

 

time stretching can be done in various ways in Csound. See sndwarp, waveset, pvstanal and
the Granular Synthesis opcodes. In the frequency domain, you can use the pvs-opcodes
pvsfread, pvsdiskin, pvscale, pvshift.

61. LINKS
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DOWNLOADS

Csound: http://sourceforge.net/projects/csound/files/

Csound's User Defined Opcodes: http://www.csounds.com/udo/ 

QuteCsound: http://sourceforge.net/projects/qutecsound/files/

WinXound:http://winxound.codeplex.com

Blue: http://sourceforge.net/projects/bluemusic/files/ 

 

COMMUNITY

Csound's info page on sourceforge is a good collection of links and basic infos. 

csounds.com is the main page for the Csound community, including news, online tutorial,
forums and many links.

The Csound Journal is a main source for different aspects of working with Csound.

The Csound Blog by Jacob Joaquin offers a lot of interesting articles, tutorials, examples and
software. 

 

MAILING LISTS AND BUG TRACKER 

To subscribe to the Csound User Discussion List, send a message with "subscribe csound
<your name>" in the message body to sympa@lists.bath.ac.uk. To post, send messages to
csound@lists.bath.ac.uk. You can search in the list archive at nabble.com.

To subscribe to the QuteCsound User Discussion List, go to
https://lists.sourceforge.net/lists/listinfo/qutecsound-users. You can browse the list archive
here. 

Csound Developer Discussions: https://lists.sourceforge.net/lists/listinfo/csound-devel 

Blue: http://sourceforge.net/mail/?group_id=74382

You can report a bug you experienced in Csound at http://sourceforge.net/tracker/?
group_id=81968&atid=564599, and a QuteCsound related bug at
http://sourceforge.net/tracker/?func=browse&group_id=227265&atid=1070588. 

TUTORIALS

A Beginning Tutorial is a short introduction from Barry Vercoe, the "father of Csound".

An Instrument Design TOOTorial by Richard Boulanger (1991) is another classical introduction,
still very worth to read.

Introduction to Sound Design in Csound also by Richard Boulanger, is the first chapter of the
famous Csound Book (2000). 

Virtual Sound by Alessandro Cipriani and Maurizio Giri (2000)

A Csound Tutorial by Michael Gogins (2009), one of the main Csound Developers.
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http://sourceforge.net/mail/?group_id=74382
http://sourceforge.net/tracker/?group_id=81968&atid=564599
http://sourceforge.net/tracker/?func=browse&group_id=227265&atid=1070588
http://www.csounds.com/tootsother/vercoetut/Vercoe.html
http://www.csounds.com/toots/index.html
http://www.csounds.com/chapter1/index.html
http://www.virtual-sound.com/sv/index.php?option=com_content&view=article&id=46&Itemid=56
http://michael-gogins.com/archives/tutorial.pdf


VIDEO TUTORIALS

A playlist as overview by Alex Hofmann:

http://www.youtube.com/view_play_list?p=3EE3219702D17FD3

QUTECSOUND

QuteCsound: Where to start? 
http://www.youtube.com/watch?v=0XcQ3ReqJTM

First instrument: 
http://www.youtube.com/watch?v=P5OOyFyNaCA

Using MIDI: 
http://www.youtube.com/watch?v=8zszIN_N3bQ

About configuration: 
http://www.youtube.com/watch?v=KgYea5s8tFs

Presets tutorial: 
http://www.youtube.com/watch?v=KKlCTxmzcS0 
http://www.youtube.com/watch?v=aES-ZfanF3c

Live Events tutorial: 
http://www.youtube.com/watch?v=O9WU7DzdUmE 
http://www.youtube.com/watch?v=Hs3eO7o349k 
http://www.youtube.com/watch?v=yUMzp6556Kw

New editing features in 0.6.0: 
http://www.youtube.com/watch?v=Hk1qPlnyv88 

CSOUNDO (CSOUND AND PROCESSING)

http://csoundblog.com/2010/08/csound-processing-experiment-i/

EXAMPLE COLLECTIONS

Csound Realtime Examples by Iain McCurdy is one of the most inspiring and up-to-date
collections.

The Amsterdam Catalog by John-Philipp Gather is particularily interesting because of the
adaption of Jean-Claude Risset's famous "Introductory Catalogue of Computer Synthesized
Sounds" from 1969.

 

BOOKS

The Csound Book (2000) edited by Richard Boulanger is still the compendium for anyone who
really wants to go in depth with Csound.

Virtual Sound by Alessandro Cipriani and Maurizio Giri (2000)

Signale, Systeme, und Klangsysteme by Martin Neukom (2003, german) has many interesting
examples in Csound. 
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http://www.peterlang.com/index.cfm?event=cmp.ccc.seitenstruktur.detailseiten&seitentyp=produkt&pk=13446&CFID=709575&CFTOKEN=84330415
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